organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo­butyl­amine hemihydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland
*Correspondence e-mail: d.r.allan@ed.ac.uk

(Received 10 January 2006; accepted 18 January 2006; online 25 January 2006)

The asymmetric unit of cyclo­butyl­amine hemihydrate, C4H9N·0.5H2O, consists of two cyclo­butyl­amine mol­ecules bridged by a water mol­ecule via N⋯H—O hydrogen bonds. This mol­ecular arrangement is further connected by significantly weaker N—H⋯O contacts to form columns parallel to the b axis.

Comment

The crystal structure of cyclo­butyl­amine hemihydrate (C4H7NH2·0.5H2O), (I)[link], was determined at 205 K (just below the ∼210 K melting point) as part of our low-temperature and high-pressure structural studies of prototypical hydrogen-bonded mol­ecular systems. It crystallizes in the monoclinic space group P21/n with two cyclo­butyl­amine mol­ecules and one water mol­ecule in the asymmetric unit (Fig. 1[link]). Pairs of cyclo­butyl­amine mol­ecules are bridged by a single water mol­ecule through N⋯H—O hydrogen bonds, which have N⋯O distances of 2.880 (3) and 2.895 (2) Å (Fig. 2[link] and Table 1[link]). Significantly weaker N—H⋯O contacts link this mol­ecular assembly to form columns parallel to the b axis, with N⋯O distances ranging in length from 3.176 (3) and 3.281 (3) Å to a more marginal distance of 3.604 (3) Å. As the N⋯O distances increase, there is a concomitant decrease in the N—H⋯O angles from 173.0 (19) to 160.1 (19)° as the inter­action weakens. The remaining N—H⋯O inter­action (N11—H111⋯O1) would appear to link the columns into slabs parallel to ([\overline{1}]01). However, as this inter­action has a very long N⋯O contact distance of 3.833 (3) Å, and the N—H⋯O angle is 134.3 (15)°, it is unlikely to offer any significant contribution to the inter­molecular bonding.

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing 30% probability displacement ellipsoids. The dashed lines indicate the O—H⋯N hydrogen bonds.
[Figure 2]
Figure 2
The packing of (I)[link], viewed along the b axis. The O—H⋯N hydrogen bonds are shown as dashed lines.

Experimental

The sample of cyclo­butyl­amine hemihydrate was prepared from anhydrous starting material (of 99% purity, as received from Aldrich) and placed in a sealed glass capillary tube with an inter­nal diameter of ca 0.2 mm. The sample was cooled using an Oxford Cryosystems low-temperature device (Cosier & Glazer, 1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]) until crystallization was observed. The temperature was then cycled, by successive translations of the capillary through the gas stream, so that the sample was partially remelted and the number of crystallites reduced, until a single crystal was obtained at 205 K.

Crystal data
  • C4H9N·0.5H2O

  • Mr = 80.13

  • Monoclinic, P 21 /n

  • a = 14.048 (6) Å

  • b = 5.209 (2) Å

  • c = 14.489 (6) Å

  • β = 97.369 (4)°

  • V = 1051.5 (7) Å3

  • Z = 8

  • Dx = 1.012 Mg m−3

  • Synchrotron radiation

  • λ = 0.6813 Å

  • Cell parameters from 2051 reflections

  • θ = 8–46°

  • μ = 0.07 mm−1

  • T = 205 K

  • Cylinder, colourless

  • 0.20 × 0.20 (radius) mm

Data collection
  • Bruker SMART diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Gottingen, Germany.])Tmin = 0.55, Tmax = 0.99

  • 8565 measured reflections

  • 2525 independent reflections

  • 1411 reflections with I > 2σ(I)

  • Rint = 0.071

  • θmax = 27.5°

  • h = −18 → 19

  • k = −6 → 6

  • l = −19 → 18

Refinement
  • Refinement on F

  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.072

  • S = 1.14

  • 1411 reflections

  • 118 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = [1 − (FoFc)2/36σ2(F)]2/[2.28To(x) + 0.243T1(x) + 1.74T2(x)] where Ti are Chebychev polynomials and x = Fc/Fmax (Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]; Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.])

  • (Δ/σ)max < 0.001

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N11 0.82 (1) 2.08 (1) 2.895 (2) 174 (3)
O1—H2⋯N21 0.82 (1) 2.07 (1) 2.880 (3) 174 (3)

H atoms attached to C atoms were placed in idealized positions (C—H = 0.94–1.00 Å) and allowed to ride on their parent atoms. H atoms attached to N and O atoms were located in a difference map and restrained to idealized distances and angles [N—H = 0.90 (1) Å, O—H = 0.82 (1) Å and O—H—O = 104 (1)°]. All H atoms were constrained so that Uiso(H) was equal to 1.2Ueq of their respective parent atoms.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT; data reduction: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435-436.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT; data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2003).

cyclobutylamine hemihydrate top
Crystal data top
C4H9N·0.5H2OF(000) = 360
Mr = 80.13Dx = 1.012 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.68130 Å
Hall symbol: -P 2ynCell parameters from 2051 reflections
a = 14.048 (6) Åθ = 8–46°
b = 5.209 (2) ŵ = 0.07 mm1
c = 14.489 (6) ÅT = 205 K
β = 97.369 (4)°Cylinder, colourless
V = 1051.5 (7) Å30.20 × 0.20 × 0.20 × 0.20 (radius) mm
Z = 8
Data collection top
Bruker SMART
diffractometer
1411 reflections with I > 2σ(I)
Curved silicon monochromatorRint = 0.071
ω/2θ scansθmax = 27.5°, θmin = 4.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1819
Tmin = 0.55, Tmax = 0.99k = 66
8565 measured reflectionsl = 1918
2525 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = [1-(Fo-Fc)2/36σ2(F)]2/[2.28To(x) + 0.243T1(x) + 1.74T2(x)]
where Ti are the Chebychev polynomials and x = Fc/Fmax (Prince, 1982; Watkin, 1994)
S = 1.14(Δ/σ)max = 0.000218
1411 reflectionsΔρmax = 0.17 e Å3
118 parametersΔρmin = 0.18 e Å3
7 restraints
Special details top

Refinement. ABSTM02_ALERT_3_B The ratio of expected to reported Tmax/Tmin(RR') is < 0.75 T min and Tmax reported: 0.550 0.990 T min(prime) and Tmax expected: 0.987 0.987 RR(prime) = 0.556

SADABS was also used to correct for the decay of the synchrotron X-ray beam. The overall sample absorption, especially at the relatively short wavelength, is extremely low.

PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C23 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C12 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C22

The data were collected very close to the sample melting temperature and, consequently, the temperature factors are relatively large.

PLAT420_ALERT_2_C D—H Without Acceptor N11 - H111 ··· ? PLAT420_ALERT_2_C D—H Without Acceptor N21 - H211 ··· ?

Although the relevant N—H···O angles suggest that the oxygen atom acts as an acceptor for both N11—H111 and N21—H211, the H···A distances are relatively long and suggest that these interactions are at best extremely weak. Details of the various distances are mentioned in the comments section.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.66281 (12)0.6261 (3)0.22065 (10)0.0590
C120.63480 (12)0.6188 (3)0.31320 (12)0.0524
C130.52996 (14)0.5731 (4)0.32271 (17)0.0742
C140.54031 (19)0.7577 (5)0.40528 (19)0.0882
C150.62917 (17)0.8626 (4)0.37068 (15)0.0751
O10.60087 (11)0.1702 (3)0.11547 (10)0.0705
N210.40677 (12)0.2763 (3)0.03446 (11)0.0623
C220.33839 (13)0.2419 (4)0.09937 (11)0.0534
C250.34180 (17)0.0039 (5)0.15398 (16)0.0773
C240.23267 (16)0.0020 (5)0.14836 (15)0.0752
C230.23237 (15)0.1925 (6)0.06886 (15)0.0846
H1210.67320.48390.35040.0625*
H1310.51380.39630.33720.0889*
H1320.48840.63360.26750.0894*
H1410.55140.66900.46330.1089*
H1420.48820.87550.40540.1088*
H1510.68200.88600.41830.0917*
H1520.61911.01390.33490.0923*
H2210.34350.38860.14210.0646*
H2510.37780.00520.21780.0935*
H2520.36500.14180.11900.0938*
H2410.21050.07770.20260.0910*
H2420.19950.15780.13410.0915*
H2310.18940.34580.07060.1014*
H2320.22160.10460.00840.1013*
H2110.4070 (17)0.435 (2)0.0116 (15)0.0744*
H10.6198 (15)0.303 (3)0.1417 (16)0.1011*
H20.5447 (9)0.202 (5)0.0966 (18)0.1017*
H2120.4029 (16)0.142 (3)0.0039 (13)0.0737*
H1110.7268 (7)0.634 (4)0.2227 (14)0.0715*
H1120.6347 (14)0.767 (3)0.1950 (14)0.0719*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0650 (9)0.0589 (9)0.0525 (8)0.0002 (7)0.0051 (7)0.0081 (7)
C120.0524 (9)0.0517 (9)0.0517 (9)0.0010 (7)0.0018 (7)0.0005 (7)
C130.0556 (11)0.0703 (13)0.0975 (15)0.0014 (9)0.0131 (10)0.0004 (12)
C140.0908 (16)0.0859 (16)0.0964 (16)0.0068 (13)0.0448 (13)0.0057 (14)
C150.0918 (15)0.0652 (12)0.0728 (13)0.0111 (10)0.0278 (11)0.0215 (10)
O10.0712 (9)0.0643 (9)0.0741 (9)0.0055 (7)0.0025 (7)0.0171 (7)
N210.0700 (10)0.0620 (10)0.0558 (8)0.0048 (8)0.0120 (7)0.0000 (8)
C220.0667 (10)0.0482 (9)0.0447 (8)0.0021 (8)0.0054 (7)0.0016 (7)
C250.0811 (14)0.0738 (14)0.0764 (13)0.0088 (11)0.0073 (10)0.0255 (11)
C240.0802 (14)0.0782 (15)0.0694 (13)0.0122 (11)0.0181 (10)0.0092 (11)
C230.0596 (11)0.122 (2)0.0709 (12)0.0029 (12)0.0025 (9)0.0293 (13)
Geometric parameters (Å, º) top
N11—C121.446 (2)O1—H20.819 (10)
N11—H1110.896 (9)N21—C221.439 (2)
N11—H1120.892 (9)N21—H2110.892 (9)
C12—C131.516 (3)N21—H2120.892 (9)
C12—C151.526 (3)C22—C251.502 (3)
C12—H1211.001C22—C231.520 (3)
C13—C141.527 (4)C22—H2210.980
C13—H1310.977C25—C241.525 (3)
C13—H1320.980C25—H2510.996
C14—C151.506 (3)C25—H2520.960
C14—H1410.955C24—C231.520 (3)
C14—H1420.955C24—H2410.966
C15—H1510.954C24—H2420.963
C15—H1520.944C23—H2311.004
O1—H10.817 (10)C23—H2320.983
C12—N11—H111111.2 (14)C22—N21—H211113.2 (15)
C12—N11—H112104.5 (14)C22—N21—H212108.5 (14)
H111—N11—H112111.5 (19)H211—N21—H212120 (2)
N11—C12—C13118.15 (16)N21—C22—C25118.13 (17)
N11—C12—C15121.58 (16)N21—C22—C23122.83 (15)
C13—C12—C1587.84 (15)C25—C22—C2388.44 (17)
N11—C12—H121109.1N21—C22—H221108.3
C13—C12—H121107.7C25—C22—H221109.7
C15—C12—H121110.6C23—C22—H221107.8
C12—C13—C1488.64 (17)C22—C25—C2489.49 (16)
C12—C13—H131115.0C22—C25—H251115.2
C14—C13—H131115.2C24—C25—H251115.9
C12—C13—H132111.1C22—C25—H252110.5
C14—C13—H132115.1C24—C25—H252113.2
H131—C13—H132110.4H251—C25—H252111.0
C13—C14—C1588.14 (16)C25—C24—C2387.61 (15)
C13—C14—H141111.9C25—C24—H241113.1
C15—C14—H141114.9C23—C24—H241112.4
C13—C14—H142114.2C25—C24—H242116.7
C15—C14—H142115.8C23—C24—H242116.6
H141—C14—H142110.3H241—C24—H242109.2
C12—C15—C1489.01 (17)C22—C23—C2489.02 (15)
C12—C15—H151114.3C22—C23—H231115.4
C14—C15—H151114.0C24—C23—H231116.3
C12—C15—H152114.2C22—C23—H232111.8
C14—C15—H152114.5C24—C23—H232110.9
H151—C15—H152109.8H231—C23—H232111.6
H1—O1—H2103 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N110.82 (1)2.08 (1)2.895 (2)174 (3)
O1—H2···N210.82 (1)2.07 (1)2.880 (3)174 (3)
 

Acknowledgements

We thank Dr T. Prior of Daresbury Laboratory for his help during the experiment on station 9.8 at SRS. We also thank the EPSRC for funding both this project and DRA's Advanced Research Fellowship.

References

First citationAltomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435–436.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds