organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 9-di­cyano­methyl­ene-2,5,7-tri­nitro­fluorene-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and bL. M. Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences of Ukraine, Donetsk 83114, Ukraine
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 24 January 2006; accepted 26 January 2006; online 3 February 2006)

The title compound, C19H9N5O8, has a warped fluorene ring system due to steric repulsion between the 4-ethoxy­carbonyl and 5-nitro groups.

Comment

The title compound, (I)[link], has been obtained in the course of our studies of electron acceptors of the fluorene series and their charge-transfer complexes and radical ion salts with π-electron donors, e.g. tetra­thia­fulvalene family donors (Perepichka et al., 1998[Perepichka, I. F., Kuz'mina, L. G., Perepichka, D. F., Bryce, M. R., Goldenberg, L. M., Popov, A. F. & Howard, J. A. K. (1998). J. Org. Chem. 63, 6484-6493.], 2000[Perepichka, I. F., Popov, A. F., Orekhova, T. V., Bryce, M. R., Andrievskii, A. M., Batsanov, A. S., Howard, J. A. K. & Sokolov, N. I. (2000). J. Org. Chem. 65, 3053-3063.], 2002[Perepichka, D. F., Bryce, M. R., Perepichka, I. F., Lyubchik, S. B., Christensen, C. A., Godbert, N., Batsanov, A. S., Levillain, E., McInnes, E. J. L. & Zhao, J. P. (2002). J. Am. Chem. Soc. 124, 14227-14238.]; Batsanov et al., 2001[Batsanov, A. S., Perepichka, I. F., Bryce, M. R. & Howard, J. A. K. (2001). Acta Cryst. C57, 1299-1302.], 2002[Batsanov, A. S., Bryce, M. R., Lyubchik, S. B. & Perepichka, I. F. (2002). Acta Cryst. E58, o1106-o1110.]; Kuz'mina et al., 2002[Kuz'mina, L. G., Perepichka, I. F., Perepichka, D. F., Howard, J. A. K. & Bryce, M. R. (2002). Crystallogr. Rep. 47, 251-261.]).

[Scheme 1]

The mol­ecular structure of (I)[link] is strongly influenced by steric repulsion between the nitro and ethoxy­carbonyl groups in positions 4 and 5, respectively. This overcrowding, indicated, for example, by the short (intra­molecular) non-bonding distances N4⋯O5 [2.730 (5) Å] and C17⋯O4 [2.711 (6) Å], causes the above-mentioned substituents to tilt out of the fluorene plane in opposite directions. Furthermore, the fluorene aromatic system itself loses planarity and adopts a warped (twisted) conformation, the deviations (Å) of its C atoms from the mean plane being: C1 −0.186 (4), C2 −0.149 (4), C3 0.135 (4), C4 0.245 (4), C5 −0.226 (4), C6 −0.145 (4), C7 0.070 (4), C8 0.138 (4), C9 0.033 (4), C10 −0.039 (4), C11 0.060 (5), C12 −0.013 (5) and C13 0.078 (4). Similar distortions are typical for other fluorene derivatives with bulky substituents in positions 4 and 5, e.g. 9-dicyano­methyl­ene-2,4,5,7-tetra­nitro­fluorene (Silverman et al., 1974[Silverman, J., Yannoni, N. F. & Krukonis, A. P. (1974). Acta Cryst. B30, 1474-1480.]; Batsanov et al., 2001[Batsanov, A. S., Perepichka, I. F., Bryce, M. R. & Howard, J. A. K. (2001). Acta Cryst. C57, 1299-1302.]), 9-dicyano­methyl­ene-4,5-dinitrofluorene-2,7-disulfonamide (Batsanov & Perepichka, 2004[Batsanov, A. S. & Perepichka, I. F. (2004). Acta Cryst. E60, o1892-o1894.]) or 9-dicyano­methyl­ene-4-bromo-2,5,7-trinitro­fluorene (Perepichka et al., 2002[Perepichka, D. F., Bryce, M. R., Perepichka, I. F., Lyubchik, S. B., Christensen, C. A., Godbert, N., Batsanov, A. S., Levillain, E., McInnes, E. J. L. & Zhao, J. P. (2002). J. Am. Chem. Soc. 124, 14227-14238.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Atomic displacement ellipsoids are drawn at the 50% probability level.

Experimental

To a suspension of 2,5,7-trinitro-9-oxofluorene-4-carboxylic acid (10.0 g, 27.8 mmol), (II), in thionyl chloride (50 ml) a catalytic amount of N,N-dimethyl­formamide (2 drops) was added. The mixture was refluxed for 2 h (full dissolution occurring in 15–20 min) and then evaporated under reduced pressure until dry. Ethanol (50 ml) was added to the residue, the mixture was refluxed for 3 h and left to cool for crystallization. The precipitate was filtered off, washed with cold ethanol (2 × 20 ml) and dried to yield crude compound (III) (9.1 g, 84%; m.p. 426–430 K). This was dissolved in boiling dioxane (25 ml), filtered hot and the filtrate was diluted with hot ethanol (100 ml). On cooling, the solid was filtered off, washed with ethanol and dried. This procedure was repeated to give pure compound (III) (7.2 g, 67%) as yellow crystals (m.p. 434–435 K). 1H NMR (200 MHz, acetone-d6): δ 8.99 (1H, d, J = 2.0 Hz, H-3), 8.83 (1H, d, J = 2.0 Hz, H-6), 8.78 (1H, d, J = 2.2 Hz, H-8), 8.69 (1H, d, J = 2.2 Hz, H-1), 4.42 (2H, q, J = 7.2 Hz, CH2), 1.43 (3H, t, J = 7.2 Hz, CH3). 13C NMR (50 MHz, acetone-d6): δ 186.21 (C=O), 165.44 (–CO2–), 150.71, 150.56, 147.36, 144.19, 140.30, 140.08, 139.18, 132.90, 131.05, 126.38, 122.95, 122.00, 63.84 (CH2), 14.32 (CH3). MS (EI): m/z 387 (M+, 100%). HRMS (EI): m/z 387.03447; calculated exact mass: 387.03388. Analysis found: C 49.52, H 2.40, N 10.89%; C16H9N3O9 requires: C 49.62, H 2.34, N 10.85%.

Compound (III) (5.0 g, 12.9 mmol) was dissolved in N,N-dimethyl­formamide (25 ml), malonitrile (2.2 g, 33.3 mmol) was added to this solution and the mixture was stirred at room temperature for 1 h (the product began to precipitate in 30 min). 2-Propanol (100 ml) was added to the mixture and it was allowed to stand at 273 K for 1–2 h. The solid was filtered off, washed with 2-propanol and dried to yield crude compound (I)[link] (5.2 g, 93%; m.p. 539–543 K). It was dissolved in boiling dioxane (75 ml), hot 2-propanol was added to the solution and the product left to crystallize. The solid was filtered off, washed with 2-propanol and dried. The purification procedure was repeated once more, to afford pure compound (I)[link] (4.8 g, 85%) as bright-yellow crystals (m.p. 543–545 K). 1H NMR (200 MHz, acetone-d6 + half a drop CF3CO2D): δ 9.69 (1H, d, J = 2.0 Hz, H-8), 9.60 (1H, d, J = 2.0 Hz, H-1), 9.04 (1H, d, J = 2.0 Hz, H-6), 8.88 (1H, d J = 2.0 Hz, H-3), 4.43 (2H, q, J = 7.2 Hz, CH2), 1.44 (3H, t, J = 7.2 Hz, CH3). 13C NMR (100 MHz, acetone-d6 + 0.5 drop CF3CO2D): δ 165.30 (–CO2–), 154.81, 141.14, 140.14, 139.25, 137.49, 133.05, 130.49, 125.76, 124.75, 123.70, 121.52, 117.74, 113.96, 113.37, 113.32, 110.17, 63.96 (CH2), 14.36 (CH3). MS (EI): m/z 435 (M+, 100%). Analysis found: C 52.52, H 2.03, N 16.15%; C19H9N5O8 requires: C 52.42, H 2.08, N 16.09%. Compound (I)[link] was dissolved in hot acetonitrile and left to cool slowly to yield single crystals of X-ray quality.

Crystal data
  • C19H9N5O8

  • Mr = 435.31

  • Monoclinic, P 21 /c

  • a = 19.481 (2) Å

  • b = 8.620 (1) Å

  • c = 10.814 (1) Å

  • β = 99.40 (1)°

  • V = 1791.6 (3) Å3

  • Z = 4

  • Dx = 1.615 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1107 reflections

  • θ = 3.1–22.6°

  • μ = 0.13 mm−1

  • T = 110 (2) K

  • Prism, yellow

  • 0.18 × 0.07 × 0.07 mm

Data collection
  • Bruker SMART 1 K CCD area-detector diffractometer

  • ω scans

  • Absorption correction: none

  • 7993 measured reflections

  • 3079 independent reflections

  • 1518 reflections with I > 2σ(I)

  • Rint = 0.126

  • θmax = 25.0°

  • h = −13 → 22

  • k = −9 → 10

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.172

  • S = 1.03

  • 3079 reflections

  • 292 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0632P)2 + 0.5406P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

  • Extinction correction: SHELXTL

  • Extinction coefficient: 0.018 (2)

Table 1
Selected geometric parameters (Å, °)

N15—C15 1.152 (6)
N16—C16 1.147 (6)
C9—C14 1.352 (7)
C9—C10 1.465 (7)
C9—C13 1.495 (6)
C10—C11 1.412 (6)
C11—C12 1.502 (7)
C12—C13 1.397 (7)
C14—C16 1.444 (7)
C14—C15 1.446 (7)
C2—C1—C10 116.9 (4)
C3—C2—C1 123.3 (4)
C2—C3—C4 118.0 (5)
C3—C4—C11 121.4 (4)
C6—C5—C12 117.7 (5)
C7—C6—C5 119.2 (5)
C6—C7—C8 124.3 (5)
C7—C8—C13 116.0 (5)

The diffraction was rather weak, with a mean I/σ(I) ratio of 5.2. The methyl group was refined as a rigid body (C—H = 0.98 Å) rotating around the C—C bond, with a common (refined) Uiso value for all three H atoms. Other H atoms were treated as riding in idealized positions, with Csp3—H = 0.99 Å and Csp2—H = 0.95 Å, and Uiso(H) = 1.3Ueq(C) and 1.2Ueq(C), respectively.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997[Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Ethyl 9-dicyanomethylene-2,5,7-trinitrofluorene-4-carboxylate top
Crystal data top
C19H9N5O8F(000) = 888
Mr = 435.31Dx = 1.615 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1107 reflections
a = 19.481 (2) Åθ = 3.1–22.6°
b = 8.620 (1) ŵ = 0.13 mm1
c = 10.814 (1) ÅT = 110 K
β = 99.40 (1)°Prism, yellow
V = 1791.6 (3) Å30.18 × 0.07 × 0.07 mm
Z = 4
Data collection top
Bruker SMART 1 K CCD area-detector
diffractometer
1518 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.126
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
Detector resolution: 8 pixels mm-1h = 1322
ω scansk = 910
7993 measured reflectionsl = 1212
3079 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.5406P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3079 reflectionsΔρmax = 0.41 e Å3
292 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (2)
Special details top

Experimental. The data collection nominally covered over a hemisphere of reciprocal space, by a combination of 4 sets of ω scans; each set at different φ and/or 2θ angles and each scan (46.5 sec exposure) covering 0.3° in ω. Crystal to detector distance 6.03 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53613 (17)0.2322 (4)0.2237 (4)0.0309 (9)
O20.55693 (17)0.2996 (4)0.4205 (3)0.0321 (10)
O30.34804 (18)0.4135 (4)0.6081 (3)0.0330 (10)
O40.28475 (17)0.5939 (4)0.5031 (3)0.0293 (9)
O50.21531 (18)0.2915 (4)0.4372 (3)0.0323 (10)
O60.13270 (17)0.4589 (4)0.4749 (3)0.0302 (10)
O70.00294 (18)0.6632 (5)0.0855 (4)0.0407 (11)
O80.04476 (17)0.6932 (5)0.0813 (4)0.0385 (11)
N20.5196 (2)0.2939 (5)0.3175 (5)0.0264 (11)
N40.3258 (2)0.4838 (5)0.5107 (4)0.0271 (11)
N70.0466 (2)0.6547 (5)0.0287 (4)0.0309 (12)
N150.4359 (2)0.4704 (5)0.1171 (4)0.0264 (11)
N160.2283 (2)0.6451 (5)0.2394 (4)0.0317 (12)
C10.4162 (2)0.4011 (6)0.1842 (5)0.0216 (12)
H10.43890.39050.11330.026*
C20.4497 (2)0.3643 (5)0.3044 (5)0.0198 (12)
C30.4208 (3)0.3903 (6)0.4109 (5)0.0246 (12)
H30.44710.37470.49200.029*
C40.3523 (2)0.4397 (5)0.3960 (5)0.0202 (12)
C50.1783 (3)0.4889 (6)0.2876 (5)0.0245 (13)
C60.1152 (2)0.5433 (6)0.2194 (5)0.0272 (13)
H60.07410.54400.25610.033*
C70.1136 (2)0.5954 (6)0.0985 (5)0.0225 (12)
C80.1697 (2)0.5900 (6)0.0349 (5)0.0252 (13)
H80.16570.62000.05060.030*
C90.3006 (2)0.5089 (6)0.0615 (5)0.0206 (12)
C100.3476 (2)0.4543 (5)0.1728 (4)0.0190 (12)
C110.3132 (2)0.4608 (5)0.2780 (4)0.0191 (12)
C120.2382 (3)0.4980 (6)0.2302 (5)0.0237 (12)
C130.2325 (2)0.5381 (6)0.1038 (5)0.0204 (12)
C140.3158 (2)0.5339 (6)0.0545 (5)0.0222 (12)
C150.3831 (3)0.4987 (6)0.0877 (5)0.0224 (12)
C160.2665 (3)0.5949 (6)0.1573 (5)0.0235 (12)
C170.1782 (2)0.4036 (6)0.4085 (5)0.0261 (13)
C180.1288 (3)0.3746 (6)0.5921 (4)0.0294 (14)
H1810.17530.37020.64500.038*
H1820.11230.26710.57340.038*
C190.0786 (3)0.4606 (7)0.6594 (5)0.0380 (15)
H1910.09520.56700.67660.049 (10)*
H1920.07530.40810.73850.049 (10)*
H1930.03270.46290.60660.049 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.025 (2)0.034 (2)0.036 (2)0.0071 (17)0.0116 (17)0.0019 (19)
O20.022 (2)0.039 (3)0.031 (2)0.0037 (18)0.0046 (18)0.0040 (18)
O30.034 (2)0.044 (3)0.019 (2)0.0073 (19)0.0010 (16)0.0118 (19)
O40.023 (2)0.038 (2)0.028 (2)0.0037 (19)0.0053 (16)0.0030 (18)
O50.030 (2)0.028 (2)0.040 (2)0.0083 (19)0.0079 (17)0.0064 (18)
O60.022 (2)0.038 (2)0.031 (2)0.0013 (17)0.0063 (17)0.0005 (18)
O70.019 (2)0.058 (3)0.046 (3)0.0080 (19)0.0083 (19)0.014 (2)
O80.023 (2)0.062 (3)0.028 (2)0.0122 (19)0.0031 (17)0.006 (2)
N20.022 (2)0.021 (3)0.036 (3)0.001 (2)0.004 (2)0.006 (2)
N40.022 (3)0.030 (3)0.029 (3)0.004 (2)0.001 (2)0.004 (2)
N70.020 (3)0.039 (3)0.033 (3)0.005 (2)0.001 (2)0.005 (2)
N150.021 (3)0.033 (3)0.025 (3)0.001 (2)0.005 (2)0.001 (2)
N160.025 (3)0.040 (3)0.030 (3)0.003 (2)0.004 (2)0.003 (2)
C10.019 (3)0.015 (3)0.030 (3)0.000 (2)0.001 (2)0.000 (2)
C20.019 (3)0.013 (3)0.028 (3)0.003 (2)0.005 (2)0.003 (2)
C30.025 (3)0.022 (3)0.024 (3)0.002 (2)0.002 (2)0.003 (2)
C40.021 (3)0.015 (3)0.023 (3)0.002 (2)0.001 (2)0.001 (2)
C50.019 (3)0.028 (3)0.028 (3)0.003 (2)0.008 (2)0.001 (2)
C60.015 (3)0.036 (4)0.031 (3)0.000 (2)0.005 (2)0.003 (3)
C70.015 (3)0.029 (3)0.023 (3)0.003 (2)0.001 (2)0.000 (2)
C80.021 (3)0.033 (3)0.020 (3)0.004 (2)0.001 (2)0.001 (2)
C90.013 (3)0.019 (3)0.030 (3)0.002 (2)0.003 (2)0.005 (2)
C100.014 (3)0.019 (3)0.023 (3)0.003 (2)0.000 (2)0.002 (2)
C110.018 (3)0.016 (3)0.024 (3)0.004 (2)0.006 (2)0.001 (2)
C120.022 (3)0.023 (3)0.025 (3)0.005 (2)0.001 (2)0.002 (2)
C130.020 (3)0.019 (3)0.022 (3)0.002 (2)0.001 (2)0.001 (2)
C140.021 (3)0.022 (3)0.024 (3)0.003 (2)0.003 (2)0.000 (2)
C150.023 (3)0.025 (3)0.018 (3)0.002 (2)0.002 (2)0.003 (2)
C160.018 (3)0.029 (3)0.023 (3)0.001 (2)0.001 (2)0.005 (3)
C170.012 (3)0.032 (4)0.034 (3)0.003 (3)0.004 (2)0.002 (3)
C180.028 (3)0.040 (4)0.020 (3)0.004 (3)0.001 (2)0.007 (3)
C190.036 (3)0.052 (4)0.027 (3)0.007 (3)0.010 (3)0.002 (3)
Geometric parameters (Å, º) top
O1—N21.234 (5)C5—C121.412 (7)
O2—N21.228 (5)C5—C171.500 (7)
O3—N41.231 (5)C6—C71.378 (7)
O4—N41.235 (5)C6—H60.9500
O5—C171.217 (6)C7—C81.384 (6)
O6—C171.317 (6)C8—C131.398 (7)
O6—C181.474 (6)C8—H80.9500
O7—N71.228 (5)C9—C141.352 (7)
O8—N71.230 (5)C9—C101.465 (7)
N2—C21.476 (6)C9—C131.495 (6)
N4—C41.469 (6)C10—C111.412 (6)
N7—C71.487 (6)C11—C121.502 (7)
N15—C151.152 (6)C12—C131.397 (7)
N16—C161.147 (6)C14—C161.444 (7)
C1—C21.393 (6)C14—C151.446 (7)
C1—C101.401 (6)C18—C191.505 (7)
C1—H10.9501C18—H1810.9900
C2—C31.381 (6)C18—H1820.9900
C3—C41.385 (6)C19—H1910.9800
C3—H30.9500C19—H1920.9800
C4—C111.388 (6)C19—H1930.9799
C5—C61.407 (7)
C17—O6—C18115.1 (4)C14—C9—C13126.6 (4)
O2—N2—O1124.6 (4)C10—C9—C13105.6 (4)
O2—N2—C2118.1 (4)C1—C10—C11120.9 (4)
O1—N2—C2117.3 (4)C1—C10—C9129.5 (4)
O3—N4—O4124.7 (4)C11—C10—C9109.6 (4)
O3—N4—C4118.1 (4)C4—C11—C10118.3 (4)
O4—N4—C4117.1 (4)C4—C11—C12134.5 (4)
O7—N7—O8124.5 (4)C10—C11—C12107.1 (4)
O7—N7—C7117.6 (4)C13—C12—C5120.3 (4)
O8—N7—C7117.9 (4)C13—C12—C11107.9 (4)
C2—C1—C10116.9 (4)C5—C12—C11131.6 (5)
C2—C1—H1121.5C12—C13—C8121.6 (4)
C10—C1—H1121.7C12—C13—C9108.9 (4)
C3—C2—C1123.3 (4)C8—C13—C9129.4 (5)
C3—C2—N2118.8 (4)C9—C14—C16123.6 (4)
C1—C2—N2117.9 (4)C9—C14—C15122.7 (4)
C2—C3—C4118.0 (5)C16—C14—C15113.7 (4)
C2—C3—H3121.0N15—C15—C14178.3 (5)
C4—C3—H3121.0N16—C16—C14178.7 (6)
C3—C4—C11121.4 (4)O5—C17—O6125.0 (5)
C3—C4—N4116.5 (4)O5—C17—C5121.7 (5)
C11—C4—N4121.8 (4)O6—C17—C5113.2 (5)
C6—C5—C12117.7 (5)O6—C18—C19107.6 (4)
C6—C5—C17119.7 (4)O6—C18—H181110.2
C12—C5—C17122.0 (4)C19—C18—H181110.1
C7—C6—C5119.2 (5)O6—C18—H182110.3
C7—C6—H6120.3C19—C18—H182110.2
C5—C6—H6120.4H181—C18—H182108.5
C6—C7—C8124.3 (5)C18—C19—H191109.5
C6—C7—N7118.4 (4)C18—C19—H192109.6
C8—C7—N7117.2 (5)H191—C19—H192109.5
C7—C8—C13116.0 (5)C18—C19—H193109.4
C7—C8—H8122.0H191—C19—H193109.5
C13—C8—H8122.0H192—C19—H193109.5
C14—C9—C10127.7 (4)
C10—C1—C2—C35.7 (7)C1—C10—C11—C411.1 (7)
C10—C1—C2—N2174.2 (4)C9—C10—C11—C4169.1 (4)
O2—N2—C2—C319.5 (6)C1—C10—C11—C12171.2 (4)
O1—N2—C2—C3160.0 (4)C9—C10—C11—C128.6 (5)
O2—N2—C2—C1160.6 (4)C6—C5—C12—C139.2 (7)
O1—N2—C2—C119.9 (6)C17—C5—C12—C13161.8 (5)
C1—C2—C3—C47.2 (7)C6—C5—C12—C11175.6 (5)
N2—C2—C3—C4172.7 (4)C17—C5—C12—C1113.4 (9)
C2—C3—C4—C110.8 (7)C4—C11—C12—C13167.2 (5)
C2—C3—C4—N4173.0 (4)C10—C11—C12—C139.9 (5)
O3—N4—C4—C333.3 (6)C4—C11—C12—C517.1 (10)
O4—N4—C4—C3143.6 (4)C10—C11—C12—C5165.8 (5)
O3—N4—C4—C11152.9 (5)C5—C12—C13—C88.5 (8)
O4—N4—C4—C1130.2 (6)C11—C12—C13—C8175.2 (4)
C12—C5—C6—C73.2 (8)C5—C12—C13—C9169.0 (4)
C17—C5—C6—C7168.0 (5)C11—C12—C13—C97.2 (5)
C5—C6—C7—C84.0 (8)C7—C8—C13—C121.5 (7)
C5—C6—C7—N7179.1 (4)C7—C8—C13—C9175.5 (5)
O7—N7—C7—C64.4 (7)C14—C9—C13—C12179.7 (5)
O8—N7—C7—C6176.2 (5)C10—C9—C13—C122.0 (5)
O7—N7—C7—C8178.4 (5)C14—C9—C13—C83.0 (8)
O8—N7—C7—C81.0 (7)C10—C9—C13—C8179.4 (5)
C6—C7—C8—C134.8 (8)C10—C9—C14—C16177.0 (5)
N7—C7—C8—C13178.2 (4)C13—C9—C14—C160.1 (8)
C2—C1—C10—C113.7 (7)C10—C9—C14—C154.3 (8)
C2—C1—C10—C9176.5 (5)C13—C9—C14—C15178.5 (5)
C14—C9—C10—C16.9 (9)C18—O6—C17—O50.3 (7)
C13—C9—C10—C1175.5 (5)C18—O6—C17—C5177.6 (4)
C14—C9—C10—C11173.3 (5)C6—C5—C17—O5140.5 (5)
C13—C9—C10—C114.3 (5)C12—C5—C17—O530.4 (8)
C3—C4—C11—C109.7 (7)C6—C5—C17—O636.9 (7)
N4—C4—C11—C10163.8 (4)C12—C5—C17—O6152.2 (5)
C3—C4—C11—C12173.5 (5)C17—O6—C18—C19175.8 (4)
N4—C4—C11—C1213.0 (8)
 

Acknowledgements

The authors thank Professor M. R. Bryce for fruitful advice.

References

First citationBatsanov, A. S., Bryce, M. R., Lyubchik, S. B. & Perepichka, I. F. (2002). Acta Cryst. E58, o1106–o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBatsanov, A. S. & Perepichka, I. F. (2004). Acta Cryst. E60, o1892–o1894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBatsanov, A. S., Perepichka, I. F., Bryce, M. R. & Howard, J. A. K. (2001). Acta Cryst. C57, 1299–1302.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKuz'mina, L. G., Perepichka, I. F., Perepichka, D. F., Howard, J. A. K. & Bryce, M. R. (2002). Crystallogr. Rep. 47, 251–261.  Web of Science CrossRef CAS Google Scholar
First citationPerepichka, D. F., Bryce, M. R., Perepichka, I. F., Lyubchik, S. B., Christensen, C. A., Godbert, N., Batsanov, A. S., Levillain, E., McInnes, E. J. L. & Zhao, J. P. (2002). J. Am. Chem. Soc. 124, 14227–14238.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPerepichka, I. F., Kuz'mina, L. G., Perepichka, D. F., Bryce, M. R., Goldenberg, L. M., Popov, A. F. & Howard, J. A. K. (1998). J. Org. Chem. 63, 6484–6493.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerepichka, I. F., Popov, A. F., Orekhova, T. V., Bryce, M. R., Andrievskii, A. M., Batsanov, A. S., Howard, J. A. K. & Sokolov, N. I. (2000). J. Org. Chem. 65, 3053–3063.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSilverman, J., Yannoni, N. F. & Krukonis, A. P. (1974). Acta Cryst. B30, 1474–1480.  CSD CrossRef IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds