research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Single-crystal structure determination of two new ternary bis­­muthides: Rh6Mn5Bi18 and RhMnBi3

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry – Functional Materials, University of Vienna, Faculty of Chemistry, Althanstrasse 14, Vienna 1090, Austria, and bInstitute of Mineralogy and Crystallography, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
*Correspondence e-mail: klaus.richter@univie.ac.at, herbert.ipser@univie.ac.at

Edited by A. L. Spek, Utrecht University, The Netherlands (Received 18 April 2018; accepted 21 June 2018; online 28 June 2018)

A study of the ternary Rh–Mn–Bi phase diagram revealed the existence of two new ternary bis­muthides, viz. hexa­rhodium penta­manganese octa­deca­bis­muthide (Rh6Mn5Bi18) and rhodium manganese tribismuthide (RhMnBi3). Their crystal structures represent new structure types. Rh6Mn5Bi18, with a Wyckoff sequence a f2 g2 i5, crystallizes in the tetra­gonal system (space group P42/mnm; Pearson symbol tP58), and RhMnBi3, with a Wyckoff sequence a c g i q, crystallizes in the ortho­rhom­bic system (Cmmm; oS20). In the Rh6Mn5Bi18 structure, the transition metal atoms are linked into ribbon-like structural units aligned along the [001] direction, whereas planar sheets are formed in RhMnBi3. In both crystal structures, the units formed by the transition metal atoms are enveloped by Bi atoms, which themselves form a loosely bound network. The linkage results in a layer structure for RhMnBi3, while in the case of Rh6Mn5Bi18, a three-dimensional network is formed; the latter, however, contains several areas where Bi⋯Bi distances suggest van der Waals inter­actions. Both phases under discussion have analogous structural motifs.

1. Introduction

For decades, there has been an ongoing search for ferromagnetic materials free of rare earth elements. One promising candidate is the inter­metallic phase α-BiMn; unfortunately, it has not been possible to synthesize this phase as a single-phase bulk material in spite of intensive research (e.g. Liu et al., 2004[Liu, Y., Zhang, J., Jia, G., Zhang, Y., Ren, Z., Li, X., Jing, Ch., Cao, S. & Deng, K. (2004). Phys. Rev. B, 70, 184424.]; Rama Rao et al., 2013[Rama Rao, N. V., Gabay, A. M. & Hadjipanayis, G. C. (2013). J. Phys. D, 46, 062001.]; Cui et al., 2014[Cui, J., Choi, J.-P., Polikarpov, E., Bowden, M. E., Xie, W., Li, G., Nie, Z., Zarkevich, N., Kramer, M. J. & Johnson, D. (2014). Acta Mater. 79, 374-381.]; Chen et al., 2015[Chen, Y., Gregori, G., Leineweber, A., Qu, F., Chen, C., Tietze, T., Kronmüller, H., Schütz, G. & Goering, E. (2015). Scripta Mater. 107, 131-135.]; Marker et al., 2018[Marker, M. C. J., Terzieff, P., Kainzbauer, P., Bobnar, M., Richter, K. W. & Ipser, H. (2018). J. Alloys Compd, 741, 682-688.]). A possible approach to circumvent these problems was considered to be the addition of a third com­ponent, e.g. Rh, which forms an inter­metallic phase with Bi that is isotypic with α-BiMn (Ross & Hume-Rothery, 1962[Ross, R. G. & Hume-Rothery, W. (1962). J. Less-Common Met. 4, 454-459.]; Kainzbauer et al., 2018[Kainzbauer, P., Richter, K. W. & Ipser, H. (2018). J. Phase Equilibria Diffus. 39, 17-34.]).

Street et al. (1974[Street, G. B., Suits, J. C. & Lee, K. (1974). Solid State Commun. 14, 33-36.]) identified a ferromagnetic compound, i.e. Mn5Rh2Bi4 (cubic, Fm[\overline{3}]m), with a Curie temperature of 266 K. A similar observation was made by Taufour et al. (2015[Taufour, V., Thimmaiah, S., March, S., Saunders, S., Sun, K., Lamichhane, T. N., Kramer, M. J., Bud'ko, S. L. & Canfield, P. C. (2015). Phys. Rev. Appl. 4, 014021.]), who described the ferromagnetic compound Mn1.05Rh0.02Bi, with a Curie temperature below 416 K. Furthermore, Suits (1975[Suits, J. C. (1975). IBM J. Res. Dev. 19, 422-423.]) discovered ferromagnetism in Bi-substituted RhMn with the composition RhMn0.8Bi0.2. Based on these observations, a systematic study of the ternary Rh–Mn–Bi system at different temperatures was considered of inter­est, with the focus on finding additional inter­metallic phases which might possibly exhibit ferromagnetism. The synthesized samples were checked by powder X-ray diffraction (PXRD) investigations. As a result of this ongoing research, the phases hexa­rhodium penta­manganese octa­deca­bis­muthide (Rh6Mn5Bi18) and rhodium manganese tribismuthide (RhMnBi3) were detected; admittedly, they are not ferromagnetic.

A literature survey of the ternary Rh–M–Bi systems (M = 3d transition metal) shows that they are relatively unexplored. Except for the aforementioned phases, only a handful of compounds are known. Examples are RhNiBi2 (Zhuravlev et al., 1962[Zhuravlev, N. N., Zhdanov, G. S. & Smirnova, E. M. (1962). Fiz. Met. Metalloved. 13, 62-70.]) and RhNiBi6 (Fjellvåg & Furuseth, 1987[Fjellvåg, H. & Furuseth, S. (1987). J. Less-Common Met. 128, 177-183.]). It may be of particular inter­est that Rh6Mn5Bi18 is probably one of the first reported ternary manganese pnictide phases, with a network formed by Bi atoms where alkaline or rare earth metal elements are absent. Further examples are known to crystallize in the cubic structure type Cu4Mn3Bi4 (Street et al., 1974[Street, G. B., Suits, J. C. & Lee, K. (1974). Solid State Commun. 14, 33-36.]; Szytula et al., 1981[Szytula, A., Bińszycka, H. & Todorović, J. (1981). Solid State Commun. 38, 41-43.]).

2. Experimental

2.1. Synthesis and crystallization

Bulk samples were prepared from pure element pieces of Bi (99.999%, ASARCO, New Jersey, USA) and Mn (99.95%, Alfa Aesar, Johnson Matthey Chemicals, Karlsruhe, Germany), and from Rh powder (99.95% ÖGUSSA, Austria). Except for Rh, the metals were pulverized manually and sieved (grain size <0.09 mm). For the Rh6Mn5Bi18 phase, 76.40 mg Rh, 33.81 mg Mn and 389.26 mg Bi in powder form were mixed, and for RhMnBi3, the amounts were 95.14 mg Rh, 67.50 mg Mn and 838.14 mg Bi; in both cases, the powder mixtures were pressed into pellets in a 5 mm pressing cylinder under a load of 20–25 kN. The bulk samples for the Rh6Mn5Bi18 phase were sealed in an evacuated silica-glass tube and melted over an oxyhydrogen flame under shaking, with optical control of the melting process. For the alloying process, the samples were heated quickly to 1373 K, cooled over a period of 5 d to 613 K and annealed at this temperature for two weeks. The bulk samples for the RhMnBi3 phase were prepared as sinter pellets. The pellet was sealed in an evacuated silica-glass tube with a small alumina plate at the bottom and covered with an inverted closed silica-glass tube to reduce the gas volume (annealing time of four months). After the annealing process at 613 K in a muffle furnace (Nabertherm, Germany, temperature accuracy ±5 K), all samples were quenched in cold water.

Small single crystals of Rh6Mn5Bi18 and RhMnBi3 were obtained in several inhomogeneous bulk samples. The target compounds had a metallic luster and were selected manually using an optical stereomicroscope. Adherent bis­muth was removed with a scalpel. The entire preparation process was performed in an Ar-filled glove-box (Labmaster SP MBraun, H2O and O2 levels below 0.1 ppm). Differential thermal analysis was performed on a DSC 404F1 Pegasus (Netzsch, Selb, Germany) and showed that the Rh6Mn5Bi18 compound is stable up to 730 K. Phase identification was performed under ambient conditions by PXRD on a Bruker D8 Advance diffractometer in Bragg–Brentano pseudo-focusing geometry, using Cu Kα radiation and a LynxEye® one-dimensional silicon strip detector. Energy-dispersive X-ray spectroscopy analyses on a scanning electron microscope (Zeiss Supra 55 VP) confirmed that the elemental compositions corresponded to those from the single-crystal X-ray structure determination. Morphologically, both new bis­muthides are acicular and flaky.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. A number of crystal chips were checked for their scattering behaviour and, in particular, to exclude admixtures as adherent bis­muth. Crystals of sufficient quality were used for collection of the intensity data in the full reciprocal sphere. To minimize absorption effects, the crystals were mounted approximately parallel to the φ axes with their longest extension. As the crystal structures are composed of structural units only bonded by weak Bi—Bi bonds, extensive cleavage of the crystals is evident. As a consequence of this behaviour, only a crystal of limited quality could be found for Rh6Mn5Bi18, even though a large number of crystals was checked by single-crystal X-ray diffraction; thus, the Rint value and, consequently, the structure refinements remained poor. Nevertheless, the structure type could be clearly established.

Table 1
Experimental details

  Rh6Mn5Bi18 RhMnBi3
Crystal data
Chemical formula Rh6Mn5Bi18 RhMnBi3
Mr 4653.80 784.79
Crystal system, space group Tetragonal, P42/mnm Orthorhombic, Cmmm
Temperature (K) 293 293
a, b, c (Å) 18.526 (3), 18.526 (3), 4.1722 (11) 8.885 (3), 13.696 (6), 4.1310 (12)
α, β, γ (°) 90, 90, 90 90, 90, 90
V3) 1432.0 (6) 502.7 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 115.57 110.13
Crystal size (mm) 0.16 × 0.03 × 0.02 0.10 × 0.05 × 0.03
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.009, 0.011 0.003, 0.005
No. of measured, independent and observed [I > 2σ(I)] reflections 21380, 1784, 1297 3699, 667, 522
Rint 0.169 0.141
(sin θ/λ)max−1) 0.803 0.806
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.088, 1.05 0.094, 0.257, 1.19
No. of reflections 1784 667
No. of parameters 50 21
Δρmax, Δρmin (e Å−3) 4.24, −3.66 11.68, −8.87
Computer programs: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CrystalMaker (CrystalMaker, 2009[CrystalMaker (2009). CrystalMaker. CrystalMaker Software Ltd, Bicester, England. https://crystalmaker.com/.]).

A careful inspection of the reciprocal space gave no evidence for any superstructure reflections; twinning was not recognized. As mixed occupation of individual atom positions was not evident and the anisotropic displacement parameters were not conspicuous, a violation of centrosymmetry can be excluded within the accuracy of the structure refinements. Due to the high mosaicity of both samples, their extinction is neg­ligible. Complex neutral atomic scattering functions were applied (Prince, 2006[Prince, E. (2006). Editor. International Tables for Crystallography, Vol. C, Mathematical, physical and chemical tables, 3rd ed. Chester: International Union of Crystallography.]). The program STRUCTURE TIDY (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]) was used to standardize all atomic coordinates.

3. Results and discussion

As mentioned above, only a few pnictides are known with Rh and a second 3d transition metal as constituents (Street et al., 1974[Street, G. B., Suits, J. C. & Lee, K. (1974). Solid State Commun. 14, 33-36.]; Szytula et al., 1981[Szytula, A., Bińszycka, H. & Todorović, J. (1981). Solid State Commun. 38, 41-43.]; Huang et al., 2015[Huang, W., Wang, X., Chen, X., Lu, W., Damewood, L. & Fong, C. Y. (2015). J. Magn. Magn. Mater. 377, 252-258.]). The title phases are probably also the only reported ternary bis­muthides containing a platinum group element and Mn, which adopt new structure types.

Rh6Mn5Bi18 crystallizes in the tetra­gonal space group P42/mnm (Pearson symbol tP58). The asymmetric unit contains ten atoms, which are listed together with their Wyckoff letters and site symmetries in Table 2[link]. Fig. 1[link] shows the whole crystal structure and the main structural element of Rh6Mn5Bi18 formed by extensive linkage of the Mn and Rh atoms. It is characterized by double chains running parallel to [001], each with the formal composition Rh3Mn2. They are linked by an additional Mn1 atom to form ribbons with a linear Rh1—Mn1—Rh1 configuration. The central part of the chains consists of the atoms Rh2, Mn2 and Mn3, the Rh1 atom points towards the linking atom Mn1, and the Mn1 atom itself is surrounded in a bicapped square-prismatic coordination (CN = 10, position 2a) (see Fig. 2[link]a and Table 3[link]). The ribbons are surrounded by Bi atoms, with Rh/Mn—Bi bond distances > 2.814 Å. All Bi atoms are exclusively bonded to one Rh3Mn2—Mn1—Rh3Mn2 ribbon. The Bi atoms themselves form an extended three-dimensional anionic network. The Bi—Bi bonds are longer than 3.316 Å; although Bi—Bi distances in the network were found up to 3.5808 (12) Å, which is slightly longer than the inter­layer Bi—Bi distance in native Bi under ambient conditions (3.529 Å; Donohue, 1974[Donohue, J. (1974). The Structures of the Elements, p. 454. New York: Wiley.]), bonding inter­actions are still implicated. In addition to the inter­atomic bonds, weak van der Waals Bi4⋯Bi4 [3.920 (2) Å] and Bi2⋯Bi5 [3.848 (1) Å] inter­actions contribute to the cohesion of the network. These longer distances are not shown in Fig. 1[link](a). The coordination spheres around all the transition-metal positions are depicted in Fig. 2[link].

Table 2
Fractional atomic coordinates, Wyckoff letter and site symmetry of Rh6Mn5Bi18

  Wyckoff letter Site symmetry x y z
Bi1 4g m.2m 0.17112 (3) 0.82888 (3) 0
Bi2 8i m.. 0.08340 (3) 0.25924 (3) 0
Bi3 8i m.. 0.37210 (3) 0.50115 (3) 0
Bi4 8i m.. 0.08560 (4) 0.56218 (4) 0
Bi5 8i m.. 0.20740 (4) 0.41210 (4) 0
Rh1 4f m.2m 0.10090 (7) 0.10090 (7) 0
Rh2 8i m.. 0.18578 (7) 0.67667 (7) 0
Mn1 2a m.mm 0 0 0
Mn2 4f m.2m 0.24406 (14) 0.24406 (14) 0
Mn3 4g m.2m 0.33193 (14) 0.66807 (14) 0

Table 3
Selected geometric parameters (Å, °) for Rh6Mn5Bi18

Rh1—Mn1 2.6435 (19) Rh2—Mn2ii 2.7568 (10)
Rh1—Mn3i 2.729 (3) Mn2—Mn3iii 2.884 (4)
Rh2—Mn3 2.712 (3)    
       
Mn1—Rh1—Mn3iii 130.15 (6) Rh2v—Mn3—Mn2ii 58.93 (7)
Mn3i—Rh1—Mn3iii 99.69 (13) Rh1ii—Mn3—Mn2ii 83.82 (7)
Rh1—Mn1—Rh1iv 180.00 (8) Rh1vi—Mn3—Mn2ii 176.49 (13)
Rh2v—Mn3—Rh2 83.27 (12) Rh1vi—Mn3—Mn2vi 83.82 (7)
Rh2v—Mn3—Rh1ii 118.81 (3) Mn2ii—Mn3—Mn2vi 92.67 (15)
Rh1ii—Mn3—Rh1vi 99.69 (13)    
Symmetry codes: (i) [y-{\script{1\over 2}}, -x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-y+{\script{1\over 2}}, x+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [y-{\script{1\over 2}}], [-x+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) -x, -y, -z; (v) -y+1, -x+1, z; (vi) [-y+{\script{1\over 2}}, x+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
(a) The crystal structure of Rh6Mn5Bi18; the view is slightly inclined to the [001] direction. (b) The Rh6Mn5 ribbons (distances and angles are listed in Table 3[link]). (c) A clinographic projection of the central parts of the ribbons (atoms Bi2, Bi3, Rh1, Mn1 and Mn3). Colour code: green represents Bi, blue Mn and red Rh atoms.
[Figure 2]
Figure 2
A schematic representation of the distinct atomic coordination spheres in the Rh6Mn5Bi18 structure. All neighbours within 3.2 Å are shown. (a) The bicapped square prism around the Mn1 atom [CN (coordination number) = 10]. (b) The distorted cubocta­hedron around the Mn2 atom (CN = 12). (c) The distorted cubocta­hedron around the Mn3 atom (CN = 12). (d) The tricapped trigonal prism (alternatively monocapped tetra­gonal anti­prism) around the Rh1 atom (CN = 9). (e) The capped square anti­prism (alternatively tricapped trigonal prism) around the Rh2 atom (CN = 9). The colour coding is as in Fig. 1[link].

A characteristic feature of the ribbons are eight-membered rings formed by two Mn1 and two Mn3 atoms, as well as four Rh1 atoms. In addition, four-membered rings are built by two Mn3, one Mn2 and one Rh1 atom. These two kinds of rings are planar by space-group symmetry. Only the Rh2 atoms are, respectively, above and below the layers; see Fig. 1[link](b). These structural units are the common structural motif of the two title compounds. However, tetra­gonal symmetry causes a herring-bone pattern of these one-dimensional structural units along [001] in Rh6Mn5Bi18, whereas they are linked into a two-dimensional arrangement in RhMnBi3 (see below).

RhMnBi3 crystallizes in the ortho­rhom­bic space group Cmmm (Pearson symbol oS20). Like Rh6Mn5Bi18, RhMnBi3 represents a new structure type and exhibits a layer structure consisting of planar Mn–Rh sheets parallel to (010) surrounded by Bi atoms, as presented in detail in Fig. 3[link]. Fig. 3[link](a) shows the crystal structure along c, clearly indicating the layering. Bi—Bi bond distances between the layers are mainly in the range of van der Waals inter­actions, except for the Bi2⋯Bi2 distances of 3.590 (3) Å, which are slightly longer than the inter­layer distance in native Bi (3.529 Å), but are still assumed to exhibit weak bonding inter­actions. The planar nets formed by the transition metals shown in Fig. 3[link](b) consist of eight-membered rings of alternating Mn and Rh atoms, similar to the motif shown in Fig. 1[link](b). The coordination spheres around all the transition-metal positions are depicted in Fig. 4[link].

[Figure 3]
Figure 3
(a) The crystal structure of RhMnBi3, viewed approximately parallel to [001]. (b) The exactly planar Mn–Rh nets; the view is slightly inclined to the b direction (distances and angles are listed in Table 5[link]). (c) A clinographic projection of the main structural elements parallel to [001]. The colour coding is as in Fig. 1[link].
[Figure 4]
Figure 4
A schematic representation of different atomic coordination spheres in the RhMnBi3 structure, showing all neighbouring atoms up to a distance of 3.3 Å. (a) The monocapped square anti­prism around the Rh1 atom (CN = 9). (b) The distorted cubocta­hedron around the Mn1 atom (CN = 12). (c) The bicapped square prism around the Mn2 atom (CN = 10). The colour coding is as in Fig. 1[link].

The asymmetric unit of the structure of RhMnBi3 itself contains five atoms, which are listed together with their Wyckoff letters and site symmetries in Table 4[link].

Table 4
Fractional atomic coordinates, Wyckoff letter and site symmetry of RhMnBi3

  Wyckoff letter Site symmetry x y z
Bi1 4i m2m 0 0.33689 (14) 0
Bi2 8q ..m 0.19449 (14) 0.12399 (10) ½
Mn1 2c mmm ½ 0 ½
Mn2 2a mmm 0 0 0
Rh1 4g 2mm 0.3016 (4) 0 0

Finally, Fig. 5[link] illustrates clearly the relationship between the structures of Rh6Mn5Bi18 and RhMnBi3.

Table 5
Selected geometric parameters (Å, °) for RhMnBi3

Mn1—Rh1 2.715 (2) Mn2—Rh1 2.680 (4)
       
Rh1i—Mn1—Rh1ii 99.05 (12) Rh1ii—Mn1—Rh1 80.95 (12)
Rh1i—Mn1—Rh1iii 80.95 (12) Mn2—Rh1—Mn1 130.48 (6)
Rh1i—Mn1—Rh1 180.0    
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z; (iii) x, y, z+1.
[Figure 5]
Figure 5
Comparison of the similar structural motif in the two new bis­muthides under discussion. (a) In Rh6Mn5Bi18, the motif consists of Bi2, Bi3, Mn2, Mn3 and Rh1 atoms. (b) In RhMnBi3, all distinct atom positions listed in Table 4[link] are included, and the motif is repeated infinitely forming two-dimensional layers (cf. Fig. 3[link]). The colour coding is as in Fig. 1[link].

Supporting information


Computing details top

For both structures, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalMaker (CrystalMaker, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Hexarhodium pentamanganese octadecabismuthide (Rh6Mn5Bi18) top
Crystal data top
Rh6Mn5Bi18Dx = 10.793 Mg m3
Mr = 4653.80Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/mnmCell parameters from 21380 reflections
a = 18.526 (3) Åθ = 3–34.8°
c = 4.1722 (11) ŵ = 115.57 mm1
V = 1432.0 (6) Å3T = 293 K
Z = 2Needle like crystal, gray
F(000) = 37780.16 × 0.03 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
1297 reflections with I > 2σ(I)
Radiation source: NoniusRint = 0.169
ω scansθmax = 34.8°, θmin = 3.1°
Absorption correction: multi-scanh = 2929
Tmin = 0.009, Tmax = 0.011k = 2929
21380 measured reflectionsl = 66
1784 independent reflections
Refinement top
Refinement on F250 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.013P)2 + 93.P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.001
S = 1.05Δρmax = 4.24 e Å3
1784 reflectionsΔρmin = 3.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.17112 (3)0.82888 (3)0.00000.0212 (2)
Bi20.08340 (3)0.25924 (3)0.00000.01802 (14)
Bi30.37210 (3)0.50115 (3)0.00000.01935 (14)
Bi40.08560 (4)0.56218 (4)0.00000.02587 (17)
Bi50.20740 (4)0.41210 (4)0.00000.02015 (15)
Rh10.10090 (7)0.10090 (7)0.00000.0195 (4)
Rh20.18578 (7)0.67667 (7)0.00000.0187 (3)
Mn10.00000.00000.00000.0261 (12)
Mn20.24406 (14)0.24406 (14)0.00000.0177 (7)
Mn30.33193 (14)0.66807 (14)0.00000.0182 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0180 (2)0.0180 (2)0.0277 (5)0.0010 (3)0.0000.000
Bi20.0156 (3)0.0175 (3)0.0209 (3)0.0003 (2)0.0000.000
Bi30.0178 (3)0.0173 (3)0.0230 (3)0.0002 (2)0.0000.000
Bi40.0241 (3)0.0236 (3)0.0298 (4)0.0041 (3)0.0000.000
Bi50.0215 (3)0.0172 (3)0.0217 (3)0.0024 (2)0.0000.000
Rh10.0188 (5)0.0188 (5)0.0208 (10)0.0030 (6)0.0000.000
Rh20.0166 (5)0.0198 (6)0.0198 (7)0.0014 (5)0.0000.000
Mn10.0257 (16)0.0257 (16)0.027 (3)0.008 (2)0.0000.000
Mn20.0187 (10)0.0187 (10)0.0157 (18)0.0027 (13)0.0000.000
Mn30.0168 (10)0.0168 (10)0.021 (2)0.0017 (13)0.0000.000
Geometric parameters (Å, º) top
Bi1—Rh22.8329 (16)Bi5—Bi1vii3.4341 (7)
Bi1—Rh2i2.8329 (16)Rh1—Mn12.6435 (19)
Bi1—Mn2ii3.048 (3)Rh1—Mn3vi2.729 (3)
Bi1—Mn2iii3.048 (3)Rh1—Mn3vii2.729 (3)
Bi1—Bi5iii3.4342 (7)Rh1—Bi3ix2.8315 (9)
Bi1—Bi5iv3.4342 (7)Rh1—Bi3vii2.8315 (9)
Bi1—Bi5ii3.4342 (7)Rh1—Bi3x2.8315 (9)
Bi1—Bi5v3.4342 (7)Rh1—Bi3vi2.8315 (9)
Bi2—Rh2vi2.8939 (11)Rh1—Bi2viii2.9513 (14)
Bi2—Rh2vii2.8939 (11)Rh2—Mn32.712 (3)
Bi2—Rh12.9513 (14)Rh2—Mn2ii2.7568 (10)
Bi2—Mn22.990 (2)Rh2—Mn2iii2.7568 (10)
Bi2—Mn3vi3.1089 (7)Rh2—Bi5iii2.8220 (11)
Bi2—Mn3vii3.1089 (7)Rh2—Bi5ii2.8220 (11)
Bi2—Bi3vii3.5489 (9)Rh2—Bi2iii2.8939 (11)
Bi2—Bi3vi3.5489 (9)Rh2—Bi2ii2.8939 (11)
Bi2—Bi4vi3.5733 (9)Mn1—Rh1xi2.6435 (19)
Bi2—Bi4vii3.5733 (9)Mn1—Bi3xii3.1570 (7)
Bi2—Bi53.6465 (11)Mn1—Bi3xiii3.1570 (7)
Bi3—Rh1ii2.8315 (9)Mn1—Bi3x3.1570 (7)
Bi3—Rh1iii2.8315 (9)Mn1—Bi3vi3.1570 (7)
Bi3—Mn1ii3.1569 (7)Mn1—Bi3xiv3.1570 (7)
Bi3—Mn1iii3.1569 (7)Mn1—Bi3ix3.1570 (7)
Bi3—Mn33.181 (3)Mn1—Bi3vii3.1570 (7)
Bi3—Bi3i3.3209 (14)Mn1—Bi3xv3.1570 (7)
Bi3—Bi3viii3.3809 (14)Mn2—Rh2vi2.7568 (10)
Bi3—Bi53.4687 (11)Mn2—Rh2vii2.7568 (10)
Bi3—Bi2iii3.5489 (9)Mn2—Rh2x2.7568 (10)
Bi3—Bi2ii3.5489 (9)Mn2—Rh2ix2.7568 (10)
Bi4—Rh22.8184 (16)Mn2—Mn3vii2.884 (4)
Bi4—Bi5ii3.4046 (9)Mn2—Mn3vi2.884 (4)
Bi4—Bi5iii3.4046 (9)Mn2—Bi2viii2.990 (2)
Bi4—Bi4vii3.4692 (10)Mn2—Bi1vi3.048 (3)
Bi4—Bi4vi3.4692 (10)Mn2—Bi1vii3.048 (3)
Bi4—Bi4iii3.4693 (9)Mn2—Bi5viii3.186 (2)
Bi4—Bi4ii3.4693 (10)Mn3—Rh2i2.712 (3)
Bi4—Bi2ii3.5734 (9)Mn3—Rh1ii2.729 (3)
Bi4—Bi2iii3.5734 (9)Mn3—Rh1iii2.729 (3)
Bi4—Bi53.5808 (12)Mn3—Mn2ii2.884 (4)
Bi5—Rh2vii2.8221 (11)Mn3—Mn2iii2.884 (4)
Bi5—Rh2vi2.8221 (11)Mn3—Bi2iv3.1089 (7)
Bi5—Mn23.186 (2)Mn3—Bi2iii3.1089 (7)
Bi5—Bi4vii3.4047 (9)Mn3—Bi2v3.1089 (7)
Bi5—Bi4vi3.4046 (9)Mn3—Bi2ii3.1089 (7)
Bi5—Bi1vi3.4341 (7)Mn3—Bi3i3.181 (3)
Rh2—Bi1—Rh2i79.00 (6)Mn3vi—Rh1—Bi3vi69.75 (5)
Rh2—Bi1—Mn2ii55.77 (4)Mn3vii—Rh1—Bi3vi141.27 (4)
Rh2i—Bi1—Mn2ii55.77 (4)Bi3ix—Rh1—Bi3vi140.66 (8)
Rh2—Bi1—Mn2iii55.77 (4)Bi3vii—Rh1—Bi3vi94.91 (4)
Rh2i—Bi1—Mn2iii55.77 (4)Bi3x—Rh1—Bi3vi71.81 (3)
Mn2ii—Bi1—Mn2iii86.39 (10)Mn1—Rh1—Bi2viii128.69 (3)
Rh2—Bi1—Bi5iii52.46 (2)Mn3vi—Rh1—Bi2viii66.23 (4)
Rh2i—Bi1—Bi5iii112.58 (3)Mn3vii—Rh1—Bi2viii66.23 (4)
Mn2ii—Bi1—Bi5iii108.02 (4)Bi3ix—Rh1—Bi2viii75.682 (17)
Mn2iii—Bi1—Bi5iii58.52 (2)Bi3vii—Rh1—Bi2viii131.92 (3)
Rh2—Bi1—Bi5iv112.58 (3)Bi3x—Rh1—Bi2viii75.682 (17)
Rh2i—Bi1—Bi5iv52.46 (2)Bi3vi—Rh1—Bi2viii131.92 (3)
Mn2ii—Bi1—Bi5iv58.52 (2)Mn1—Rh1—Bi2128.69 (3)
Mn2iii—Bi1—Bi5iv108.02 (4)Mn3vi—Rh1—Bi266.23 (4)
Bi5iii—Bi1—Bi5iv163.22 (4)Mn3vii—Rh1—Bi266.23 (4)
Rh2—Bi1—Bi5ii52.46 (2)Bi3ix—Rh1—Bi2131.92 (3)
Rh2i—Bi1—Bi5ii112.58 (3)Bi3vii—Rh1—Bi275.682 (17)
Mn2ii—Bi1—Bi5ii58.52 (2)Bi3x—Rh1—Bi2131.92 (3)
Mn2iii—Bi1—Bi5ii108.02 (4)Bi3vi—Rh1—Bi275.682 (17)
Bi5iii—Bi1—Bi5ii74.81 (2)Bi2viii—Rh1—Bi2102.61 (6)
Bi5iv—Bi1—Bi5ii102.67 (2)Mn3—Rh2—Mn2ii63.64 (8)
Rh2—Bi1—Bi5v112.58 (3)Mn3—Rh2—Mn2iii63.64 (7)
Rh2i—Bi1—Bi5v52.46 (2)Mn2ii—Rh2—Mn2iii98.35 (5)
Mn2ii—Bi1—Bi5v108.02 (4)Mn3—Rh2—Bi4127.82 (7)
Mn2iii—Bi1—Bi5v58.52 (2)Mn2ii—Rh2—Bi4130.64 (2)
Bi5iii—Bi1—Bi5v102.67 (2)Mn2iii—Rh2—Bi4130.64 (2)
Bi5iv—Bi1—Bi5v74.81 (2)Mn3—Rh2—Bi5iii130.79 (3)
Bi5ii—Bi1—Bi5v163.22 (4)Mn2ii—Rh2—Bi5iii140.44 (9)
Rh2vi—Bi2—Rh2vii92.25 (5)Mn2iii—Rh2—Bi5iii69.65 (5)
Rh2vi—Bi2—Rh1106.51 (4)Bi4—Rh2—Bi5iii74.26 (3)
Rh2vii—Bi2—Rh1106.51 (4)Mn3—Rh2—Bi5ii130.79 (3)
Rh2vi—Bi2—Mn255.85 (4)Mn2ii—Rh2—Bi5ii69.65 (5)
Rh2vii—Bi2—Mn255.85 (4)Mn2iii—Rh2—Bi5ii140.44 (9)
Rh1—Bi2—Mn278.30 (7)Bi4—Rh2—Bi5ii74.26 (3)
Rh2vi—Bi2—Mn3vi53.57 (6)Bi5iii—Rh2—Bi5ii95.33 (5)
Rh2vii—Bi2—Mn3vi111.94 (6)Mn3—Rh2—Bi198.87 (7)
Rh1—Bi2—Mn3vi53.46 (5)Mn2ii—Rh2—Bi166.07 (7)
Mn2—Bi2—Mn3vi56.40 (6)Mn2iii—Rh2—Bi166.07 (7)
Rh2vi—Bi2—Mn3vii111.94 (6)Bi4—Rh2—Bi1133.31 (5)
Rh2vii—Bi2—Mn3vii53.57 (6)Bi5iii—Rh2—Bi174.79 (3)
Rh1—Bi2—Mn3vii53.46 (5)Bi5ii—Rh2—Bi174.79 (3)
Mn2—Bi2—Mn3vii56.40 (6)Mn3—Rh2—Bi2iii67.27 (4)
Mn3vi—Bi2—Mn3vii84.29 (2)Mn2ii—Rh2—Bi2iii130.54 (9)
Rh2vi—Bi2—Bi3vii157.13 (3)Mn2iii—Rh2—Bi2iii63.83 (6)
Rh2vii—Bi2—Bi3vii94.24 (3)Bi4—Rh2—Bi2iii77.43 (3)
Rh1—Bi2—Bi3vii50.63 (2)Bi5iii—Rh2—Bi2iii79.26 (2)
Mn2—Bi2—Bi3vii111.28 (5)Bi5ii—Rh2—Bi2iii151.58 (6)
Mn3vi—Bi2—Bi3vii103.80 (6)Bi1—Rh2—Bi2iii128.91 (3)
Mn3vii—Bi2—Bi3vii56.62 (6)Mn3—Rh2—Bi2ii67.27 (4)
Rh2vi—Bi2—Bi3vi94.24 (3)Mn2ii—Rh2—Bi2ii63.83 (6)
Rh2vii—Bi2—Bi3vi157.13 (3)Mn2iii—Rh2—Bi2ii130.54 (9)
Rh1—Bi2—Bi3vi50.63 (2)Bi4—Rh2—Bi2ii77.43 (3)
Mn2—Bi2—Bi3vi111.28 (5)Bi5iii—Rh2—Bi2ii151.58 (6)
Mn3vi—Bi2—Bi3vi56.62 (6)Bi5ii—Rh2—Bi2ii79.26 (2)
Mn3vii—Bi2—Bi3vi103.80 (6)Bi1—Rh2—Bi2ii128.91 (3)
Bi3vii—Bi2—Bi3vi72.01 (2)Bi2iii—Rh2—Bi2ii92.25 (5)
Rh2vi—Bi2—Bi4vi50.34 (3)Rh1—Mn1—Rh1xi180.00 (8)
Rh2vii—Bi2—Bi4vi101.74 (3)Rh1—Mn1—Bi3xii122.375 (12)
Rh1—Bi2—Bi4vi144.255 (12)Rh1xi—Mn1—Bi3xii57.625 (12)
Mn2—Bi2—Bi4vi100.67 (5)Rh1—Mn1—Bi3xiii122.375 (12)
Mn3vi—Bi2—Bi4vi95.78 (4)Rh1xi—Mn1—Bi3xiii57.625 (12)
Mn3vii—Bi2—Bi4vi152.16 (7)Bi3xii—Mn1—Bi3xiii63.47 (2)
Bi3vii—Bi2—Bi4vi147.94 (2)Rh1—Mn1—Bi3x57.625 (12)
Bi3vi—Bi2—Bi4vi99.273 (19)Rh1xi—Mn1—Bi3x122.375 (12)
Rh2vi—Bi2—Bi4vii101.74 (3)Bi3xii—Mn1—Bi3x116.53 (2)
Rh2vii—Bi2—Bi4vii50.34 (3)Bi3xiii—Mn1—Bi3x180.00 (3)
Rh1—Bi2—Bi4vii144.255 (13)Rh1—Mn1—Bi3vi57.625 (12)
Mn2—Bi2—Bi4vii100.67 (5)Rh1xi—Mn1—Bi3vi122.375 (12)
Mn3vi—Bi2—Bi4vii152.16 (7)Bi3xii—Mn1—Bi3vi180.00 (3)
Mn3vii—Bi2—Bi4vii95.78 (4)Bi3xiii—Mn1—Bi3vi116.53 (2)
Bi3vii—Bi2—Bi4vii99.273 (19)Bi3x—Mn1—Bi3vi63.47 (2)
Bi3vi—Bi2—Bi4vii147.94 (2)Rh1—Mn1—Bi3xiv122.375 (12)
Bi4vi—Bi2—Bi4vii71.44 (2)Rh1xi—Mn1—Bi3xiv57.625 (11)
Rh2vi—Bi2—Bi549.50 (2)Bi3xii—Mn1—Bi3xiv82.72 (2)
Rh2vii—Bi2—Bi549.50 (2)Bi3xiii—Mn1—Bi3xiv115.25 (2)
Rh1—Bi2—Bi5134.64 (4)Bi3x—Mn1—Bi3xiv64.75 (2)
Mn2—Bi2—Bi556.35 (6)Bi3vi—Mn1—Bi3xiv97.28 (2)
Mn3vi—Bi2—Bi595.97 (7)Rh1—Mn1—Bi3ix57.625 (11)
Mn3vii—Bi2—Bi595.97 (7)Rh1xi—Mn1—Bi3ix122.375 (12)
Bi3vii—Bi2—Bi5143.415 (13)Bi3xii—Mn1—Bi3ix64.75 (2)
Bi3vi—Bi2—Bi5143.415 (13)Bi3xiii—Mn1—Bi3ix97.28 (2)
Bi4vi—Bi2—Bi556.262 (17)Bi3x—Mn1—Bi3ix82.72 (2)
Bi4vii—Bi2—Bi556.262 (16)Bi3vi—Mn1—Bi3ix115.25 (2)
Rh1ii—Bi3—Rh1iii94.91 (4)Bi3xiv—Mn1—Bi3ix116.53 (2)
Rh1ii—Bi3—Mn1ii52.05 (4)Rh1—Mn1—Bi3vii57.625 (12)
Rh1iii—Bi3—Mn1ii111.02 (3)Rh1xi—Mn1—Bi3vii122.375 (12)
Rh1ii—Bi3—Mn1iii111.02 (3)Bi3xii—Mn1—Bi3vii97.28 (2)
Rh1iii—Bi3—Mn1iii52.05 (4)Bi3xiii—Mn1—Bi3vii64.75 (2)
Mn1ii—Bi3—Mn1iii82.72 (2)Bi3x—Mn1—Bi3vii115.25 (2)
Rh1ii—Bi3—Mn353.61 (4)Bi3vi—Mn1—Bi3vii82.72 (2)
Rh1iii—Bi3—Mn353.61 (4)Bi3xiv—Mn1—Bi3vii180.000 (15)
Mn1ii—Bi3—Mn3100.50 (3)Bi3ix—Mn1—Bi3vii63.47 (2)
Mn1iii—Bi3—Mn3100.50 (3)Rh1—Mn1—Bi3xv122.375 (12)
Rh1ii—Bi3—Bi3i54.097 (16)Rh1xi—Mn1—Bi3xv57.625 (11)
Rh1iii—Bi3—Bi3i54.097 (16)Bi3xii—Mn1—Bi3xv115.25 (2)
Mn1ii—Bi3—Bi3i58.268 (12)Bi3xiii—Mn1—Bi3xv82.72 (2)
Mn1iii—Bi3—Bi3i58.268 (12)Bi3x—Mn1—Bi3xv97.28 (2)
Mn3—Bi3—Bi3i58.53 (4)Bi3vi—Mn1—Bi3xv64.75 (2)
Rh1ii—Bi3—Bi3viii109.67 (4)Bi3xiv—Mn1—Bi3xv63.47 (2)
Rh1iii—Bi3—Bi3viii109.67 (4)Bi3ix—Mn1—Bi3xv180.00 (3)
Mn1ii—Bi3—Bi3viii57.625 (11)Bi3vii—Mn1—Bi3xv116.53 (2)
Mn1iii—Bi3—Bi3viii57.625 (11)Rh2vi—Mn2—Rh2vii98.35 (5)
Mn3—Bi3—Bi3viii148.53 (4)Rh2vi—Mn2—Rh2x81.63 (5)
Bi3i—Bi3—Bi3viii90.0Rh2vii—Mn2—Rh2x178.50 (17)
Rh1ii—Bi3—Bi5117.76 (2)Rh2vi—Mn2—Rh2ix178.50 (17)
Rh1iii—Bi3—Bi5117.76 (2)Rh2vii—Mn2—Rh2ix81.63 (5)
Mn1ii—Bi3—Bi5131.073 (15)Rh2x—Mn2—Rh2ix98.35 (5)
Mn1iii—Bi3—Bi5131.073 (15)Rh2vi—Mn2—Mn3vii123.81 (11)
Mn3—Bi3—Bi5104.87 (4)Rh2vii—Mn2—Mn3vii57.43 (5)
Bi3i—Bi3—Bi5163.398 (15)Rh2x—Mn2—Mn3vii123.81 (11)
Bi3viii—Bi3—Bi5106.601 (15)Rh2ix—Mn2—Mn3vii57.43 (5)
Rh1ii—Bi3—Bi2iii105.90 (4)Rh2vi—Mn2—Mn3vi57.43 (5)
Rh1iii—Bi3—Bi2iii53.69 (3)Rh2vii—Mn2—Mn3vi123.81 (11)
Mn1ii—Bi3—Bi2iii154.95 (2)Rh2x—Mn2—Mn3vi57.43 (5)
Mn1iii—Bi3—Bi2iii97.415 (18)Rh2ix—Mn2—Mn3vi123.81 (11)
Mn3—Bi3—Bi2iii54.70 (3)Mn3vii—Mn2—Mn3vi92.68 (15)
Bi3i—Bi3—Bi2iii100.440 (14)Rh2vi—Mn2—Bi2viii120.79 (9)
Bi3viii—Bi3—Bi2iii142.039 (13)Rh2vii—Mn2—Bi2viii120.79 (9)
Bi5—Bi3—Bi2iii66.489 (17)Rh2x—Mn2—Bi2viii60.31 (4)
Rh1ii—Bi3—Bi2ii53.69 (3)Rh2ix—Mn2—Bi2viii60.31 (4)
Rh1iii—Bi3—Bi2ii105.90 (4)Mn3vii—Mn2—Bi2viii63.89 (7)
Mn1ii—Bi3—Bi2ii97.415 (18)Mn3vi—Mn2—Bi2viii63.89 (7)
Mn1iii—Bi3—Bi2ii154.95 (2)Rh2vi—Mn2—Bi260.31 (4)
Mn3—Bi3—Bi2ii54.70 (3)Rh2vii—Mn2—Bi260.31 (4)
Bi3i—Bi3—Bi2ii100.440 (14)Rh2x—Mn2—Bi2120.79 (9)
Bi3viii—Bi3—Bi2ii142.039 (13)Rh2ix—Mn2—Bi2120.79 (9)
Bi5—Bi3—Bi2ii66.489 (17)Mn3vii—Mn2—Bi263.89 (7)
Bi2iii—Bi3—Bi2ii72.00 (2)Mn3vi—Mn2—Bi263.89 (7)
Rh2—Bi4—Bi5ii52.92 (2)Bi2viii—Mn2—Bi2100.79 (11)
Rh2—Bi4—Bi5iii52.92 (2)Rh2vi—Mn2—Bi1vi58.16 (5)
Bi5ii—Bi4—Bi5iii75.57 (3)Rh2vii—Mn2—Bi1vi120.56 (10)
Rh2—Bi4—Bi4vii132.55 (3)Rh2x—Mn2—Bi1vi58.16 (5)
Bi5ii—Bi4—Bi4vii173.51 (3)Rh2ix—Mn2—Bi1vi120.56 (10)
Bi5iii—Bi4—Bi4vii104.875 (19)Mn3vii—Mn2—Bi1vi176.85 (12)
Rh2—Bi4—Bi4vi132.55 (3)Mn3vi—Mn2—Bi1vi90.47 (6)
Bi5ii—Bi4—Bi4vi104.875 (19)Bi2viii—Mn2—Bi1vi117.694 (15)
Bi5iii—Bi4—Bi4vi173.51 (3)Bi2—Mn2—Bi1vi117.694 (15)
Bi4vii—Bi4—Bi4vi73.93 (3)Rh2vi—Mn2—Bi1vii120.56 (10)
Rh2—Bi4—Bi4iii115.18 (3)Rh2vii—Mn2—Bi1vii58.16 (5)
Bi5ii—Bi4—Bi4iii106.23 (3)Rh2x—Mn2—Bi1vii120.56 (10)
Bi5iii—Bi4—Bi4iii62.78 (2)Rh2ix—Mn2—Bi1vii58.16 (5)
Bi4vii—Bi4—Bi4iii68.803 (14)Mn3vii—Mn2—Bi1vii90.47 (6)
Bi4vi—Bi4—Bi4iii111.197 (14)Mn3vi—Mn2—Bi1vii176.85 (12)
Rh2—Bi4—Bi4ii115.18 (3)Bi2viii—Mn2—Bi1vii117.694 (15)
Bi5ii—Bi4—Bi4ii62.78 (2)Bi2—Mn2—Bi1vii117.694 (15)
Bi5iii—Bi4—Bi4ii106.23 (3)Bi1vi—Mn2—Bi1vii86.39 (10)
Bi4vii—Bi4—Bi4ii111.197 (14)Rh2vi—Mn2—Bi5viii122.89 (8)
Bi4vi—Bi4—Bi4ii68.803 (14)Rh2vii—Mn2—Bi5viii122.89 (8)
Bi4iii—Bi4—Bi4ii73.93 (3)Rh2x—Mn2—Bi5viii56.14 (4)
Rh2—Bi4—Bi2ii52.23 (2)Rh2ix—Mn2—Bi5viii56.14 (4)
Bi5ii—Bi4—Bi2ii62.953 (18)Mn3vii—Mn2—Bi5viii111.89 (3)
Bi5iii—Bi4—Bi2ii105.11 (3)Mn3vi—Mn2—Bi5viii111.89 (3)
Bi4vii—Bi4—Bi2ii122.58 (3)Bi2viii—Mn2—Bi5viii72.295 (17)
Bi4vi—Bi4—Bi2ii80.58 (2)Bi2—Mn2—Bi5viii173.09 (11)
Bi4iii—Bi4—Bi2ii166.43 (3)Bi1vi—Mn2—Bi5viii66.81 (6)
Bi4ii—Bi4—Bi2ii105.67 (2)Bi1vii—Mn2—Bi5viii66.81 (6)
Rh2—Bi4—Bi2iii52.23 (2)Rh2vi—Mn2—Bi556.14 (4)
Bi5ii—Bi4—Bi2iii105.11 (3)Rh2vii—Mn2—Bi556.14 (4)
Bi5iii—Bi4—Bi2iii62.953 (18)Rh2x—Mn2—Bi5122.89 (8)
Bi4vii—Bi4—Bi2iii80.58 (2)Rh2ix—Mn2—Bi5122.89 (8)
Bi4vi—Bi4—Bi2iii122.58 (3)Mn3vii—Mn2—Bi5111.89 (3)
Bi4iii—Bi4—Bi2iii105.67 (2)Mn3vi—Mn2—Bi5111.89 (3)
Bi4ii—Bi4—Bi2iii166.43 (3)Bi2viii—Mn2—Bi5173.09 (11)
Bi2ii—Bi4—Bi2iii71.44 (2)Bi2—Mn2—Bi572.295 (17)
Rh2—Bi4—Bi599.75 (4)Bi1vi—Mn2—Bi566.81 (6)
Bi5ii—Bi4—Bi5127.277 (17)Bi1vii—Mn2—Bi566.81 (6)
Bi5iii—Bi4—Bi5127.277 (17)Bi5viii—Mn2—Bi5114.62 (12)
Bi4vii—Bi4—Bi557.73 (2)Rh2i—Mn3—Rh283.27 (12)
Bi4vi—Bi4—Bi557.73 (2)Rh2i—Mn3—Rh1ii118.81 (3)
Bi4iii—Bi4—Bi5126.471 (17)Rh2—Mn3—Rh1ii118.81 (3)
Bi4ii—Bi4—Bi5126.471 (17)Rh2i—Mn3—Rh1iii118.81 (3)
Bi2ii—Bi4—Bi565.072 (17)Rh2—Mn3—Rh1iii118.81 (3)
Bi2iii—Bi4—Bi565.072 (17)Rh1ii—Mn3—Rh1iii99.69 (13)
Rh2vii—Bi5—Rh2vi95.33 (5)Rh2i—Mn3—Mn2ii58.93 (7)
Rh2vii—Bi5—Mn254.21 (3)Rh2—Mn3—Mn2ii58.94 (7)
Rh2vi—Bi5—Mn254.21 (4)Rh1ii—Mn3—Mn2ii83.82 (7)
Rh2vii—Bi5—Bi4vii52.82 (3)Rh1iii—Mn3—Mn2ii176.49 (13)
Rh2vi—Bi5—Bi4vii107.55 (4)Rh2i—Mn3—Mn2iii58.93 (7)
Mn2—Bi5—Bi4vii100.41 (5)Rh2—Mn3—Mn2iii58.93 (7)
Rh2vii—Bi5—Bi4vi107.55 (4)Rh1ii—Mn3—Mn2iii176.49 (13)
Rh2vi—Bi5—Bi4vi52.82 (3)Rh1iii—Mn3—Mn2iii83.82 (7)
Mn2—Bi5—Bi4vi100.41 (5)Mn2ii—Mn3—Mn2iii92.67 (15)
Bi4vii—Bi5—Bi4vi75.57 (3)Rh2i—Mn3—Bi2iv59.16 (3)
Rh2vii—Bi5—Bi1vi107.02 (3)Rh2—Mn3—Bi2iv118.15 (9)
Rh2vi—Bi5—Bi1vi52.75 (3)Rh1ii—Mn3—Bi2iv60.31 (3)
Mn2—Bi5—Bi1vi54.67 (4)Rh1iii—Mn3—Bi2iv122.04 (8)
Bi4vii—Bi5—Bi1vi153.59 (3)Mn2ii—Mn3—Bi2iv59.72 (4)
Bi4vi—Bi5—Bi1vi98.70 (2)Mn2iii—Mn3—Bi2iv117.81 (9)
Rh2vii—Bi5—Bi1vii52.75 (3)Rh2i—Mn3—Bi2iii118.15 (9)
Rh2vi—Bi5—Bi1vii107.02 (3)Rh2—Mn3—Bi2iii59.16 (3)
Mn2—Bi5—Bi1vii54.67 (4)Rh1ii—Mn3—Bi2iii122.04 (8)
Bi4vii—Bi5—Bi1vii98.70 (2)Rh1iii—Mn3—Bi2iii60.31 (3)
Bi4vi—Bi5—Bi1vii153.59 (3)Mn2ii—Mn3—Bi2iii117.81 (9)
Bi1vi—Bi5—Bi1vii74.81 (2)Mn2iii—Mn3—Bi2iii59.72 (4)
Rh2vii—Bi5—Bi3118.89 (3)Bi2iv—Mn3—Bi2iii176.87 (14)
Rh2vi—Bi5—Bi3118.89 (3)Rh2i—Mn3—Bi2v59.16 (3)
Mn2—Bi5—Bi3106.09 (6)Rh2—Mn3—Bi2v118.15 (9)
Bi4vii—Bi5—Bi3133.563 (18)Rh1ii—Mn3—Bi2v122.04 (8)
Bi4vi—Bi5—Bi3133.563 (18)Rh1iii—Mn3—Bi2v60.31 (3)
Bi1vi—Bi5—Bi368.72 (2)Mn2ii—Mn3—Bi2v117.81 (9)
Bi1vii—Bi5—Bi368.72 (2)Mn2iii—Mn3—Bi2v59.72 (4)
Rh2vii—Bi5—Bi4111.83 (3)Bi2iv—Mn3—Bi2v84.29 (2)
Rh2vi—Bi5—Bi4111.83 (3)Bi2iii—Mn3—Bi2v95.62 (2)
Mn2—Bi5—Bi4153.25 (6)Rh2i—Mn3—Bi2ii118.15 (9)
Bi4vii—Bi5—Bi459.49 (2)Rh2—Mn3—Bi2ii59.16 (3)
Bi4vi—Bi5—Bi459.49 (2)Rh1ii—Mn3—Bi2ii60.31 (3)
Bi1vi—Bi5—Bi4139.601 (14)Rh1iii—Mn3—Bi2ii122.04 (8)
Bi1vii—Bi5—Bi4139.601 (14)Mn2ii—Mn3—Bi2ii59.72 (4)
Bi3—Bi5—Bi4100.66 (2)Mn2iii—Mn3—Bi2ii117.81 (9)
Rh2vii—Bi5—Bi251.24 (3)Bi2iv—Mn3—Bi2ii95.62 (2)
Rh2vi—Bi5—Bi251.24 (3)Bi2iii—Mn3—Bi2ii84.29 (2)
Mn2—Bi5—Bi251.36 (6)Bi2v—Mn3—Bi2ii176.87 (14)
Bi4vii—Bi5—Bi260.784 (18)Rh2i—Mn3—Bi3169.83 (9)
Bi4vi—Bi5—Bi260.784 (18)Rh2—Mn3—Bi3106.90 (4)
Bi1vi—Bi5—Bi293.68 (2)Rh1ii—Mn3—Bi356.63 (6)
Bi1vii—Bi5—Bi293.68 (2)Rh1iii—Mn3—Bi356.63 (6)
Bi3—Bi5—Bi2157.45 (3)Mn2ii—Mn3—Bi3126.08 (5)
Bi4—Bi5—Bi2101.89 (2)Mn2iii—Mn3—Bi3126.08 (5)
Mn1—Rh1—Mn3vi130.15 (6)Bi2iv—Mn3—Bi3114.21 (9)
Mn1—Rh1—Mn3vii130.15 (6)Bi2iii—Mn3—Bi368.69 (4)
Mn3vi—Rh1—Mn3vii99.69 (13)Bi2v—Mn3—Bi3114.21 (9)
Mn1—Rh1—Bi3ix70.33 (4)Bi2ii—Mn3—Bi368.69 (4)
Mn3vi—Rh1—Bi3ix141.27 (4)Rh2i—Mn3—Bi3i106.90 (4)
Mn3vii—Rh1—Bi3ix69.75 (5)Rh2—Mn3—Bi3i169.83 (9)
Mn1—Rh1—Bi3vii70.33 (4)Rh1ii—Mn3—Bi3i56.63 (6)
Mn3vi—Rh1—Bi3vii141.27 (4)Rh1iii—Mn3—Bi3i56.63 (6)
Mn3vii—Rh1—Bi3vii69.75 (5)Mn2ii—Mn3—Bi3i126.08 (5)
Bi3ix—Rh1—Bi3vii71.81 (3)Mn2iii—Mn3—Bi3i126.08 (5)
Mn1—Rh1—Bi3x70.33 (4)Bi2iv—Mn3—Bi3i68.69 (4)
Mn3vi—Rh1—Bi3x69.75 (5)Bi2iii—Mn3—Bi3i114.21 (9)
Mn3vii—Rh1—Bi3x141.27 (4)Bi2v—Mn3—Bi3i68.69 (4)
Bi3ix—Rh1—Bi3x94.91 (4)Bi2ii—Mn3—Bi3i114.21 (9)
Bi3vii—Rh1—Bi3x140.66 (8)Bi3—Mn3—Bi3i62.94 (7)
Mn1—Rh1—Bi3vi70.33 (4)
Symmetry codes: (i) y+1, x+1, z; (ii) y+1/2, x+1/2, z+1/2; (iii) y+1/2, x+1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z1/2; (vi) y1/2, x+1/2, z+1/2; (vii) y1/2, x+1/2, z1/2; (viii) y, x, z; (ix) x+1/2, y1/2, z1/2; (x) x+1/2, y1/2, z+1/2; (xi) x, y, z; (xii) y+1/2, x1/2, z1/2; (xiii) x1/2, y+1/2, z1/2; (xiv) y+1/2, x1/2, z+1/2; (xv) x1/2, y+1/2, z+1/2.
Rhodium manganese tribismuthide (RhMnBi3) top
Crystal data top
RhMnBi3Dx = 10.369 Mg m3
Mr = 784.79Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmmmCell parameters from 3699 reflections
a = 8.885 (3) Åθ = 3–34.9°
b = 13.696 (6) ŵ = 110.13 mm1
c = 4.1310 (12) ÅT = 293 K
V = 502.7 (3) Å3Irregular, gray
Z = 40.10 × 0.05 × 0.03 mm
F(000) = 1276
Data collection top
Nonius KappaCCD
diffractometer
522 reflections with I > 2σ(I)
Radiation source: NoniusRint = 0.141
ω scansθmax = 35.0°, θmin = 2.7°
Absorption correction: multi-scanh = 1414
Tmin = 0.003, Tmax = 0.005k = 2221
3699 measured reflectionsl = 66
667 independent reflections
Refinement top
Refinement on F221 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.094 w = 1/[σ2(Fo2) + (0.150P)2 + 14.P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.257(Δ/σ)max < 0.001
S = 1.19Δρmax = 11.68 e Å3
667 reflectionsΔρmin = 8.87 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.00000.33689 (14)0.00000.0279 (5)
Bi20.19449 (14)0.12399 (10)0.50000.0263 (4)
Mn10.50000.00000.50000.026 (2)
Mn20.00000.00000.00000.033 (2)
Rh10.3016 (4)0.00000.00000.0240 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0201 (8)0.0243 (9)0.0393 (10)0.0000.0000.000
Bi20.0223 (7)0.0263 (7)0.0302 (7)0.0019 (4)0.0000.000
Mn10.007 (3)0.045 (6)0.027 (5)0.0000.0000.000
Mn20.025 (5)0.034 (6)0.039 (6)0.0000.0000.000
Rh10.0172 (15)0.0288 (18)0.0260 (16)0.0000.0000.000
Geometric parameters (Å, º) top
Bi1—Rh1i2.846 (3)Mn1—Bi1xii3.0426 (16)
Bi1—Rh1ii2.846 (3)Mn1—Bi1iv3.0426 (16)
Bi1—Mn1ii3.0425 (16)Mn1—Bi1xiii3.0426 (16)
Bi1—Mn1iii3.0425 (16)Mn1—Bi1i3.0426 (16)
Bi1—Bi2iv3.4527 (13)Mn1—Bi2xiv3.2018 (15)
Bi1—Bi2v3.4527 (13)Mn1—Bi2viii3.2018 (15)
Bi1—Bi2i3.4527 (13)Mn1—Bi2x3.2018 (15)
Bi1—Bi2vi3.4527 (13)Mn2—Rh12.680 (4)
Bi2—Rh12.8383 (16)Mn2—Rh1xv2.680 (4)
Bi2—Rh1vii2.8383 (16)Mn2—Bi2xv3.1837 (12)
Bi2—Mn23.1837 (12)Mn2—Bi2viii3.1837 (12)
Bi2—Mn2vii3.1837 (12)Mn2—Bi2xvi3.1837 (12)
Bi2—Mn13.2018 (15)Mn2—Bi2xvii3.1837 (12)
Bi2—Bi2viii3.396 (3)Mn2—Bi2ix3.1837 (12)
Bi2—Bi1iv3.4528 (13)Mn2—Bi2xviii3.1837 (12)
Bi2—Bi1i3.4528 (13)Mn2—Bi2xix3.1837 (12)
Bi2—Bi2ix3.456 (3)Rh1—Mn1xviii2.715 (2)
Bi2—Bi2iv3.590 (3)Rh1—Bi2xvii2.8383 (16)
Mn1—Rh1x2.715 (2)Rh1—Bi2xviii2.8383 (16)
Mn1—Rh1xi2.715 (2)Rh1—Bi2viii2.8383 (16)
Mn1—Rh1vii2.715 (2)Rh1—Bi1i2.846 (3)
Mn1—Rh12.715 (2)Rh1—Bi1xii2.846 (3)
Rh1i—Bi1—Rh1ii76.55 (12)Rh1xi—Mn1—Bi2viii123.39 (5)
Rh1i—Bi1—Mn1ii54.80 (5)Rh1vii—Mn1—Bi2viii56.61 (5)
Rh1ii—Bi1—Mn1ii54.80 (5)Rh1—Mn1—Bi2viii56.61 (5)
Rh1i—Bi1—Mn1iii54.80 (5)Bi1xii—Mn1—Bi2viii67.08 (2)
Rh1ii—Bi1—Mn1iii54.80 (5)Bi1iv—Mn1—Bi2viii112.92 (2)
Mn1ii—Bi1—Mn1iii85.51 (6)Bi1xiii—Mn1—Bi2viii67.08 (2)
Rh1i—Bi1—Bi2iv52.50 (5)Bi1i—Mn1—Bi2viii112.92 (2)
Rh1ii—Bi1—Bi2iv111.41 (7)Bi2xiv—Mn1—Bi2viii180.00 (4)
Mn1ii—Bi1—Bi2iv58.66 (3)Rh1x—Mn1—Bi2x56.61 (5)
Mn1iii—Bi1—Bi2iv106.99 (5)Rh1xi—Mn1—Bi2x56.61 (5)
Rh1i—Bi1—Bi2v111.41 (7)Rh1vii—Mn1—Bi2x123.39 (5)
Rh1ii—Bi1—Bi2v52.50 (5)Rh1—Mn1—Bi2x123.39 (5)
Mn1ii—Bi1—Bi2v106.99 (5)Bi1xii—Mn1—Bi2x67.08 (2)
Mn1iii—Bi1—Bi2v58.66 (3)Bi1iv—Mn1—Bi2x112.92 (2)
Bi2iv—Bi1—Bi2v162.14 (8)Bi1xiii—Mn1—Bi2x67.08 (2)
Rh1i—Bi1—Bi2i52.50 (5)Bi1i—Mn1—Bi2x112.92 (2)
Rh1ii—Bi1—Bi2i111.41 (7)Bi2xiv—Mn1—Bi2x64.06 (6)
Mn1ii—Bi1—Bi2i106.99 (5)Bi2viii—Mn1—Bi2x115.94 (6)
Mn1iii—Bi1—Bi2i58.66 (3)Rh1x—Mn1—Bi2123.39 (5)
Bi2iv—Bi1—Bi2i73.48 (3)Rh1xi—Mn1—Bi2123.39 (5)
Bi2v—Bi1—Bi2i103.66 (4)Rh1vii—Mn1—Bi256.61 (5)
Rh1i—Bi1—Bi2vi111.41 (7)Rh1—Mn1—Bi256.61 (5)
Rh1ii—Bi1—Bi2vi52.50 (5)Bi1xii—Mn1—Bi2112.92 (2)
Mn1ii—Bi1—Bi2vi58.66 (3)Bi1iv—Mn1—Bi267.08 (2)
Mn1iii—Bi1—Bi2vi106.99 (5)Bi1xiii—Mn1—Bi2112.92 (2)
Bi2iv—Bi1—Bi2vi103.66 (4)Bi1i—Mn1—Bi267.08 (2)
Bi2v—Bi1—Bi2vi73.48 (4)Bi2xiv—Mn1—Bi2115.94 (6)
Bi2i—Bi1—Bi2vi162.14 (8)Bi2viii—Mn1—Bi264.06 (6)
Rh1—Bi2—Rh1vii93.39 (7)Bi2x—Mn1—Bi2180.0
Rh1—Bi2—Mn252.47 (7)Rh1—Mn2—Rh1xv180.0
Rh1vii—Bi2—Mn2109.57 (6)Rh1—Mn2—Bi2xv122.87 (2)
Rh1—Bi2—Mn2vii109.57 (6)Rh1xv—Mn2—Bi2xv57.13 (2)
Rh1vii—Bi2—Mn2vii52.47 (7)Rh1—Mn2—Bi2viii57.13 (2)
Mn2—Bi2—Mn2vii80.90 (4)Rh1xv—Mn2—Bi2viii122.87 (2)
Rh1—Bi2—Mn153.01 (6)Bi2xv—Mn2—Bi2viii115.53 (5)
Rh1vii—Bi2—Mn153.01 (6)Rh1—Mn2—Bi2xvi122.87 (2)
Mn2—Bi2—Mn1100.21 (4)Rh1xv—Mn2—Bi2xvi57.13 (2)
Mn2vii—Bi2—Mn1100.21 (4)Bi2xv—Mn2—Bi2xvi64.47 (5)
Rh1—Bi2—Bi2viii53.25 (3)Bi2viii—Mn2—Bi2xvi180.00 (4)
Rh1vii—Bi2—Bi2viii53.25 (3)Rh1—Mn2—Bi2xvii57.13 (2)
Mn2—Bi2—Bi2viii57.77 (2)Rh1xv—Mn2—Bi2xvii122.87 (2)
Mn2vii—Bi2—Bi2viii57.77 (2)Bi2xv—Mn2—Bi2xvii65.75 (5)
Mn1—Bi2—Bi2viii57.97 (3)Bi2viii—Mn2—Bi2xvii80.90 (4)
Rh1—Bi2—Bi1iv105.34 (8)Bi2xvi—Mn2—Bi2xvii99.10 (4)
Rh1vii—Bi2—Bi1iv52.69 (6)Rh1—Mn2—Bi2ix122.87 (2)
Mn2—Bi2—Bi1iv153.84 (5)Rh1xv—Mn2—Bi2ix57.13 (2)
Mn2vii—Bi2—Bi1iv96.97 (3)Bi2xv—Mn2—Bi2ix114.25 (5)
Mn1—Bi2—Bi1iv54.26 (3)Bi2viii—Mn2—Bi2ix99.10 (4)
Bi2viii—Bi2—Bi1iv98.93 (4)Bi2xvi—Mn2—Bi2ix80.90 (4)
Rh1—Bi2—Bi1i52.69 (6)Bi2xvii—Mn2—Bi2ix180.00 (6)
Rh1vii—Bi2—Bi1i105.34 (8)Rh1—Mn2—Bi2xviii57.13 (2)
Mn2—Bi2—Bi1i96.97 (3)Rh1xv—Mn2—Bi2xviii122.87 (2)
Mn2vii—Bi2—Bi1i153.84 (5)Bi2xv—Mn2—Bi2xviii99.10 (4)
Mn1—Bi2—Bi1i54.26 (3)Bi2viii—Mn2—Bi2xviii114.25 (5)
Bi2viii—Bi2—Bi1i98.93 (4)Bi2xvi—Mn2—Bi2xviii65.75 (5)
Bi1iv—Bi2—Bi1i73.48 (4)Bi2xvii—Mn2—Bi2xviii64.47 (5)
Rh1—Bi2—Bi2ix109.59 (7)Bi2ix—Mn2—Bi2xviii115.53 (5)
Rh1vii—Bi2—Bi2ix109.59 (7)Rh1—Mn2—Bi2xix122.87 (2)
Mn2—Bi2—Bi2ix57.13 (2)Rh1xv—Mn2—Bi2xix57.13 (2)
Mn2vii—Bi2—Bi2ix57.13 (2)Bi2xv—Mn2—Bi2xix80.90 (4)
Mn1—Bi2—Bi2ix147.97 (3)Bi2viii—Mn2—Bi2xix65.75 (5)
Bi2viii—Bi2—Bi2ix90.000 (1)Bi2xvi—Mn2—Bi2xix114.25 (5)
Bi1iv—Bi2—Bi2ix141.828 (19)Bi2xvii—Mn2—Bi2xix115.53 (5)
Bi1i—Bi2—Bi2ix141.828 (19)Bi2ix—Mn2—Bi2xix64.47 (5)
Rh1—Bi2—Bi2iv118.89 (5)Bi2xviii—Mn2—Bi2xix180.00 (4)
Rh1vii—Bi2—Bi2iv118.89 (5)Rh1—Mn2—Bi257.13 (2)
Mn2—Bi2—Bi2iv131.45 (3)Rh1xv—Mn2—Bi2122.87 (2)
Mn2vii—Bi2—Bi2iv131.45 (3)Bi2xv—Mn2—Bi2180.0
Mn1—Bi2—Bi2iv106.08 (5)Bi2viii—Mn2—Bi264.47 (5)
Bi2viii—Bi2—Bi2iv164.05 (4)Bi2xvi—Mn2—Bi2115.53 (5)
Bi1iv—Bi2—Bi2iv68.58 (4)Bi2xvii—Mn2—Bi2114.25 (5)
Bi1i—Bi2—Bi2iv68.58 (4)Bi2ix—Mn2—Bi265.75 (5)
Bi2ix—Bi2—Bi2iv105.95 (4)Bi2xviii—Mn2—Bi280.90 (4)
Rh1x—Mn1—Rh1xi99.05 (12)Bi2xix—Mn2—Bi299.10 (4)
Rh1x—Mn1—Rh1vii80.95 (12)Mn2—Rh1—Mn1130.48 (6)
Rh1xi—Mn1—Rh1vii180.0Mn2—Rh1—Mn1xviii130.48 (6)
Rh1x—Mn1—Rh1180.0Mn1—Rh1—Mn1xviii99.05 (12)
Rh1xi—Mn1—Rh180.95 (12)Mn2—Rh1—Bi2xvii70.41 (7)
Rh1vii—Mn1—Rh199.05 (12)Mn1—Rh1—Bi2xvii140.47 (7)
Rh1x—Mn1—Bi1xii121.09 (4)Mn1xviii—Rh1—Bi2xvii70.37 (3)
Rh1xi—Mn1—Bi1xii58.91 (4)Mn2—Rh1—Bi2xviii70.41 (7)
Rh1vii—Mn1—Bi1xii121.09 (4)Mn1—Rh1—Bi2xviii140.47 (7)
Rh1—Mn1—Bi1xii58.91 (4)Mn1xviii—Rh1—Bi2xviii70.37 (3)
Rh1x—Mn1—Bi1iv58.91 (4)Bi2xvii—Rh1—Bi2xviii73.50 (6)
Rh1xi—Mn1—Bi1iv121.09 (4)Mn2—Rh1—Bi2viii70.41 (7)
Rh1vii—Mn1—Bi1iv58.91 (4)Mn1—Rh1—Bi2viii70.37 (3)
Rh1—Mn1—Bi1iv121.09 (4)Mn1xviii—Rh1—Bi2viii140.47 (7)
Bi1xii—Mn1—Bi1iv180.0Bi2xvii—Rh1—Bi2viii93.39 (7)
Rh1x—Mn1—Bi1xiii58.91 (4)Bi2xviii—Rh1—Bi2viii140.81 (14)
Rh1xi—Mn1—Bi1xiii121.09 (4)Mn2—Rh1—Bi270.41 (7)
Rh1vii—Mn1—Bi1xiii58.91 (4)Mn1—Rh1—Bi270.37 (3)
Rh1—Mn1—Bi1xiii121.09 (4)Mn1xviii—Rh1—Bi2140.47 (7)
Bi1xii—Mn1—Bi1xiii85.51 (6)Bi2xvii—Rh1—Bi2140.81 (14)
Bi1iv—Mn1—Bi1xiii94.49 (6)Bi2xviii—Rh1—Bi293.39 (7)
Rh1x—Mn1—Bi1i121.09 (4)Bi2viii—Rh1—Bi273.50 (6)
Rh1xi—Mn1—Bi1i58.91 (4)Mn2—Rh1—Bi1i128.27 (6)
Rh1vii—Mn1—Bi1i121.09 (4)Mn1—Rh1—Bi1i66.29 (6)
Rh1—Mn1—Bi1i58.91 (4)Mn1xviii—Rh1—Bi1i66.29 (6)
Bi1xii—Mn1—Bi1i94.49 (6)Bi2xvii—Rh1—Bi1i132.64 (5)
Bi1iv—Mn1—Bi1i85.51 (6)Bi2xviii—Rh1—Bi1i74.81 (4)
Bi1xiii—Mn1—Bi1i180.0Bi2viii—Rh1—Bi1i132.64 (5)
Rh1x—Mn1—Bi2xiv56.61 (5)Bi2—Rh1—Bi1i74.81 (4)
Rh1xi—Mn1—Bi2xiv56.61 (5)Mn2—Rh1—Bi1xii128.27 (6)
Rh1vii—Mn1—Bi2xiv123.39 (5)Mn1—Rh1—Bi1xii66.29 (6)
Rh1—Mn1—Bi2xiv123.39 (5)Mn1xviii—Rh1—Bi1xii66.29 (6)
Bi1xii—Mn1—Bi2xiv112.92 (2)Bi2xvii—Rh1—Bi1xii74.81 (4)
Bi1iv—Mn1—Bi2xiv67.08 (2)Bi2xviii—Rh1—Bi1xii132.64 (5)
Bi1xiii—Mn1—Bi2xiv112.92 (2)Bi2viii—Rh1—Bi1xii74.81 (4)
Bi1i—Mn1—Bi2xiv67.08 (2)Bi2—Rh1—Bi1xii132.64 (5)
Rh1x—Mn1—Bi2viii123.39 (5)Bi1i—Rh1—Bi1xii103.45 (12)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x1/2, y+1/2, z1; (iv) x+1/2, y+1/2, z+1; (v) x1/2, y+1/2, z1; (vi) x1/2, y+1/2, z; (vii) x, y, z+1; (viii) x, y, z; (ix) x, y, z+1; (x) x+1, y, z+1; (xi) x+1, y, z; (xii) x+1/2, y1/2, z; (xiii) x+1/2, y1/2, z+1; (xiv) x+1, y, z+1; (xv) x, y, z; (xvi) x, y, z; (xvii) x, y, z1; (xviii) x, y, z1; (xix) x, y, z+1.
Fractional atomic coordinates, Wyckoff letter and site symmetry of Rh6Mn5Bi18 top
Wyckoff letterSite symmetryXyz
Bi14gm.2m0.17112 (3)0.82888 (3)0.0
Bi28im..0.08340 (3)0.25924 (3)0.0
Bi38im..0.37210 (3)0.50115 (3)0.0
Bi48im..0.08560 (4)0.56218 (4)0.0
Bi58im..0.20740 (4)0.41210 (4)0.0
Rh14fm.2m0.10090 (7)0.10090 (7)0.0
Rh28im..0.18578 (7)0.67667 (7)0.0
Mn12am.mm0.00.00.0
Mn24fm.2m0.24406 (14)0.24406 (14)0.0
Mn34gm.2m0.33193 (14)0.66807 (14)0.0
Fractional atomic coordinates, Wyckoff letter and site symmetry of RhMnBi3 top
Wyckoff letterSite symmetryxyz
Bi14im2m0.00.33689 (14)0.0
Bi28q..m0.19449 (14)0.12399 (10)½
Mn12cmmm½0.0½
Mn22ammm0.00.00.0
Rh14g2mm0.3016 (4)0.00.0
 

Acknowledgements

We thank Dr Stephan Puchegger from the Center for Nano Structure Research, University of Vienna, for support with the SEM/EDX measurements.

Funding information

Funding for this research was provided by: Austrian Science Fund (FWF) (project No. P 26023); University of Vienna (open-access funding).

References

First citationChen, Y., Gregori, G., Leineweber, A., Qu, F., Chen, C., Tietze, T., Kronmüller, H., Schütz, G. & Goering, E. (2015). Scripta Mater. 107, 131–135.  CrossRef Google Scholar
First citationCrystalMaker (2009). CrystalMaker. CrystalMaker Software Ltd, Bicester, England. https://crystalmaker.com/Google Scholar
First citationCui, J., Choi, J.-P., Polikarpov, E., Bowden, M. E., Xie, W., Li, G., Nie, Z., Zarkevich, N., Kramer, M. J. & Johnson, D. (2014). Acta Mater. 79, 374–381.  CrossRef Google Scholar
First citationDonohue, J. (1974). The Structures of the Elements, p. 454. New York: Wiley.  Google Scholar
First citationFjellvåg, H. & Furuseth, S. (1987). J. Less-Common Met. 128, 177–183.  Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHuang, W., Wang, X., Chen, X., Lu, W., Damewood, L. & Fong, C. Y. (2015). J. Magn. Magn. Mater. 377, 252–258.  CrossRef Google Scholar
First citationKainzbauer, P., Richter, K. W. & Ipser, H. (2018). J. Phase Equilibria Diffus. 39, 17–34.  CrossRef Google Scholar
First citationLiu, Y., Zhang, J., Jia, G., Zhang, Y., Ren, Z., Li, X., Jing, Ch., Cao, S. & Deng, K. (2004). Phys. Rev. B, 70, 184424.  CrossRef Google Scholar
First citationMarker, M. C. J., Terzieff, P., Kainzbauer, P., Bobnar, M., Richter, K. W. & Ipser, H. (2018). J. Alloys Compd, 741, 682–688.  CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (2006). Editor. International Tables for Crystallography, Vol. C, Mathematical, physical and chemical tables, 3rd ed. Chester: International Union of Crystallography.  Google Scholar
First citationRama Rao, N. V., Gabay, A. M. & Hadjipanayis, G. C. (2013). J. Phys. D, 46, 062001.  CrossRef Google Scholar
First citationRoss, R. G. & Hume-Rothery, W. (1962). J. Less-Common Met. 4, 454–459.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStreet, G. B., Suits, J. C. & Lee, K. (1974). Solid State Commun. 14, 33–36.  Google Scholar
First citationSuits, J. C. (1975). IBM J. Res. Dev. 19, 422–423.  CrossRef Google Scholar
First citationSzytula, A., Bińszycka, H. & Todorović, J. (1981). Solid State Commun. 38, 41–43.  CrossRef Google Scholar
First citationTaufour, V., Thimmaiah, S., March, S., Saunders, S., Sun, K., Lamichhane, T. N., Kramer, M. J., Bud'ko, S. L. & Canfield, P. C. (2015). Phys. Rev. Appl. 4, 014021.  CrossRef Google Scholar
First citationZhuravlev, N. N., Zhdanov, G. S. & Smirnova, E. M. (1962). Fiz. Met. Metalloved. 13, 62–70.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds