research papers
Single-crystal 6Mn5Bi18 and RhMnBi3
of two new ternary bismuthides: RhaDepartment of Inorganic Chemistry – Functional Materials, University of Vienna, Faculty of Chemistry, Althanstrasse 14, Vienna 1090, Austria, and bInstitute of Mineralogy and Crystallography, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
*Correspondence e-mail: klaus.richter@univie.ac.at, herbert.ipser@univie.ac.at
A study of the ternary Rh–Mn–Bi phase diagram revealed the existence of two new ternary bismuthides, viz. hexarhodium pentamanganese octadecabismuthide (Rh6Mn5Bi18) and rhodium manganese tribismuthide (RhMnBi3). Their crystal structures represent new structure types. Rh6Mn5Bi18, with a Wyckoff sequence a f2 g2 i5, crystallizes in the tetragonal system (space group P42/mnm; tP58), and RhMnBi3, with a Wyckoff sequence a c g i q, crystallizes in the orthorhombic system (Cmmm; oS20). In the Rh6Mn5Bi18 structure, the transition metal atoms are linked into ribbon-like structural units aligned along the [001] direction, whereas planar sheets are formed in RhMnBi3. In both crystal structures, the units formed by the transition metal atoms are enveloped by Bi atoms, which themselves form a loosely bound network. The linkage results in a layer structure for RhMnBi3, while in the case of Rh6Mn5Bi18, a three-dimensional network is formed; the latter, however, contains several areas where Bi⋯Bi distances suggest van der Waals interactions. Both phases under discussion have analogous structural motifs.
1. Introduction
For decades, there has been an ongoing search for ferromagnetic materials free of rare earth elements. One promising candidate is the intermetallic phase α-BiMn; unfortunately, it has not been possible to synthesize this phase as a single-phase bulk material in spite of intensive research (e.g. Liu et al., 2004; Rama Rao et al., 2013; Cui et al., 2014; Chen et al., 2015; Marker et al., 2018). A possible approach to circumvent these problems was considered to be the addition of a third component, e.g. Rh, which forms an intermetallic phase with Bi that is isotypic with α-BiMn (Ross & Hume-Rothery, 1962; Kainzbauer et al., 2018).
Street et al. (1974) identified a ferromagnetic compound, i.e. Mn5Rh2Bi4 (cubic, Fmm), with a Curie temperature of 266 K. A similar observation was made by Taufour et al. (2015), who described the ferromagnetic compound Mn1.05Rh0.02Bi, with a Curie temperature below 416 K. Furthermore, Suits (1975) discovered ferromagnetism in Bi-substituted RhMn with the composition RhMn0.8Bi0.2. Based on these observations, a systematic study of the ternary Rh–Mn–Bi system at different temperatures was considered of interest, with the focus on finding additional intermetallic phases which might possibly exhibit ferromagnetism. The synthesized samples were checked by powder X-ray diffraction (PXRD) investigations. As a result of this ongoing research, the phases hexarhodium pentamanganese octadecabismuthide (Rh6Mn5Bi18) and rhodium manganese tribismuthide (RhMnBi3) were detected; admittedly, they are not ferromagnetic.
A literature survey of the ternary Rh–M–Bi systems (M = 3d transition metal) shows that they are relatively unexplored. Except for the aforementioned phases, only a handful of compounds are known. Examples are RhNiBi2 (Zhuravlev et al., 1962) and RhNiBi6 (Fjellvåg & Furuseth, 1987). It may be of particular interest that Rh6Mn5Bi18 is probably one of the first reported ternary manganese pnictide phases, with a network formed by Bi atoms where alkaline or rare earth metal elements are absent. Further examples are known to crystallize in the cubic structure type Cu4Mn3Bi4 (Street et al., 1974; Szytula et al., 1981).
2. Experimental
2.1. Synthesis and crystallization
Bulk samples were prepared from pure element pieces of Bi (99.999%, ASARCO, New Jersey, USA) and Mn (99.95%, Alfa Aesar, Johnson Matthey Chemicals, Karlsruhe, Germany), and from Rh powder (99.95% ÖGUSSA, Austria). Except for Rh, the metals were pulverized manually and sieved (grain size <0.09 mm). For the Rh6Mn5Bi18 phase, 76.40 mg Rh, 33.81 mg Mn and 389.26 mg Bi in powder form were mixed, and for RhMnBi3, the amounts were 95.14 mg Rh, 67.50 mg Mn and 838.14 mg Bi; in both cases, the powder mixtures were pressed into pellets in a 5 mm pressing cylinder under a load of 20–25 kN. The bulk samples for the Rh6Mn5Bi18 phase were sealed in an evacuated silica-glass tube and melted over an oxyhydrogen flame under shaking, with optical control of the melting process. For the alloying process, the samples were heated quickly to 1373 K, cooled over a period of 5 d to 613 K and annealed at this temperature for two weeks. The bulk samples for the RhMnBi3 phase were prepared as sinter pellets. The pellet was sealed in an evacuated silica-glass tube with a small alumina plate at the bottom and covered with an inverted closed silica-glass tube to reduce the gas volume (annealing time of four months). After the annealing process at 613 K in a muffle furnace (Nabertherm, Germany, temperature accuracy ±5 K), all samples were quenched in cold water.
Small single crystals of Rh6Mn5Bi18 and RhMnBi3 were obtained in several inhomogeneous bulk samples. The target compounds had a metallic luster and were selected manually using an optical stereomicroscope. Adherent bismuth was removed with a scalpel. The entire preparation process was performed in an Ar-filled glove-box (Labmaster SP MBraun, H2O and O2 levels below 0.1 ppm). was performed on a DSC 404F1 Pegasus (Netzsch, Selb, Germany) and showed that the Rh6Mn5Bi18 compound is stable up to 730 K. Phase identification was performed under ambient conditions by PXRD on a Bruker D8 Advance diffractometer in Bragg–Brentano pseudo-focusing geometry, using Cu Kα radiation and a LynxEye® one-dimensional silicon strip detector. Energy-dispersive analyses on a scanning electron microscope (Zeiss Supra 55 VP) confirmed that the elemental compositions corresponded to those from the single-crystal X-ray Morphologically, both new bismuthides are acicular and flaky.
2.2. Refinement
Crystal data, data collection and structure . A number of crystal chips were checked for their scattering behaviour and, in particular, to exclude admixtures as adherent bismuth. Crystals of sufficient quality were used for collection of the intensity data in the full reciprocal sphere. To minimize absorption effects, the crystals were mounted approximately parallel to the φ axes with their longest extension. As the crystal structures are composed of structural units only bonded by weak Bi—Bi bonds, extensive cleavage of the crystals is evident. As a consequence of this behaviour, only a crystal of limited quality could be found for Rh6Mn5Bi18, even though a large number of crystals was checked by single-crystal X-ray diffraction; thus, the Rint value and, consequently, the structure refinements remained poor. Nevertheless, the structure type could be clearly established.
details are summarized in Table 1A careful inspection of the ). The program STRUCTURE TIDY (Gelato & Parthé, 1987) was used to standardize all atomic coordinates.
gave no evidence for any reflections; was not recognized. As mixed occupation of individual atom positions was not evident and the anisotropic displacement parameters were not conspicuous, a violation of centrosymmetry can be excluded within the accuracy of the structure refinements. Due to the high mosaicity of both samples, their extinction is negligible. Complex neutral atomic scattering functions were applied (Prince, 20063. Results and discussion
As mentioned above, only a few pnictides are known with Rh and a second 3d transition metal as constituents (Street et al., 1974; Szytula et al., 1981; Huang et al., 2015). The title phases are probably also the only reported ternary bismuthides containing a platinum group element and Mn, which adopt new structure types.
Rh6Mn5Bi18 crystallizes in the tetragonal P42/mnm (Pearson symbol tP58). The contains ten atoms, which are listed together with their Wyckoff letters and site symmetries in Table 2. Fig. 1 shows the whole and the main structural element of Rh6Mn5Bi18 formed by extensive linkage of the Mn and Rh atoms. It is characterized by double chains running parallel to [001], each with the formal composition Rh3Mn2. They are linked by an additional Mn1 atom to form ribbons with a linear Rh1—Mn1—Rh1 configuration. The central part of the chains consists of the atoms Rh2, Mn2 and Mn3, the Rh1 atom points towards the linking atom Mn1, and the Mn1 atom itself is surrounded in a bicapped square-prismatic coordination (CN = 10, position 2a) (see Fig. 2a and Table 3). The ribbons are surrounded by Bi atoms, with Rh/Mn—Bi bond distances > 2.814 Å. All Bi atoms are exclusively bonded to one Rh3Mn2—Mn1—Rh3Mn2 ribbon. The Bi atoms themselves form an extended three-dimensional anionic network. The Bi—Bi bonds are longer than 3.316 Å; although Bi—Bi distances in the network were found up to 3.5808 (12) Å, which is slightly longer than the interlayer Bi—Bi distance in native Bi under ambient conditions (3.529 Å; Donohue, 1974), bonding interactions are still implicated. In addition to the interatomic bonds, weak van der Waals Bi4⋯Bi4 [3.920 (2) Å] and Bi2⋯Bi5 [3.848 (1) Å] interactions contribute to the cohesion of the network. These longer distances are not shown in Fig. 1(a). The coordination spheres around all the transition-metal positions are depicted in Fig. 2.
|
|
A characteristic feature of the ribbons are eight-membered rings formed by two Mn1 and two Mn3 atoms, as well as four Rh1 atoms. In addition, four-membered rings are built by two Mn3, one Mn2 and one Rh1 atom. These two kinds of rings are planar by space-group symmetry. Only the Rh2 atoms are, respectively, above and below the layers; see Fig. 1(b). These structural units are the common structural motif of the two title compounds. However, tetragonal symmetry causes a herring-bone pattern of these one-dimensional structural units along [001] in Rh6Mn5Bi18, whereas they are linked into a two-dimensional arrangement in RhMnBi3 (see below).
RhMnBi3 crystallizes in the orthorhombic Cmmm (Pearson symbol oS20). Like Rh6Mn5Bi18, RhMnBi3 represents a new structure type and exhibits a layer structure consisting of planar Mn–Rh sheets parallel to (010) surrounded by Bi atoms, as presented in detail in Fig. 3. Fig. 3(a) shows the along c, clearly indicating the layering. Bi—Bi bond distances between the layers are mainly in the range of van der Waals interactions, except for the Bi2⋯Bi2 distances of 3.590 (3) Å, which are slightly longer than the interlayer distance in native Bi (3.529 Å), but are still assumed to exhibit weak bonding interactions. The planar nets formed by the transition metals shown in Fig. 3(b) consist of eight-membered rings of alternating Mn and Rh atoms, similar to the motif shown in Fig. 1(b). The coordination spheres around all the transition-metal positions are depicted in Fig. 4.
The 3 itself contains five atoms, which are listed together with their Wyckoff letters and site symmetries in Table 4.
of the structure of RhMnBi
|
Finally, Fig. 5 illustrates clearly the relationship between the structures of Rh6Mn5Bi18 and RhMnBi3.
Supporting information
https://doi.org/10.1107/S2053229618009087/sk3690sup1.cif
contains datablocks Rh6Mn5Bi18, RhMnBi3, global. DOI:Structure factors: contains datablock Rh6Mn5Bi18. DOI: https://doi.org/10.1107/S2053229618009087/sk3690Rh6Mn5Bi18sup3.hkl
Structure factors: contains datablock RhMnBi3. DOI: https://doi.org/10.1107/S2053229618009087/sk3690RhMnBi3sup4.hkl
For both structures, data collection: COLLECT (Hooft, 1999); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalMaker (CrystalMaker, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Rh6Mn5Bi18 | Dx = 10.793 Mg m−3 |
Mr = 4653.80 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P42/mnm | Cell parameters from 21380 reflections |
a = 18.526 (3) Å | θ = 3–34.8° |
c = 4.1722 (11) Å | µ = 115.57 mm−1 |
V = 1432.0 (6) Å3 | T = 293 K |
Z = 2 | Needle like crystal, gray |
F(000) = 3778 | 0.16 × 0.03 × 0.02 mm |
Nonius KappaCCD diffractometer | 1297 reflections with I > 2σ(I) |
Radiation source: Nonius | Rint = 0.169 |
ω scans | θmax = 34.8°, θmin = 3.1° |
Absorption correction: multi-scan | h = −29→29 |
Tmin = 0.009, Tmax = 0.011 | k = −29→29 |
21380 measured reflections | l = −6→6 |
1784 independent reflections |
Refinement on F2 | 50 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.013P)2 + 93.P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.088 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 4.24 e Å−3 |
1784 reflections | Δρmin = −3.66 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Bi1 | 0.17112 (3) | 0.82888 (3) | 0.0000 | 0.0212 (2) | |
Bi2 | 0.08340 (3) | 0.25924 (3) | 0.0000 | 0.01802 (14) | |
Bi3 | 0.37210 (3) | 0.50115 (3) | 0.0000 | 0.01935 (14) | |
Bi4 | 0.08560 (4) | 0.56218 (4) | 0.0000 | 0.02587 (17) | |
Bi5 | 0.20740 (4) | 0.41210 (4) | 0.0000 | 0.02015 (15) | |
Rh1 | 0.10090 (7) | 0.10090 (7) | 0.0000 | 0.0195 (4) | |
Rh2 | 0.18578 (7) | 0.67667 (7) | 0.0000 | 0.0187 (3) | |
Mn1 | 0.0000 | 0.0000 | 0.0000 | 0.0261 (12) | |
Mn2 | 0.24406 (14) | 0.24406 (14) | 0.0000 | 0.0177 (7) | |
Mn3 | 0.33193 (14) | 0.66807 (14) | 0.0000 | 0.0182 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Bi1 | 0.0180 (2) | 0.0180 (2) | 0.0277 (5) | 0.0010 (3) | 0.000 | 0.000 |
Bi2 | 0.0156 (3) | 0.0175 (3) | 0.0209 (3) | −0.0003 (2) | 0.000 | 0.000 |
Bi3 | 0.0178 (3) | 0.0173 (3) | 0.0230 (3) | −0.0002 (2) | 0.000 | 0.000 |
Bi4 | 0.0241 (3) | 0.0236 (3) | 0.0298 (4) | −0.0041 (3) | 0.000 | 0.000 |
Bi5 | 0.0215 (3) | 0.0172 (3) | 0.0217 (3) | −0.0024 (2) | 0.000 | 0.000 |
Rh1 | 0.0188 (5) | 0.0188 (5) | 0.0208 (10) | −0.0030 (6) | 0.000 | 0.000 |
Rh2 | 0.0166 (5) | 0.0198 (6) | 0.0198 (7) | 0.0014 (5) | 0.000 | 0.000 |
Mn1 | 0.0257 (16) | 0.0257 (16) | 0.027 (3) | −0.008 (2) | 0.000 | 0.000 |
Mn2 | 0.0187 (10) | 0.0187 (10) | 0.0157 (18) | 0.0027 (13) | 0.000 | 0.000 |
Mn3 | 0.0168 (10) | 0.0168 (10) | 0.021 (2) | 0.0017 (13) | 0.000 | 0.000 |
Bi1—Rh2 | 2.8329 (16) | Bi5—Bi1vii | 3.4341 (7) |
Bi1—Rh2i | 2.8329 (16) | Rh1—Mn1 | 2.6435 (19) |
Bi1—Mn2ii | 3.048 (3) | Rh1—Mn3vi | 2.729 (3) |
Bi1—Mn2iii | 3.048 (3) | Rh1—Mn3vii | 2.729 (3) |
Bi1—Bi5iii | 3.4342 (7) | Rh1—Bi3ix | 2.8315 (9) |
Bi1—Bi5iv | 3.4342 (7) | Rh1—Bi3vii | 2.8315 (9) |
Bi1—Bi5ii | 3.4342 (7) | Rh1—Bi3x | 2.8315 (9) |
Bi1—Bi5v | 3.4342 (7) | Rh1—Bi3vi | 2.8315 (9) |
Bi2—Rh2vi | 2.8939 (11) | Rh1—Bi2viii | 2.9513 (14) |
Bi2—Rh2vii | 2.8939 (11) | Rh2—Mn3 | 2.712 (3) |
Bi2—Rh1 | 2.9513 (14) | Rh2—Mn2ii | 2.7568 (10) |
Bi2—Mn2 | 2.990 (2) | Rh2—Mn2iii | 2.7568 (10) |
Bi2—Mn3vi | 3.1089 (7) | Rh2—Bi5iii | 2.8220 (11) |
Bi2—Mn3vii | 3.1089 (7) | Rh2—Bi5ii | 2.8220 (11) |
Bi2—Bi3vii | 3.5489 (9) | Rh2—Bi2iii | 2.8939 (11) |
Bi2—Bi3vi | 3.5489 (9) | Rh2—Bi2ii | 2.8939 (11) |
Bi2—Bi4vi | 3.5733 (9) | Mn1—Rh1xi | 2.6435 (19) |
Bi2—Bi4vii | 3.5733 (9) | Mn1—Bi3xii | 3.1570 (7) |
Bi2—Bi5 | 3.6465 (11) | Mn1—Bi3xiii | 3.1570 (7) |
Bi3—Rh1ii | 2.8315 (9) | Mn1—Bi3x | 3.1570 (7) |
Bi3—Rh1iii | 2.8315 (9) | Mn1—Bi3vi | 3.1570 (7) |
Bi3—Mn1ii | 3.1569 (7) | Mn1—Bi3xiv | 3.1570 (7) |
Bi3—Mn1iii | 3.1569 (7) | Mn1—Bi3ix | 3.1570 (7) |
Bi3—Mn3 | 3.181 (3) | Mn1—Bi3vii | 3.1570 (7) |
Bi3—Bi3i | 3.3209 (14) | Mn1—Bi3xv | 3.1570 (7) |
Bi3—Bi3viii | 3.3809 (14) | Mn2—Rh2vi | 2.7568 (10) |
Bi3—Bi5 | 3.4687 (11) | Mn2—Rh2vii | 2.7568 (10) |
Bi3—Bi2iii | 3.5489 (9) | Mn2—Rh2x | 2.7568 (10) |
Bi3—Bi2ii | 3.5489 (9) | Mn2—Rh2ix | 2.7568 (10) |
Bi4—Rh2 | 2.8184 (16) | Mn2—Mn3vii | 2.884 (4) |
Bi4—Bi5ii | 3.4046 (9) | Mn2—Mn3vi | 2.884 (4) |
Bi4—Bi5iii | 3.4046 (9) | Mn2—Bi2viii | 2.990 (2) |
Bi4—Bi4vii | 3.4692 (10) | Mn2—Bi1vi | 3.048 (3) |
Bi4—Bi4vi | 3.4692 (10) | Mn2—Bi1vii | 3.048 (3) |
Bi4—Bi4iii | 3.4693 (9) | Mn2—Bi5viii | 3.186 (2) |
Bi4—Bi4ii | 3.4693 (10) | Mn3—Rh2i | 2.712 (3) |
Bi4—Bi2ii | 3.5734 (9) | Mn3—Rh1ii | 2.729 (3) |
Bi4—Bi2iii | 3.5734 (9) | Mn3—Rh1iii | 2.729 (3) |
Bi4—Bi5 | 3.5808 (12) | Mn3—Mn2ii | 2.884 (4) |
Bi5—Rh2vii | 2.8221 (11) | Mn3—Mn2iii | 2.884 (4) |
Bi5—Rh2vi | 2.8221 (11) | Mn3—Bi2iv | 3.1089 (7) |
Bi5—Mn2 | 3.186 (2) | Mn3—Bi2iii | 3.1089 (7) |
Bi5—Bi4vii | 3.4047 (9) | Mn3—Bi2v | 3.1089 (7) |
Bi5—Bi4vi | 3.4046 (9) | Mn3—Bi2ii | 3.1089 (7) |
Bi5—Bi1vi | 3.4341 (7) | Mn3—Bi3i | 3.181 (3) |
Rh2—Bi1—Rh2i | 79.00 (6) | Mn3vi—Rh1—Bi3vi | 69.75 (5) |
Rh2—Bi1—Mn2ii | 55.77 (4) | Mn3vii—Rh1—Bi3vi | 141.27 (4) |
Rh2i—Bi1—Mn2ii | 55.77 (4) | Bi3ix—Rh1—Bi3vi | 140.66 (8) |
Rh2—Bi1—Mn2iii | 55.77 (4) | Bi3vii—Rh1—Bi3vi | 94.91 (4) |
Rh2i—Bi1—Mn2iii | 55.77 (4) | Bi3x—Rh1—Bi3vi | 71.81 (3) |
Mn2ii—Bi1—Mn2iii | 86.39 (10) | Mn1—Rh1—Bi2viii | 128.69 (3) |
Rh2—Bi1—Bi5iii | 52.46 (2) | Mn3vi—Rh1—Bi2viii | 66.23 (4) |
Rh2i—Bi1—Bi5iii | 112.58 (3) | Mn3vii—Rh1—Bi2viii | 66.23 (4) |
Mn2ii—Bi1—Bi5iii | 108.02 (4) | Bi3ix—Rh1—Bi2viii | 75.682 (17) |
Mn2iii—Bi1—Bi5iii | 58.52 (2) | Bi3vii—Rh1—Bi2viii | 131.92 (3) |
Rh2—Bi1—Bi5iv | 112.58 (3) | Bi3x—Rh1—Bi2viii | 75.682 (17) |
Rh2i—Bi1—Bi5iv | 52.46 (2) | Bi3vi—Rh1—Bi2viii | 131.92 (3) |
Mn2ii—Bi1—Bi5iv | 58.52 (2) | Mn1—Rh1—Bi2 | 128.69 (3) |
Mn2iii—Bi1—Bi5iv | 108.02 (4) | Mn3vi—Rh1—Bi2 | 66.23 (4) |
Bi5iii—Bi1—Bi5iv | 163.22 (4) | Mn3vii—Rh1—Bi2 | 66.23 (4) |
Rh2—Bi1—Bi5ii | 52.46 (2) | Bi3ix—Rh1—Bi2 | 131.92 (3) |
Rh2i—Bi1—Bi5ii | 112.58 (3) | Bi3vii—Rh1—Bi2 | 75.682 (17) |
Mn2ii—Bi1—Bi5ii | 58.52 (2) | Bi3x—Rh1—Bi2 | 131.92 (3) |
Mn2iii—Bi1—Bi5ii | 108.02 (4) | Bi3vi—Rh1—Bi2 | 75.682 (17) |
Bi5iii—Bi1—Bi5ii | 74.81 (2) | Bi2viii—Rh1—Bi2 | 102.61 (6) |
Bi5iv—Bi1—Bi5ii | 102.67 (2) | Mn3—Rh2—Mn2ii | 63.64 (8) |
Rh2—Bi1—Bi5v | 112.58 (3) | Mn3—Rh2—Mn2iii | 63.64 (7) |
Rh2i—Bi1—Bi5v | 52.46 (2) | Mn2ii—Rh2—Mn2iii | 98.35 (5) |
Mn2ii—Bi1—Bi5v | 108.02 (4) | Mn3—Rh2—Bi4 | 127.82 (7) |
Mn2iii—Bi1—Bi5v | 58.52 (2) | Mn2ii—Rh2—Bi4 | 130.64 (2) |
Bi5iii—Bi1—Bi5v | 102.67 (2) | Mn2iii—Rh2—Bi4 | 130.64 (2) |
Bi5iv—Bi1—Bi5v | 74.81 (2) | Mn3—Rh2—Bi5iii | 130.79 (3) |
Bi5ii—Bi1—Bi5v | 163.22 (4) | Mn2ii—Rh2—Bi5iii | 140.44 (9) |
Rh2vi—Bi2—Rh2vii | 92.25 (5) | Mn2iii—Rh2—Bi5iii | 69.65 (5) |
Rh2vi—Bi2—Rh1 | 106.51 (4) | Bi4—Rh2—Bi5iii | 74.26 (3) |
Rh2vii—Bi2—Rh1 | 106.51 (4) | Mn3—Rh2—Bi5ii | 130.79 (3) |
Rh2vi—Bi2—Mn2 | 55.85 (4) | Mn2ii—Rh2—Bi5ii | 69.65 (5) |
Rh2vii—Bi2—Mn2 | 55.85 (4) | Mn2iii—Rh2—Bi5ii | 140.44 (9) |
Rh1—Bi2—Mn2 | 78.30 (7) | Bi4—Rh2—Bi5ii | 74.26 (3) |
Rh2vi—Bi2—Mn3vi | 53.57 (6) | Bi5iii—Rh2—Bi5ii | 95.33 (5) |
Rh2vii—Bi2—Mn3vi | 111.94 (6) | Mn3—Rh2—Bi1 | 98.87 (7) |
Rh1—Bi2—Mn3vi | 53.46 (5) | Mn2ii—Rh2—Bi1 | 66.07 (7) |
Mn2—Bi2—Mn3vi | 56.40 (6) | Mn2iii—Rh2—Bi1 | 66.07 (7) |
Rh2vi—Bi2—Mn3vii | 111.94 (6) | Bi4—Rh2—Bi1 | 133.31 (5) |
Rh2vii—Bi2—Mn3vii | 53.57 (6) | Bi5iii—Rh2—Bi1 | 74.79 (3) |
Rh1—Bi2—Mn3vii | 53.46 (5) | Bi5ii—Rh2—Bi1 | 74.79 (3) |
Mn2—Bi2—Mn3vii | 56.40 (6) | Mn3—Rh2—Bi2iii | 67.27 (4) |
Mn3vi—Bi2—Mn3vii | 84.29 (2) | Mn2ii—Rh2—Bi2iii | 130.54 (9) |
Rh2vi—Bi2—Bi3vii | 157.13 (3) | Mn2iii—Rh2—Bi2iii | 63.83 (6) |
Rh2vii—Bi2—Bi3vii | 94.24 (3) | Bi4—Rh2—Bi2iii | 77.43 (3) |
Rh1—Bi2—Bi3vii | 50.63 (2) | Bi5iii—Rh2—Bi2iii | 79.26 (2) |
Mn2—Bi2—Bi3vii | 111.28 (5) | Bi5ii—Rh2—Bi2iii | 151.58 (6) |
Mn3vi—Bi2—Bi3vii | 103.80 (6) | Bi1—Rh2—Bi2iii | 128.91 (3) |
Mn3vii—Bi2—Bi3vii | 56.62 (6) | Mn3—Rh2—Bi2ii | 67.27 (4) |
Rh2vi—Bi2—Bi3vi | 94.24 (3) | Mn2ii—Rh2—Bi2ii | 63.83 (6) |
Rh2vii—Bi2—Bi3vi | 157.13 (3) | Mn2iii—Rh2—Bi2ii | 130.54 (9) |
Rh1—Bi2—Bi3vi | 50.63 (2) | Bi4—Rh2—Bi2ii | 77.43 (3) |
Mn2—Bi2—Bi3vi | 111.28 (5) | Bi5iii—Rh2—Bi2ii | 151.58 (6) |
Mn3vi—Bi2—Bi3vi | 56.62 (6) | Bi5ii—Rh2—Bi2ii | 79.26 (2) |
Mn3vii—Bi2—Bi3vi | 103.80 (6) | Bi1—Rh2—Bi2ii | 128.91 (3) |
Bi3vii—Bi2—Bi3vi | 72.01 (2) | Bi2iii—Rh2—Bi2ii | 92.25 (5) |
Rh2vi—Bi2—Bi4vi | 50.34 (3) | Rh1—Mn1—Rh1xi | 180.00 (8) |
Rh2vii—Bi2—Bi4vi | 101.74 (3) | Rh1—Mn1—Bi3xii | 122.375 (12) |
Rh1—Bi2—Bi4vi | 144.255 (12) | Rh1xi—Mn1—Bi3xii | 57.625 (12) |
Mn2—Bi2—Bi4vi | 100.67 (5) | Rh1—Mn1—Bi3xiii | 122.375 (12) |
Mn3vi—Bi2—Bi4vi | 95.78 (4) | Rh1xi—Mn1—Bi3xiii | 57.625 (12) |
Mn3vii—Bi2—Bi4vi | 152.16 (7) | Bi3xii—Mn1—Bi3xiii | 63.47 (2) |
Bi3vii—Bi2—Bi4vi | 147.94 (2) | Rh1—Mn1—Bi3x | 57.625 (12) |
Bi3vi—Bi2—Bi4vi | 99.273 (19) | Rh1xi—Mn1—Bi3x | 122.375 (12) |
Rh2vi—Bi2—Bi4vii | 101.74 (3) | Bi3xii—Mn1—Bi3x | 116.53 (2) |
Rh2vii—Bi2—Bi4vii | 50.34 (3) | Bi3xiii—Mn1—Bi3x | 180.00 (3) |
Rh1—Bi2—Bi4vii | 144.255 (13) | Rh1—Mn1—Bi3vi | 57.625 (12) |
Mn2—Bi2—Bi4vii | 100.67 (5) | Rh1xi—Mn1—Bi3vi | 122.375 (12) |
Mn3vi—Bi2—Bi4vii | 152.16 (7) | Bi3xii—Mn1—Bi3vi | 180.00 (3) |
Mn3vii—Bi2—Bi4vii | 95.78 (4) | Bi3xiii—Mn1—Bi3vi | 116.53 (2) |
Bi3vii—Bi2—Bi4vii | 99.273 (19) | Bi3x—Mn1—Bi3vi | 63.47 (2) |
Bi3vi—Bi2—Bi4vii | 147.94 (2) | Rh1—Mn1—Bi3xiv | 122.375 (12) |
Bi4vi—Bi2—Bi4vii | 71.44 (2) | Rh1xi—Mn1—Bi3xiv | 57.625 (11) |
Rh2vi—Bi2—Bi5 | 49.50 (2) | Bi3xii—Mn1—Bi3xiv | 82.72 (2) |
Rh2vii—Bi2—Bi5 | 49.50 (2) | Bi3xiii—Mn1—Bi3xiv | 115.25 (2) |
Rh1—Bi2—Bi5 | 134.64 (4) | Bi3x—Mn1—Bi3xiv | 64.75 (2) |
Mn2—Bi2—Bi5 | 56.35 (6) | Bi3vi—Mn1—Bi3xiv | 97.28 (2) |
Mn3vi—Bi2—Bi5 | 95.97 (7) | Rh1—Mn1—Bi3ix | 57.625 (11) |
Mn3vii—Bi2—Bi5 | 95.97 (7) | Rh1xi—Mn1—Bi3ix | 122.375 (12) |
Bi3vii—Bi2—Bi5 | 143.415 (13) | Bi3xii—Mn1—Bi3ix | 64.75 (2) |
Bi3vi—Bi2—Bi5 | 143.415 (13) | Bi3xiii—Mn1—Bi3ix | 97.28 (2) |
Bi4vi—Bi2—Bi5 | 56.262 (17) | Bi3x—Mn1—Bi3ix | 82.72 (2) |
Bi4vii—Bi2—Bi5 | 56.262 (16) | Bi3vi—Mn1—Bi3ix | 115.25 (2) |
Rh1ii—Bi3—Rh1iii | 94.91 (4) | Bi3xiv—Mn1—Bi3ix | 116.53 (2) |
Rh1ii—Bi3—Mn1ii | 52.05 (4) | Rh1—Mn1—Bi3vii | 57.625 (12) |
Rh1iii—Bi3—Mn1ii | 111.02 (3) | Rh1xi—Mn1—Bi3vii | 122.375 (12) |
Rh1ii—Bi3—Mn1iii | 111.02 (3) | Bi3xii—Mn1—Bi3vii | 97.28 (2) |
Rh1iii—Bi3—Mn1iii | 52.05 (4) | Bi3xiii—Mn1—Bi3vii | 64.75 (2) |
Mn1ii—Bi3—Mn1iii | 82.72 (2) | Bi3x—Mn1—Bi3vii | 115.25 (2) |
Rh1ii—Bi3—Mn3 | 53.61 (4) | Bi3vi—Mn1—Bi3vii | 82.72 (2) |
Rh1iii—Bi3—Mn3 | 53.61 (4) | Bi3xiv—Mn1—Bi3vii | 180.000 (15) |
Mn1ii—Bi3—Mn3 | 100.50 (3) | Bi3ix—Mn1—Bi3vii | 63.47 (2) |
Mn1iii—Bi3—Mn3 | 100.50 (3) | Rh1—Mn1—Bi3xv | 122.375 (12) |
Rh1ii—Bi3—Bi3i | 54.097 (16) | Rh1xi—Mn1—Bi3xv | 57.625 (11) |
Rh1iii—Bi3—Bi3i | 54.097 (16) | Bi3xii—Mn1—Bi3xv | 115.25 (2) |
Mn1ii—Bi3—Bi3i | 58.268 (12) | Bi3xiii—Mn1—Bi3xv | 82.72 (2) |
Mn1iii—Bi3—Bi3i | 58.268 (12) | Bi3x—Mn1—Bi3xv | 97.28 (2) |
Mn3—Bi3—Bi3i | 58.53 (4) | Bi3vi—Mn1—Bi3xv | 64.75 (2) |
Rh1ii—Bi3—Bi3viii | 109.67 (4) | Bi3xiv—Mn1—Bi3xv | 63.47 (2) |
Rh1iii—Bi3—Bi3viii | 109.67 (4) | Bi3ix—Mn1—Bi3xv | 180.00 (3) |
Mn1ii—Bi3—Bi3viii | 57.625 (11) | Bi3vii—Mn1—Bi3xv | 116.53 (2) |
Mn1iii—Bi3—Bi3viii | 57.625 (11) | Rh2vi—Mn2—Rh2vii | 98.35 (5) |
Mn3—Bi3—Bi3viii | 148.53 (4) | Rh2vi—Mn2—Rh2x | 81.63 (5) |
Bi3i—Bi3—Bi3viii | 90.0 | Rh2vii—Mn2—Rh2x | 178.50 (17) |
Rh1ii—Bi3—Bi5 | 117.76 (2) | Rh2vi—Mn2—Rh2ix | 178.50 (17) |
Rh1iii—Bi3—Bi5 | 117.76 (2) | Rh2vii—Mn2—Rh2ix | 81.63 (5) |
Mn1ii—Bi3—Bi5 | 131.073 (15) | Rh2x—Mn2—Rh2ix | 98.35 (5) |
Mn1iii—Bi3—Bi5 | 131.073 (15) | Rh2vi—Mn2—Mn3vii | 123.81 (11) |
Mn3—Bi3—Bi5 | 104.87 (4) | Rh2vii—Mn2—Mn3vii | 57.43 (5) |
Bi3i—Bi3—Bi5 | 163.398 (15) | Rh2x—Mn2—Mn3vii | 123.81 (11) |
Bi3viii—Bi3—Bi5 | 106.601 (15) | Rh2ix—Mn2—Mn3vii | 57.43 (5) |
Rh1ii—Bi3—Bi2iii | 105.90 (4) | Rh2vi—Mn2—Mn3vi | 57.43 (5) |
Rh1iii—Bi3—Bi2iii | 53.69 (3) | Rh2vii—Mn2—Mn3vi | 123.81 (11) |
Mn1ii—Bi3—Bi2iii | 154.95 (2) | Rh2x—Mn2—Mn3vi | 57.43 (5) |
Mn1iii—Bi3—Bi2iii | 97.415 (18) | Rh2ix—Mn2—Mn3vi | 123.81 (11) |
Mn3—Bi3—Bi2iii | 54.70 (3) | Mn3vii—Mn2—Mn3vi | 92.68 (15) |
Bi3i—Bi3—Bi2iii | 100.440 (14) | Rh2vi—Mn2—Bi2viii | 120.79 (9) |
Bi3viii—Bi3—Bi2iii | 142.039 (13) | Rh2vii—Mn2—Bi2viii | 120.79 (9) |
Bi5—Bi3—Bi2iii | 66.489 (17) | Rh2x—Mn2—Bi2viii | 60.31 (4) |
Rh1ii—Bi3—Bi2ii | 53.69 (3) | Rh2ix—Mn2—Bi2viii | 60.31 (4) |
Rh1iii—Bi3—Bi2ii | 105.90 (4) | Mn3vii—Mn2—Bi2viii | 63.89 (7) |
Mn1ii—Bi3—Bi2ii | 97.415 (18) | Mn3vi—Mn2—Bi2viii | 63.89 (7) |
Mn1iii—Bi3—Bi2ii | 154.95 (2) | Rh2vi—Mn2—Bi2 | 60.31 (4) |
Mn3—Bi3—Bi2ii | 54.70 (3) | Rh2vii—Mn2—Bi2 | 60.31 (4) |
Bi3i—Bi3—Bi2ii | 100.440 (14) | Rh2x—Mn2—Bi2 | 120.79 (9) |
Bi3viii—Bi3—Bi2ii | 142.039 (13) | Rh2ix—Mn2—Bi2 | 120.79 (9) |
Bi5—Bi3—Bi2ii | 66.489 (17) | Mn3vii—Mn2—Bi2 | 63.89 (7) |
Bi2iii—Bi3—Bi2ii | 72.00 (2) | Mn3vi—Mn2—Bi2 | 63.89 (7) |
Rh2—Bi4—Bi5ii | 52.92 (2) | Bi2viii—Mn2—Bi2 | 100.79 (11) |
Rh2—Bi4—Bi5iii | 52.92 (2) | Rh2vi—Mn2—Bi1vi | 58.16 (5) |
Bi5ii—Bi4—Bi5iii | 75.57 (3) | Rh2vii—Mn2—Bi1vi | 120.56 (10) |
Rh2—Bi4—Bi4vii | 132.55 (3) | Rh2x—Mn2—Bi1vi | 58.16 (5) |
Bi5ii—Bi4—Bi4vii | 173.51 (3) | Rh2ix—Mn2—Bi1vi | 120.56 (10) |
Bi5iii—Bi4—Bi4vii | 104.875 (19) | Mn3vii—Mn2—Bi1vi | 176.85 (12) |
Rh2—Bi4—Bi4vi | 132.55 (3) | Mn3vi—Mn2—Bi1vi | 90.47 (6) |
Bi5ii—Bi4—Bi4vi | 104.875 (19) | Bi2viii—Mn2—Bi1vi | 117.694 (15) |
Bi5iii—Bi4—Bi4vi | 173.51 (3) | Bi2—Mn2—Bi1vi | 117.694 (15) |
Bi4vii—Bi4—Bi4vi | 73.93 (3) | Rh2vi—Mn2—Bi1vii | 120.56 (10) |
Rh2—Bi4—Bi4iii | 115.18 (3) | Rh2vii—Mn2—Bi1vii | 58.16 (5) |
Bi5ii—Bi4—Bi4iii | 106.23 (3) | Rh2x—Mn2—Bi1vii | 120.56 (10) |
Bi5iii—Bi4—Bi4iii | 62.78 (2) | Rh2ix—Mn2—Bi1vii | 58.16 (5) |
Bi4vii—Bi4—Bi4iii | 68.803 (14) | Mn3vii—Mn2—Bi1vii | 90.47 (6) |
Bi4vi—Bi4—Bi4iii | 111.197 (14) | Mn3vi—Mn2—Bi1vii | 176.85 (12) |
Rh2—Bi4—Bi4ii | 115.18 (3) | Bi2viii—Mn2—Bi1vii | 117.694 (15) |
Bi5ii—Bi4—Bi4ii | 62.78 (2) | Bi2—Mn2—Bi1vii | 117.694 (15) |
Bi5iii—Bi4—Bi4ii | 106.23 (3) | Bi1vi—Mn2—Bi1vii | 86.39 (10) |
Bi4vii—Bi4—Bi4ii | 111.197 (14) | Rh2vi—Mn2—Bi5viii | 122.89 (8) |
Bi4vi—Bi4—Bi4ii | 68.803 (14) | Rh2vii—Mn2—Bi5viii | 122.89 (8) |
Bi4iii—Bi4—Bi4ii | 73.93 (3) | Rh2x—Mn2—Bi5viii | 56.14 (4) |
Rh2—Bi4—Bi2ii | 52.23 (2) | Rh2ix—Mn2—Bi5viii | 56.14 (4) |
Bi5ii—Bi4—Bi2ii | 62.953 (18) | Mn3vii—Mn2—Bi5viii | 111.89 (3) |
Bi5iii—Bi4—Bi2ii | 105.11 (3) | Mn3vi—Mn2—Bi5viii | 111.89 (3) |
Bi4vii—Bi4—Bi2ii | 122.58 (3) | Bi2viii—Mn2—Bi5viii | 72.295 (17) |
Bi4vi—Bi4—Bi2ii | 80.58 (2) | Bi2—Mn2—Bi5viii | 173.09 (11) |
Bi4iii—Bi4—Bi2ii | 166.43 (3) | Bi1vi—Mn2—Bi5viii | 66.81 (6) |
Bi4ii—Bi4—Bi2ii | 105.67 (2) | Bi1vii—Mn2—Bi5viii | 66.81 (6) |
Rh2—Bi4—Bi2iii | 52.23 (2) | Rh2vi—Mn2—Bi5 | 56.14 (4) |
Bi5ii—Bi4—Bi2iii | 105.11 (3) | Rh2vii—Mn2—Bi5 | 56.14 (4) |
Bi5iii—Bi4—Bi2iii | 62.953 (18) | Rh2x—Mn2—Bi5 | 122.89 (8) |
Bi4vii—Bi4—Bi2iii | 80.58 (2) | Rh2ix—Mn2—Bi5 | 122.89 (8) |
Bi4vi—Bi4—Bi2iii | 122.58 (3) | Mn3vii—Mn2—Bi5 | 111.89 (3) |
Bi4iii—Bi4—Bi2iii | 105.67 (2) | Mn3vi—Mn2—Bi5 | 111.89 (3) |
Bi4ii—Bi4—Bi2iii | 166.43 (3) | Bi2viii—Mn2—Bi5 | 173.09 (11) |
Bi2ii—Bi4—Bi2iii | 71.44 (2) | Bi2—Mn2—Bi5 | 72.295 (17) |
Rh2—Bi4—Bi5 | 99.75 (4) | Bi1vi—Mn2—Bi5 | 66.81 (6) |
Bi5ii—Bi4—Bi5 | 127.277 (17) | Bi1vii—Mn2—Bi5 | 66.81 (6) |
Bi5iii—Bi4—Bi5 | 127.277 (17) | Bi5viii—Mn2—Bi5 | 114.62 (12) |
Bi4vii—Bi4—Bi5 | 57.73 (2) | Rh2i—Mn3—Rh2 | 83.27 (12) |
Bi4vi—Bi4—Bi5 | 57.73 (2) | Rh2i—Mn3—Rh1ii | 118.81 (3) |
Bi4iii—Bi4—Bi5 | 126.471 (17) | Rh2—Mn3—Rh1ii | 118.81 (3) |
Bi4ii—Bi4—Bi5 | 126.471 (17) | Rh2i—Mn3—Rh1iii | 118.81 (3) |
Bi2ii—Bi4—Bi5 | 65.072 (17) | Rh2—Mn3—Rh1iii | 118.81 (3) |
Bi2iii—Bi4—Bi5 | 65.072 (17) | Rh1ii—Mn3—Rh1iii | 99.69 (13) |
Rh2vii—Bi5—Rh2vi | 95.33 (5) | Rh2i—Mn3—Mn2ii | 58.93 (7) |
Rh2vii—Bi5—Mn2 | 54.21 (3) | Rh2—Mn3—Mn2ii | 58.94 (7) |
Rh2vi—Bi5—Mn2 | 54.21 (4) | Rh1ii—Mn3—Mn2ii | 83.82 (7) |
Rh2vii—Bi5—Bi4vii | 52.82 (3) | Rh1iii—Mn3—Mn2ii | 176.49 (13) |
Rh2vi—Bi5—Bi4vii | 107.55 (4) | Rh2i—Mn3—Mn2iii | 58.93 (7) |
Mn2—Bi5—Bi4vii | 100.41 (5) | Rh2—Mn3—Mn2iii | 58.93 (7) |
Rh2vii—Bi5—Bi4vi | 107.55 (4) | Rh1ii—Mn3—Mn2iii | 176.49 (13) |
Rh2vi—Bi5—Bi4vi | 52.82 (3) | Rh1iii—Mn3—Mn2iii | 83.82 (7) |
Mn2—Bi5—Bi4vi | 100.41 (5) | Mn2ii—Mn3—Mn2iii | 92.67 (15) |
Bi4vii—Bi5—Bi4vi | 75.57 (3) | Rh2i—Mn3—Bi2iv | 59.16 (3) |
Rh2vii—Bi5—Bi1vi | 107.02 (3) | Rh2—Mn3—Bi2iv | 118.15 (9) |
Rh2vi—Bi5—Bi1vi | 52.75 (3) | Rh1ii—Mn3—Bi2iv | 60.31 (3) |
Mn2—Bi5—Bi1vi | 54.67 (4) | Rh1iii—Mn3—Bi2iv | 122.04 (8) |
Bi4vii—Bi5—Bi1vi | 153.59 (3) | Mn2ii—Mn3—Bi2iv | 59.72 (4) |
Bi4vi—Bi5—Bi1vi | 98.70 (2) | Mn2iii—Mn3—Bi2iv | 117.81 (9) |
Rh2vii—Bi5—Bi1vii | 52.75 (3) | Rh2i—Mn3—Bi2iii | 118.15 (9) |
Rh2vi—Bi5—Bi1vii | 107.02 (3) | Rh2—Mn3—Bi2iii | 59.16 (3) |
Mn2—Bi5—Bi1vii | 54.67 (4) | Rh1ii—Mn3—Bi2iii | 122.04 (8) |
Bi4vii—Bi5—Bi1vii | 98.70 (2) | Rh1iii—Mn3—Bi2iii | 60.31 (3) |
Bi4vi—Bi5—Bi1vii | 153.59 (3) | Mn2ii—Mn3—Bi2iii | 117.81 (9) |
Bi1vi—Bi5—Bi1vii | 74.81 (2) | Mn2iii—Mn3—Bi2iii | 59.72 (4) |
Rh2vii—Bi5—Bi3 | 118.89 (3) | Bi2iv—Mn3—Bi2iii | 176.87 (14) |
Rh2vi—Bi5—Bi3 | 118.89 (3) | Rh2i—Mn3—Bi2v | 59.16 (3) |
Mn2—Bi5—Bi3 | 106.09 (6) | Rh2—Mn3—Bi2v | 118.15 (9) |
Bi4vii—Bi5—Bi3 | 133.563 (18) | Rh1ii—Mn3—Bi2v | 122.04 (8) |
Bi4vi—Bi5—Bi3 | 133.563 (18) | Rh1iii—Mn3—Bi2v | 60.31 (3) |
Bi1vi—Bi5—Bi3 | 68.72 (2) | Mn2ii—Mn3—Bi2v | 117.81 (9) |
Bi1vii—Bi5—Bi3 | 68.72 (2) | Mn2iii—Mn3—Bi2v | 59.72 (4) |
Rh2vii—Bi5—Bi4 | 111.83 (3) | Bi2iv—Mn3—Bi2v | 84.29 (2) |
Rh2vi—Bi5—Bi4 | 111.83 (3) | Bi2iii—Mn3—Bi2v | 95.62 (2) |
Mn2—Bi5—Bi4 | 153.25 (6) | Rh2i—Mn3—Bi2ii | 118.15 (9) |
Bi4vii—Bi5—Bi4 | 59.49 (2) | Rh2—Mn3—Bi2ii | 59.16 (3) |
Bi4vi—Bi5—Bi4 | 59.49 (2) | Rh1ii—Mn3—Bi2ii | 60.31 (3) |
Bi1vi—Bi5—Bi4 | 139.601 (14) | Rh1iii—Mn3—Bi2ii | 122.04 (8) |
Bi1vii—Bi5—Bi4 | 139.601 (14) | Mn2ii—Mn3—Bi2ii | 59.72 (4) |
Bi3—Bi5—Bi4 | 100.66 (2) | Mn2iii—Mn3—Bi2ii | 117.81 (9) |
Rh2vii—Bi5—Bi2 | 51.24 (3) | Bi2iv—Mn3—Bi2ii | 95.62 (2) |
Rh2vi—Bi5—Bi2 | 51.24 (3) | Bi2iii—Mn3—Bi2ii | 84.29 (2) |
Mn2—Bi5—Bi2 | 51.36 (6) | Bi2v—Mn3—Bi2ii | 176.87 (14) |
Bi4vii—Bi5—Bi2 | 60.784 (18) | Rh2i—Mn3—Bi3 | 169.83 (9) |
Bi4vi—Bi5—Bi2 | 60.784 (18) | Rh2—Mn3—Bi3 | 106.90 (4) |
Bi1vi—Bi5—Bi2 | 93.68 (2) | Rh1ii—Mn3—Bi3 | 56.63 (6) |
Bi1vii—Bi5—Bi2 | 93.68 (2) | Rh1iii—Mn3—Bi3 | 56.63 (6) |
Bi3—Bi5—Bi2 | 157.45 (3) | Mn2ii—Mn3—Bi3 | 126.08 (5) |
Bi4—Bi5—Bi2 | 101.89 (2) | Mn2iii—Mn3—Bi3 | 126.08 (5) |
Mn1—Rh1—Mn3vi | 130.15 (6) | Bi2iv—Mn3—Bi3 | 114.21 (9) |
Mn1—Rh1—Mn3vii | 130.15 (6) | Bi2iii—Mn3—Bi3 | 68.69 (4) |
Mn3vi—Rh1—Mn3vii | 99.69 (13) | Bi2v—Mn3—Bi3 | 114.21 (9) |
Mn1—Rh1—Bi3ix | 70.33 (4) | Bi2ii—Mn3—Bi3 | 68.69 (4) |
Mn3vi—Rh1—Bi3ix | 141.27 (4) | Rh2i—Mn3—Bi3i | 106.90 (4) |
Mn3vii—Rh1—Bi3ix | 69.75 (5) | Rh2—Mn3—Bi3i | 169.83 (9) |
Mn1—Rh1—Bi3vii | 70.33 (4) | Rh1ii—Mn3—Bi3i | 56.63 (6) |
Mn3vi—Rh1—Bi3vii | 141.27 (4) | Rh1iii—Mn3—Bi3i | 56.63 (6) |
Mn3vii—Rh1—Bi3vii | 69.75 (5) | Mn2ii—Mn3—Bi3i | 126.08 (5) |
Bi3ix—Rh1—Bi3vii | 71.81 (3) | Mn2iii—Mn3—Bi3i | 126.08 (5) |
Mn1—Rh1—Bi3x | 70.33 (4) | Bi2iv—Mn3—Bi3i | 68.69 (4) |
Mn3vi—Rh1—Bi3x | 69.75 (5) | Bi2iii—Mn3—Bi3i | 114.21 (9) |
Mn3vii—Rh1—Bi3x | 141.27 (4) | Bi2v—Mn3—Bi3i | 68.69 (4) |
Bi3ix—Rh1—Bi3x | 94.91 (4) | Bi2ii—Mn3—Bi3i | 114.21 (9) |
Bi3vii—Rh1—Bi3x | 140.66 (8) | Bi3—Mn3—Bi3i | 62.94 (7) |
Mn1—Rh1—Bi3vi | 70.33 (4) |
Symmetry codes: (i) −y+1, −x+1, z; (ii) −y+1/2, x+1/2, z+1/2; (iii) −y+1/2, x+1/2, z−1/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x+1/2, y+1/2, −z−1/2; (vi) y−1/2, −x+1/2, −z+1/2; (vii) y−1/2, −x+1/2, −z−1/2; (viii) y, x, −z; (ix) −x+1/2, y−1/2, −z−1/2; (x) −x+1/2, y−1/2, −z+1/2; (xi) −x, −y, −z; (xii) −y+1/2, x−1/2, z−1/2; (xiii) x−1/2, −y+1/2, z−1/2; (xiv) −y+1/2, x−1/2, z+1/2; (xv) x−1/2, −y+1/2, z+1/2. |
RhMnBi3 | Dx = 10.369 Mg m−3 |
Mr = 784.79 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Cmmm | Cell parameters from 3699 reflections |
a = 8.885 (3) Å | θ = 3–34.9° |
b = 13.696 (6) Å | µ = 110.13 mm−1 |
c = 4.1310 (12) Å | T = 293 K |
V = 502.7 (3) Å3 | Irregular, gray |
Z = 4 | 0.10 × 0.05 × 0.03 mm |
F(000) = 1276 |
Nonius KappaCCD diffractometer | 522 reflections with I > 2σ(I) |
Radiation source: Nonius | Rint = 0.141 |
ω scans | θmax = 35.0°, θmin = 2.7° |
Absorption correction: multi-scan | h = −14→14 |
Tmin = 0.003, Tmax = 0.005 | k = −22→21 |
3699 measured reflections | l = −6→6 |
667 independent reflections |
Refinement on F2 | 21 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.094 | w = 1/[σ2(Fo2) + (0.150P)2 + 14.P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.257 | (Δ/σ)max < 0.001 |
S = 1.19 | Δρmax = 11.68 e Å−3 |
667 reflections | Δρmin = −8.87 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Bi1 | 0.0000 | 0.33689 (14) | 0.0000 | 0.0279 (5) | |
Bi2 | 0.19449 (14) | 0.12399 (10) | 0.5000 | 0.0263 (4) | |
Mn1 | 0.5000 | 0.0000 | 0.5000 | 0.026 (2) | |
Mn2 | 0.0000 | 0.0000 | 0.0000 | 0.033 (2) | |
Rh1 | 0.3016 (4) | 0.0000 | 0.0000 | 0.0240 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Bi1 | 0.0201 (8) | 0.0243 (9) | 0.0393 (10) | 0.000 | 0.000 | 0.000 |
Bi2 | 0.0223 (7) | 0.0263 (7) | 0.0302 (7) | 0.0019 (4) | 0.000 | 0.000 |
Mn1 | 0.007 (3) | 0.045 (6) | 0.027 (5) | 0.000 | 0.000 | 0.000 |
Mn2 | 0.025 (5) | 0.034 (6) | 0.039 (6) | 0.000 | 0.000 | 0.000 |
Rh1 | 0.0172 (15) | 0.0288 (18) | 0.0260 (16) | 0.000 | 0.000 | 0.000 |
Bi1—Rh1i | 2.846 (3) | Mn1—Bi1xii | 3.0426 (16) |
Bi1—Rh1ii | 2.846 (3) | Mn1—Bi1iv | 3.0426 (16) |
Bi1—Mn1ii | 3.0425 (16) | Mn1—Bi1xiii | 3.0426 (16) |
Bi1—Mn1iii | 3.0425 (16) | Mn1—Bi1i | 3.0426 (16) |
Bi1—Bi2iv | 3.4527 (13) | Mn1—Bi2xiv | 3.2018 (15) |
Bi1—Bi2v | 3.4527 (13) | Mn1—Bi2viii | 3.2018 (15) |
Bi1—Bi2i | 3.4527 (13) | Mn1—Bi2x | 3.2018 (15) |
Bi1—Bi2vi | 3.4527 (13) | Mn2—Rh1 | 2.680 (4) |
Bi2—Rh1 | 2.8383 (16) | Mn2—Rh1xv | 2.680 (4) |
Bi2—Rh1vii | 2.8383 (16) | Mn2—Bi2xv | 3.1837 (12) |
Bi2—Mn2 | 3.1837 (12) | Mn2—Bi2viii | 3.1837 (12) |
Bi2—Mn2vii | 3.1837 (12) | Mn2—Bi2xvi | 3.1837 (12) |
Bi2—Mn1 | 3.2018 (15) | Mn2—Bi2xvii | 3.1837 (12) |
Bi2—Bi2viii | 3.396 (3) | Mn2—Bi2ix | 3.1837 (12) |
Bi2—Bi1iv | 3.4528 (13) | Mn2—Bi2xviii | 3.1837 (12) |
Bi2—Bi1i | 3.4528 (13) | Mn2—Bi2xix | 3.1837 (12) |
Bi2—Bi2ix | 3.456 (3) | Rh1—Mn1xviii | 2.715 (2) |
Bi2—Bi2iv | 3.590 (3) | Rh1—Bi2xvii | 2.8383 (16) |
Mn1—Rh1x | 2.715 (2) | Rh1—Bi2xviii | 2.8383 (16) |
Mn1—Rh1xi | 2.715 (2) | Rh1—Bi2viii | 2.8383 (16) |
Mn1—Rh1vii | 2.715 (2) | Rh1—Bi1i | 2.846 (3) |
Mn1—Rh1 | 2.715 (2) | Rh1—Bi1xii | 2.846 (3) |
Rh1i—Bi1—Rh1ii | 76.55 (12) | Rh1xi—Mn1—Bi2viii | 123.39 (5) |
Rh1i—Bi1—Mn1ii | 54.80 (5) | Rh1vii—Mn1—Bi2viii | 56.61 (5) |
Rh1ii—Bi1—Mn1ii | 54.80 (5) | Rh1—Mn1—Bi2viii | 56.61 (5) |
Rh1i—Bi1—Mn1iii | 54.80 (5) | Bi1xii—Mn1—Bi2viii | 67.08 (2) |
Rh1ii—Bi1—Mn1iii | 54.80 (5) | Bi1iv—Mn1—Bi2viii | 112.92 (2) |
Mn1ii—Bi1—Mn1iii | 85.51 (6) | Bi1xiii—Mn1—Bi2viii | 67.08 (2) |
Rh1i—Bi1—Bi2iv | 52.50 (5) | Bi1i—Mn1—Bi2viii | 112.92 (2) |
Rh1ii—Bi1—Bi2iv | 111.41 (7) | Bi2xiv—Mn1—Bi2viii | 180.00 (4) |
Mn1ii—Bi1—Bi2iv | 58.66 (3) | Rh1x—Mn1—Bi2x | 56.61 (5) |
Mn1iii—Bi1—Bi2iv | 106.99 (5) | Rh1xi—Mn1—Bi2x | 56.61 (5) |
Rh1i—Bi1—Bi2v | 111.41 (7) | Rh1vii—Mn1—Bi2x | 123.39 (5) |
Rh1ii—Bi1—Bi2v | 52.50 (5) | Rh1—Mn1—Bi2x | 123.39 (5) |
Mn1ii—Bi1—Bi2v | 106.99 (5) | Bi1xii—Mn1—Bi2x | 67.08 (2) |
Mn1iii—Bi1—Bi2v | 58.66 (3) | Bi1iv—Mn1—Bi2x | 112.92 (2) |
Bi2iv—Bi1—Bi2v | 162.14 (8) | Bi1xiii—Mn1—Bi2x | 67.08 (2) |
Rh1i—Bi1—Bi2i | 52.50 (5) | Bi1i—Mn1—Bi2x | 112.92 (2) |
Rh1ii—Bi1—Bi2i | 111.41 (7) | Bi2xiv—Mn1—Bi2x | 64.06 (6) |
Mn1ii—Bi1—Bi2i | 106.99 (5) | Bi2viii—Mn1—Bi2x | 115.94 (6) |
Mn1iii—Bi1—Bi2i | 58.66 (3) | Rh1x—Mn1—Bi2 | 123.39 (5) |
Bi2iv—Bi1—Bi2i | 73.48 (3) | Rh1xi—Mn1—Bi2 | 123.39 (5) |
Bi2v—Bi1—Bi2i | 103.66 (4) | Rh1vii—Mn1—Bi2 | 56.61 (5) |
Rh1i—Bi1—Bi2vi | 111.41 (7) | Rh1—Mn1—Bi2 | 56.61 (5) |
Rh1ii—Bi1—Bi2vi | 52.50 (5) | Bi1xii—Mn1—Bi2 | 112.92 (2) |
Mn1ii—Bi1—Bi2vi | 58.66 (3) | Bi1iv—Mn1—Bi2 | 67.08 (2) |
Mn1iii—Bi1—Bi2vi | 106.99 (5) | Bi1xiii—Mn1—Bi2 | 112.92 (2) |
Bi2iv—Bi1—Bi2vi | 103.66 (4) | Bi1i—Mn1—Bi2 | 67.08 (2) |
Bi2v—Bi1—Bi2vi | 73.48 (4) | Bi2xiv—Mn1—Bi2 | 115.94 (6) |
Bi2i—Bi1—Bi2vi | 162.14 (8) | Bi2viii—Mn1—Bi2 | 64.06 (6) |
Rh1—Bi2—Rh1vii | 93.39 (7) | Bi2x—Mn1—Bi2 | 180.0 |
Rh1—Bi2—Mn2 | 52.47 (7) | Rh1—Mn2—Rh1xv | 180.0 |
Rh1vii—Bi2—Mn2 | 109.57 (6) | Rh1—Mn2—Bi2xv | 122.87 (2) |
Rh1—Bi2—Mn2vii | 109.57 (6) | Rh1xv—Mn2—Bi2xv | 57.13 (2) |
Rh1vii—Bi2—Mn2vii | 52.47 (7) | Rh1—Mn2—Bi2viii | 57.13 (2) |
Mn2—Bi2—Mn2vii | 80.90 (4) | Rh1xv—Mn2—Bi2viii | 122.87 (2) |
Rh1—Bi2—Mn1 | 53.01 (6) | Bi2xv—Mn2—Bi2viii | 115.53 (5) |
Rh1vii—Bi2—Mn1 | 53.01 (6) | Rh1—Mn2—Bi2xvi | 122.87 (2) |
Mn2—Bi2—Mn1 | 100.21 (4) | Rh1xv—Mn2—Bi2xvi | 57.13 (2) |
Mn2vii—Bi2—Mn1 | 100.21 (4) | Bi2xv—Mn2—Bi2xvi | 64.47 (5) |
Rh1—Bi2—Bi2viii | 53.25 (3) | Bi2viii—Mn2—Bi2xvi | 180.00 (4) |
Rh1vii—Bi2—Bi2viii | 53.25 (3) | Rh1—Mn2—Bi2xvii | 57.13 (2) |
Mn2—Bi2—Bi2viii | 57.77 (2) | Rh1xv—Mn2—Bi2xvii | 122.87 (2) |
Mn2vii—Bi2—Bi2viii | 57.77 (2) | Bi2xv—Mn2—Bi2xvii | 65.75 (5) |
Mn1—Bi2—Bi2viii | 57.97 (3) | Bi2viii—Mn2—Bi2xvii | 80.90 (4) |
Rh1—Bi2—Bi1iv | 105.34 (8) | Bi2xvi—Mn2—Bi2xvii | 99.10 (4) |
Rh1vii—Bi2—Bi1iv | 52.69 (6) | Rh1—Mn2—Bi2ix | 122.87 (2) |
Mn2—Bi2—Bi1iv | 153.84 (5) | Rh1xv—Mn2—Bi2ix | 57.13 (2) |
Mn2vii—Bi2—Bi1iv | 96.97 (3) | Bi2xv—Mn2—Bi2ix | 114.25 (5) |
Mn1—Bi2—Bi1iv | 54.26 (3) | Bi2viii—Mn2—Bi2ix | 99.10 (4) |
Bi2viii—Bi2—Bi1iv | 98.93 (4) | Bi2xvi—Mn2—Bi2ix | 80.90 (4) |
Rh1—Bi2—Bi1i | 52.69 (6) | Bi2xvii—Mn2—Bi2ix | 180.00 (6) |
Rh1vii—Bi2—Bi1i | 105.34 (8) | Rh1—Mn2—Bi2xviii | 57.13 (2) |
Mn2—Bi2—Bi1i | 96.97 (3) | Rh1xv—Mn2—Bi2xviii | 122.87 (2) |
Mn2vii—Bi2—Bi1i | 153.84 (5) | Bi2xv—Mn2—Bi2xviii | 99.10 (4) |
Mn1—Bi2—Bi1i | 54.26 (3) | Bi2viii—Mn2—Bi2xviii | 114.25 (5) |
Bi2viii—Bi2—Bi1i | 98.93 (4) | Bi2xvi—Mn2—Bi2xviii | 65.75 (5) |
Bi1iv—Bi2—Bi1i | 73.48 (4) | Bi2xvii—Mn2—Bi2xviii | 64.47 (5) |
Rh1—Bi2—Bi2ix | 109.59 (7) | Bi2ix—Mn2—Bi2xviii | 115.53 (5) |
Rh1vii—Bi2—Bi2ix | 109.59 (7) | Rh1—Mn2—Bi2xix | 122.87 (2) |
Mn2—Bi2—Bi2ix | 57.13 (2) | Rh1xv—Mn2—Bi2xix | 57.13 (2) |
Mn2vii—Bi2—Bi2ix | 57.13 (2) | Bi2xv—Mn2—Bi2xix | 80.90 (4) |
Mn1—Bi2—Bi2ix | 147.97 (3) | Bi2viii—Mn2—Bi2xix | 65.75 (5) |
Bi2viii—Bi2—Bi2ix | 90.000 (1) | Bi2xvi—Mn2—Bi2xix | 114.25 (5) |
Bi1iv—Bi2—Bi2ix | 141.828 (19) | Bi2xvii—Mn2—Bi2xix | 115.53 (5) |
Bi1i—Bi2—Bi2ix | 141.828 (19) | Bi2ix—Mn2—Bi2xix | 64.47 (5) |
Rh1—Bi2—Bi2iv | 118.89 (5) | Bi2xviii—Mn2—Bi2xix | 180.00 (4) |
Rh1vii—Bi2—Bi2iv | 118.89 (5) | Rh1—Mn2—Bi2 | 57.13 (2) |
Mn2—Bi2—Bi2iv | 131.45 (3) | Rh1xv—Mn2—Bi2 | 122.87 (2) |
Mn2vii—Bi2—Bi2iv | 131.45 (3) | Bi2xv—Mn2—Bi2 | 180.0 |
Mn1—Bi2—Bi2iv | 106.08 (5) | Bi2viii—Mn2—Bi2 | 64.47 (5) |
Bi2viii—Bi2—Bi2iv | 164.05 (4) | Bi2xvi—Mn2—Bi2 | 115.53 (5) |
Bi1iv—Bi2—Bi2iv | 68.58 (4) | Bi2xvii—Mn2—Bi2 | 114.25 (5) |
Bi1i—Bi2—Bi2iv | 68.58 (4) | Bi2ix—Mn2—Bi2 | 65.75 (5) |
Bi2ix—Bi2—Bi2iv | 105.95 (4) | Bi2xviii—Mn2—Bi2 | 80.90 (4) |
Rh1x—Mn1—Rh1xi | 99.05 (12) | Bi2xix—Mn2—Bi2 | 99.10 (4) |
Rh1x—Mn1—Rh1vii | 80.95 (12) | Mn2—Rh1—Mn1 | 130.48 (6) |
Rh1xi—Mn1—Rh1vii | 180.0 | Mn2—Rh1—Mn1xviii | 130.48 (6) |
Rh1x—Mn1—Rh1 | 180.0 | Mn1—Rh1—Mn1xviii | 99.05 (12) |
Rh1xi—Mn1—Rh1 | 80.95 (12) | Mn2—Rh1—Bi2xvii | 70.41 (7) |
Rh1vii—Mn1—Rh1 | 99.05 (12) | Mn1—Rh1—Bi2xvii | 140.47 (7) |
Rh1x—Mn1—Bi1xii | 121.09 (4) | Mn1xviii—Rh1—Bi2xvii | 70.37 (3) |
Rh1xi—Mn1—Bi1xii | 58.91 (4) | Mn2—Rh1—Bi2xviii | 70.41 (7) |
Rh1vii—Mn1—Bi1xii | 121.09 (4) | Mn1—Rh1—Bi2xviii | 140.47 (7) |
Rh1—Mn1—Bi1xii | 58.91 (4) | Mn1xviii—Rh1—Bi2xviii | 70.37 (3) |
Rh1x—Mn1—Bi1iv | 58.91 (4) | Bi2xvii—Rh1—Bi2xviii | 73.50 (6) |
Rh1xi—Mn1—Bi1iv | 121.09 (4) | Mn2—Rh1—Bi2viii | 70.41 (7) |
Rh1vii—Mn1—Bi1iv | 58.91 (4) | Mn1—Rh1—Bi2viii | 70.37 (3) |
Rh1—Mn1—Bi1iv | 121.09 (4) | Mn1xviii—Rh1—Bi2viii | 140.47 (7) |
Bi1xii—Mn1—Bi1iv | 180.0 | Bi2xvii—Rh1—Bi2viii | 93.39 (7) |
Rh1x—Mn1—Bi1xiii | 58.91 (4) | Bi2xviii—Rh1—Bi2viii | 140.81 (14) |
Rh1xi—Mn1—Bi1xiii | 121.09 (4) | Mn2—Rh1—Bi2 | 70.41 (7) |
Rh1vii—Mn1—Bi1xiii | 58.91 (4) | Mn1—Rh1—Bi2 | 70.37 (3) |
Rh1—Mn1—Bi1xiii | 121.09 (4) | Mn1xviii—Rh1—Bi2 | 140.47 (7) |
Bi1xii—Mn1—Bi1xiii | 85.51 (6) | Bi2xvii—Rh1—Bi2 | 140.81 (14) |
Bi1iv—Mn1—Bi1xiii | 94.49 (6) | Bi2xviii—Rh1—Bi2 | 93.39 (7) |
Rh1x—Mn1—Bi1i | 121.09 (4) | Bi2viii—Rh1—Bi2 | 73.50 (6) |
Rh1xi—Mn1—Bi1i | 58.91 (4) | Mn2—Rh1—Bi1i | 128.27 (6) |
Rh1vii—Mn1—Bi1i | 121.09 (4) | Mn1—Rh1—Bi1i | 66.29 (6) |
Rh1—Mn1—Bi1i | 58.91 (4) | Mn1xviii—Rh1—Bi1i | 66.29 (6) |
Bi1xii—Mn1—Bi1i | 94.49 (6) | Bi2xvii—Rh1—Bi1i | 132.64 (5) |
Bi1iv—Mn1—Bi1i | 85.51 (6) | Bi2xviii—Rh1—Bi1i | 74.81 (4) |
Bi1xiii—Mn1—Bi1i | 180.0 | Bi2viii—Rh1—Bi1i | 132.64 (5) |
Rh1x—Mn1—Bi2xiv | 56.61 (5) | Bi2—Rh1—Bi1i | 74.81 (4) |
Rh1xi—Mn1—Bi2xiv | 56.61 (5) | Mn2—Rh1—Bi1xii | 128.27 (6) |
Rh1vii—Mn1—Bi2xiv | 123.39 (5) | Mn1—Rh1—Bi1xii | 66.29 (6) |
Rh1—Mn1—Bi2xiv | 123.39 (5) | Mn1xviii—Rh1—Bi1xii | 66.29 (6) |
Bi1xii—Mn1—Bi2xiv | 112.92 (2) | Bi2xvii—Rh1—Bi1xii | 74.81 (4) |
Bi1iv—Mn1—Bi2xiv | 67.08 (2) | Bi2xviii—Rh1—Bi1xii | 132.64 (5) |
Bi1xiii—Mn1—Bi2xiv | 112.92 (2) | Bi2viii—Rh1—Bi1xii | 74.81 (4) |
Bi1i—Mn1—Bi2xiv | 67.08 (2) | Bi2—Rh1—Bi1xii | 132.64 (5) |
Rh1x—Mn1—Bi2viii | 123.39 (5) | Bi1i—Rh1—Bi1xii | 103.45 (12) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) x−1/2, y+1/2, z; (iii) x−1/2, y+1/2, z−1; (iv) −x+1/2, −y+1/2, −z+1; (v) x−1/2, −y+1/2, z−1; (vi) x−1/2, −y+1/2, z; (vii) x, y, z+1; (viii) x, −y, z; (ix) −x, y, −z+1; (x) −x+1, −y, −z+1; (xi) −x+1, −y, −z; (xii) x+1/2, y−1/2, z; (xiii) x+1/2, y−1/2, z+1; (xiv) −x+1, y, −z+1; (xv) −x, −y, −z; (xvi) −x, y, −z; (xvii) x, −y, z−1; (xviii) x, y, z−1; (xix) −x, −y, −z+1. |
Wyckoff letter | Site symmetry | X | y | z | |
Bi1 | 4g | m.2m | 0.17112 (3) | 0.82888 (3) | 0.0 |
Bi2 | 8i | m.. | 0.08340 (3) | 0.25924 (3) | 0.0 |
Bi3 | 8i | m.. | 0.37210 (3) | 0.50115 (3) | 0.0 |
Bi4 | 8i | m.. | 0.08560 (4) | 0.56218 (4) | 0.0 |
Bi5 | 8i | m.. | 0.20740 (4) | 0.41210 (4) | 0.0 |
Rh1 | 4f | m.2m | 0.10090 (7) | 0.10090 (7) | 0.0 |
Rh2 | 8i | m.. | 0.18578 (7) | 0.67667 (7) | 0.0 |
Mn1 | 2a | m.mm | 0.0 | 0.0 | 0.0 |
Mn2 | 4f | m.2m | 0.24406 (14) | 0.24406 (14) | 0.0 |
Mn3 | 4g | m.2m | 0.33193 (14) | 0.66807 (14) | 0.0 |
Wyckoff letter | Site symmetry | x | y | z | |
Bi1 | 4i | m2m | 0.0 | 0.33689 (14) | 0.0 |
Bi2 | 8q | ..m | 0.19449 (14) | 0.12399 (10) | ½ |
Mn1 | 2c | mmm | ½ | 0.0 | ½ |
Mn2 | 2a | mmm | 0.0 | 0.0 | 0.0 |
Rh1 | 4g | 2mm | 0.3016 (4) | 0.0 | 0.0 |
Acknowledgements
We thank Dr Stephan Puchegger from the Center for Nano Structure Research, University of Vienna, for support with the SEM/EDX measurements.
Funding information
Funding for this research was provided by: Austrian Science Fund (FWF) (project No. P 26023); University of Vienna (open-access funding).
References
Chen, Y., Gregori, G., Leineweber, A., Qu, F., Chen, C., Tietze, T., Kronmüller, H., Schütz, G. & Goering, E. (2015). Scripta Mater. 107, 131–135. CrossRef Google Scholar
CrystalMaker (2009). CrystalMaker. CrystalMaker Software Ltd, Bicester, England. https://crystalmaker.com/. Google Scholar
Cui, J., Choi, J.-P., Polikarpov, E., Bowden, M. E., Xie, W., Li, G., Nie, Z., Zarkevich, N., Kramer, M. J. & Johnson, D. (2014). Acta Mater. 79, 374–381. CrossRef Google Scholar
Donohue, J. (1974). The Structures of the Elements, p. 454. New York: Wiley. Google Scholar
Fjellvåg, H. & Furuseth, S. (1987). J. Less-Common Met. 128, 177–183. Google Scholar
Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143. CrossRef Web of Science IUCr Journals Google Scholar
Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Huang, W., Wang, X., Chen, X., Lu, W., Damewood, L. & Fong, C. Y. (2015). J. Magn. Magn. Mater. 377, 252–258. CrossRef Google Scholar
Kainzbauer, P., Richter, K. W. & Ipser, H. (2018). J. Phase Equilibria Diffus. 39, 17–34. CrossRef Google Scholar
Liu, Y., Zhang, J., Jia, G., Zhang, Y., Ren, Z., Li, X., Jing, Ch., Cao, S. & Deng, K. (2004). Phys. Rev. B, 70, 184424. CrossRef Google Scholar
Marker, M. C. J., Terzieff, P., Kainzbauer, P., Bobnar, M., Richter, K. W. & Ipser, H. (2018). J. Alloys Compd, 741, 682–688. CrossRef Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prince, E. (2006). Editor. International Tables for Crystallography, Vol. C, Mathematical, physical and chemical tables, 3rd ed. Chester: International Union of Crystallography. Google Scholar
Rama Rao, N. V., Gabay, A. M. & Hadjipanayis, G. C. (2013). J. Phys. D, 46, 062001. CrossRef Google Scholar
Ross, R. G. & Hume-Rothery, W. (1962). J. Less-Common Met. 4, 454–459. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Street, G. B., Suits, J. C. & Lee, K. (1974). Solid State Commun. 14, 33–36. Google Scholar
Suits, J. C. (1975). IBM J. Res. Dev. 19, 422–423. CrossRef Google Scholar
Szytula, A., Bińszycka, H. & Todorović, J. (1981). Solid State Commun. 38, 41–43. CrossRef Google Scholar
Taufour, V., Thimmaiah, S., March, S., Saunders, S., Sun, K., Lamichhane, T. N., Kramer, M. J., Bud'ko, S. L. & Canfield, P. C. (2015). Phys. Rev. Appl. 4, 014021. CrossRef Google Scholar
Zhuravlev, N. N., Zhdanov, G. S. & Smirnova, E. M. (1962). Fiz. Met. Metalloved. 13, 62–70. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.