organic compounds
(6S)-Methyl-L-swainsonine [(1R,2S,6S,8S,8aS)-6-methyloctahydroindolizine-1,2,8-triol]
aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: anders.hakansson@chem.ox.ac.uk
(6S)-Methyl-L-swainsonine, C9H17NO3, together with the 6R-epimer, was formed in a synthetic sequence in which there was an ambiguity in configuration at position C-6. This ambiguity was resolved by establishing the relative stereochemistry of the title compound by X-ray crystallographic analysis. The was determined by the use of D-glycero-D-gulo-heptono-1,4-lactone as the starting material.
Comment
Imino sugars, in which the ring oxygen of a sugar is replaced, are a class of glycosidase inhibitor with a range of chemotherapeutic targets (Watson et al., 2001; Asano et al., 2000). D-Swainsonine (1), a natural product isolated from Swainsona canescens (Colegate et al., 1979), is a mimic of D-mannofuranose (2) and a powerful α-mannosidase inhibitor. Potential use of 1 for the chemotherapy of cancer (Lagana et al., 2006; Klein et al., 1999; Goss et al., 1997) has led to the publication of over 40 syntheses (Au & Pyne, 2006; Ceccon et al., 2006; Martin et al., 2005; Heimgaertner et al., 2005; Nemr, 2000). L-Swainsonine (4), the of the natural product (1), is the corresponding imino sugar mimic of L-rhamnofuranose (3) and is a potent inhibitor of naringinase – an α-rhamnosidase (Davis et al., 1996). Very few syntheses of 4, with different therapeutic targets, have been reported (Guo & O'Doherty, 2006; Oishi et al., 1995). No carbon-branched swainsonine analogues have been described. In order to determine how such a substitution changes the structure of the swainsonine nucleus, the C6-methyl analogues (5) and (6) were prepared (Håkansson et al., 2007); in order to firmly establish the at C6 of the two X-ray crystallographic analysis of (6) is reported in this paper. The of (6S)-methyl-L-swainsonine (6) was determined by the use of D-glycero-D-gulo-heptono-1,4-lactone as the starting material.
The molecular structure of (6) (Fig. 1) shows no unusual features. The largest differences from the MOGUL norms (Bruno et al., 2004) are C5—O6 (0.01 Å) and C11—C10—C1 (2.9°). As is normal in sugar derivatives, all the hydroxyl groups are involved in hydrogen bonding. Each molecule takes part in two different hydrogen-bonded helices (Fig. 2 and Table 1). The helix around (, , z) only involves O12; that at (, , z) involves both O7 and N2. The fact that each molecule is involved in two helices leads to a very rigid framework and explains the high melting point (422 K).
Experimental
(6S)-Methyl-L-swainsonine (6) (Håkansson et al., 2007) was purified by Dowex 50WX8–200 ion exchange resin (H+ form, 2 M aqueous ammonia) and recrystallized from ethyl acetate and cyclohexane to yield fine colourless brittle needles (m.p. 421–423 K). [α]D21 = +43.7 (c = 1.72, H2O).
Crystal data
|
Refinement
|
|
In the absence of significant
Friedel pairs were merged and the assigned from the starting material.The sample consisted of fine brittle plates which could not be cut without being destroyed. The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.22) reflects changes in the illuminated volume of the crystal. The changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK; Otwinowski & Minor, 1997).
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: user defined structure solution: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536806052111/lh2265sup1.cif
contains datablocks 6, global. DOI:Structure factors: contains datablock 6. DOI: https://doi.org/10.1107/S1600536806052111/lh22656sup2.hkl
Data collection: COLLECT (Nonius, 2001).; cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: user defined structure solution; program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C9H17NO3 | Dx = 1.331 Mg m−3 |
Mr = 187.24 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P31 | Cell parameters from 1020 reflections |
Hall symbol: P 31 | θ = 1–27° |
a = 11.4494 (6) Å | µ = 0.10 mm−1 |
c = 6.1727 (2) Å | T = 190 K |
V = 700.76 (6) Å3 | Plate, colourless |
Z = 3 | 0.80 × 0.10 × 0.10 mm |
F(000) = 306 |
Nonius KappaCCD diffractometer | 982 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω scans | θmax = 27.1°, θmin = 2.1° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −14→14 |
Tmin = 0.81, Tmax = 0.99 | k = −12→12 |
6022 measured reflections | l = −7→7 |
1025 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.069 | w = 1/[σ2(F2) + (0.04P)2 + 0.1P], where P = [max(Fo2,0) + 2Fc2]/3 |
S = 0.97 | (Δ/σ)max = 0.000219 |
1020 reflections | Δρmax = 0.17 e Å−3 |
118 parameters | Δρmin = −0.12 e Å−3 |
35 restraints |
x | y | z | Uiso*/Ueq | ||
C1 | 0.53634 (17) | 0.59057 (16) | 0.8235 (3) | 0.0242 | |
N2 | 0.66713 (13) | 0.60020 (14) | 0.8706 (2) | 0.0241 | |
C3 | 0.63458 (18) | 0.50300 (18) | 1.0487 (3) | 0.0310 | |
C4 | 0.49845 (18) | 0.38209 (17) | 0.9851 (3) | 0.0282 | |
C5 | 0.44047 (17) | 0.43864 (18) | 0.8097 (3) | 0.0273 | |
O6 | 0.44492 (14) | 0.38857 (13) | 0.6023 (2) | 0.0336 | |
O7 | 0.51498 (14) | 0.27798 (13) | 0.8919 (2) | 0.0322 | |
C8 | 0.76987 (19) | 0.73864 (18) | 0.9248 (3) | 0.0317 | |
C9 | 0.79406 (18) | 0.83322 (17) | 0.7343 (3) | 0.0321 | |
C10 | 0.65986 (19) | 0.82114 (17) | 0.6624 (3) | 0.0318 | |
C11 | 0.54856 (16) | 0.67521 (16) | 0.6254 (3) | 0.0251 | |
O12 | 0.42283 (13) | 0.66811 (14) | 0.5784 (2) | 0.0328 | |
C13 | 0.86788 (19) | 0.8108 (2) | 0.5457 (3) | 0.0366 | |
H11 | 0.5121 | 0.6267 | 0.9485 | 0.0292* | |
H31 | 0.6278 | 0.5418 | 1.1870 | 0.0378* | |
H32 | 0.7014 | 0.4729 | 1.0604 | 0.0364* | |
H41 | 0.4386 | 0.3464 | 1.1114 | 0.0336* | |
H51 | 0.3485 | 0.4162 | 0.8438 | 0.0326* | |
H81 | 0.8522 | 0.7397 | 0.9658 | 0.0365* | |
H82 | 0.7392 | 0.7723 | 1.0503 | 0.0356* | |
H91 | 0.8513 | 0.9241 | 0.7916 | 0.0356* | |
H101 | 0.6293 | 0.8580 | 0.7800 | 0.0391* | |
H102 | 0.6720 | 0.8705 | 0.5290 | 0.0394* | |
H111 | 0.5694 | 0.6355 | 0.4976 | 0.0293* | |
H131 | 0.8958 | 0.8827 | 0.4416 | 0.0520* | |
H132 | 0.9472 | 0.8081 | 0.5970 | 0.0527* | |
H133 | 0.8066 | 0.7237 | 0.4744 | 0.0519* | |
H3 | 0.4063 | 0.7096 | 0.6762 | 0.0529* | |
H5 | 0.4670 | 0.3317 | 0.6258 | 0.0520* | |
H1 | 0.4862 | 0.2075 | 0.9762 | 0.0503* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0250 (8) | 0.0264 (8) | 0.0237 (7) | 0.0148 (6) | −0.0011 (6) | −0.0034 (6) |
N2 | 0.0236 (7) | 0.0251 (7) | 0.0241 (7) | 0.0126 (6) | −0.0047 (5) | −0.0019 (5) |
C3 | 0.0364 (9) | 0.0319 (9) | 0.0255 (9) | 0.0178 (8) | −0.0056 (7) | 0.0014 (6) |
C4 | 0.0305 (9) | 0.0283 (8) | 0.0276 (8) | 0.0161 (7) | 0.0032 (6) | 0.0027 (7) |
C5 | 0.0240 (8) | 0.0287 (8) | 0.0302 (8) | 0.0141 (7) | −0.0010 (6) | 0.0002 (6) |
O6 | 0.0418 (7) | 0.0304 (7) | 0.0324 (6) | 0.0210 (6) | −0.0098 (5) | −0.0078 (5) |
O7 | 0.0368 (7) | 0.0288 (6) | 0.0345 (7) | 0.0190 (6) | 0.0037 (5) | 0.0036 (5) |
C8 | 0.0324 (9) | 0.0291 (9) | 0.0303 (8) | 0.0130 (8) | −0.0088 (7) | −0.0065 (7) |
C9 | 0.0321 (9) | 0.0221 (8) | 0.0379 (10) | 0.0105 (7) | −0.0043 (7) | −0.0031 (7) |
C10 | 0.0360 (10) | 0.0253 (8) | 0.0369 (10) | 0.0174 (8) | −0.0012 (7) | 0.0004 (7) |
C11 | 0.0277 (8) | 0.0287 (8) | 0.0248 (8) | 0.0185 (7) | −0.0026 (6) | −0.0029 (6) |
O12 | 0.0348 (7) | 0.0411 (7) | 0.0318 (6) | 0.0260 (6) | −0.0070 (5) | −0.0069 (5) |
C13 | 0.0318 (9) | 0.0309 (9) | 0.0433 (10) | 0.0127 (8) | 0.0020 (8) | 0.0045 (8) |
C1—N2 | 1.474 (2) | C8—C9 | 1.527 (3) |
C1—C5 | 1.526 (2) | C8—H81 | 0.971 |
C1—C11 | 1.523 (2) | C8—H82 | 1.004 |
C1—H11 | 0.979 | C9—C10 | 1.538 (3) |
N2—C3 | 1.474 (2) | C9—C13 | 1.534 (3) |
N2—C8 | 1.464 (2) | C9—H91 | 0.978 |
C3—C4 | 1.530 (2) | C10—C11 | 1.529 (2) |
C3—H31 | 0.983 | C10—H101 | 0.988 |
C3—H32 | 0.986 | C10—H102 | 0.968 |
C4—C5 | 1.569 (2) | C11—O12 | 1.430 (2) |
C4—O7 | 1.419 (2) | C11—H111 | 0.997 |
C4—H41 | 0.982 | O12—H3 | 0.845 |
C5—O6 | 1.414 (2) | C13—H131 | 0.964 |
C5—H51 | 0.974 | C13—H132 | 0.977 |
O6—H5 | 0.821 | C13—H133 | 0.990 |
O7—H1 | 0.875 | ||
N2—C1—C5 | 102.77 (12) | N2—C8—H81 | 108.8 |
N2—C1—C11 | 110.11 (13) | C9—C8—H81 | 111.2 |
C5—C1—C11 | 117.74 (14) | N2—C8—H82 | 110.3 |
N2—C1—H11 | 107.8 | C9—C8—H82 | 107.2 |
C5—C1—H11 | 109.4 | H81—C8—H82 | 108.6 |
C11—C1—H11 | 108.6 | C8—C9—C10 | 109.86 (15) |
C1—N2—C3 | 103.09 (13) | C8—C9—C13 | 112.68 (16) |
C1—N2—C8 | 111.23 (13) | C10—C9—C13 | 112.04 (15) |
C3—N2—C8 | 114.20 (13) | C8—C9—H91 | 105.3 |
N2—C3—C4 | 104.51 (13) | C10—C9—H91 | 108.0 |
N2—C3—H31 | 110.8 | C13—C9—H91 | 108.7 |
C4—C3—H31 | 110.9 | C9—C10—C11 | 113.00 (14) |
N2—C3—H32 | 111.8 | C9—C10—H101 | 107.5 |
C4—C3—H32 | 108.6 | C11—C10—H101 | 107.3 |
H31—C3—H32 | 110.1 | C9—C10—H102 | 110.4 |
C3—C4—C5 | 104.67 (13) | C11—C10—H102 | 108.0 |
C3—C4—O7 | 111.13 (15) | H101—C10—H102 | 110.7 |
C5—C4—O7 | 109.17 (14) | C10—C11—C1 | 109.68 (13) |
C3—C4—H41 | 110.9 | C10—C11—O12 | 110.95 (13) |
C5—C4—H41 | 111.6 | C1—C11—O12 | 110.92 (13) |
O7—C4—H41 | 109.3 | C10—C11—H111 | 110.9 |
C1—C5—C4 | 102.73 (13) | C1—C11—H111 | 108.2 |
C1—C5—O6 | 111.19 (14) | O12—C11—H111 | 106.1 |
C4—C5—O6 | 110.44 (13) | C11—O12—H3 | 108.9 |
C1—C5—H51 | 110.8 | C9—C13—H131 | 109.7 |
C4—C5—H51 | 111.5 | C9—C13—H132 | 111.0 |
O6—C5—H51 | 110.0 | H131—C13—H132 | 109.1 |
C5—O6—H5 | 104.4 | C9—C13—H133 | 109.5 |
C4—O7—H1 | 112.8 | H131—C13—H133 | 109.2 |
N2—C8—C9 | 110.76 (14) | H132—C13—H133 | 108.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H3···O12i | 0.85 | 1.88 | 2.708 (2) | 165 |
O6—H5···O7 | 0.82 | 1.93 | 2.541 (2) | 131 |
O7—H1···N2ii | 0.87 | 1.99 | 2.846 (2) | 167 |
Symmetry codes: (i) −y+1, x−y+1, z+1/3; (ii) −y+1, x−y, z+1/3. |
References
Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680. Web of Science CrossRef CAS Google Scholar
Au, C. W. G. & Pyne, S. G. (2006). J. Org. Chem. 71, 7097–7099. Web of Science CrossRef PubMed CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ceccon, J., Greene, A. E. & Poisson, J. F. (2006). Org. Lett. 8, 4739–4742. Web of Science CrossRef PubMed CAS Google Scholar
Colegate, S. M., Dorling, P. R. & Huxtable, C. R. (1979). Aust. J. Chem. 32, 2257–2264. CrossRef CAS Google Scholar
Davis, B., Bell, A. A., Nash, R. J., Watson, A. A., Griffiths, R. C., Jones, M. G., Smith, C. & Fleet, G. W. J. (1996). Tetrahedron Lett. 37, 8565–8568. CrossRef CAS Web of Science Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Goss, P. E., Reid, C. L., Bailey, D. & Dennis, J. W. (1997). Clin. Cancer Res. 3, 1077–1086. CAS PubMed Web of Science Google Scholar
Guo, H. B. & O'Doherty, G. A. (2006). Org. Lett. 8, 1609–1612. Web of Science CrossRef PubMed CAS Google Scholar
Håkansson, A. E., van Ameijde, J., Horne, G., Wormald, M. R., Nash, R. J. & Fleet, G. W. J. (2007). In preparation. Google Scholar
Heimgaertner, G., Raatz, D. & Reiser, O. (2005). Tetrahedron, 61, 643–655. Web of Science CrossRef CAS Google Scholar
Klein, J. L. D., Roberts, J. D., George, M. D., Kurtzberg, J., Breton, P., Chermann, J. C. & Olden, K. (1999). Br. J. Cancer, 80, 87–95. Web of Science CrossRef PubMed CAS Google Scholar
Lagana, A., Goetz, J. G., Cheung, P., Raz, A., Dennis, J. W. & Nabi, I. R. (2006). Mol. Cell. Biol. 26, 3181–3193. Web of Science CrossRef PubMed CAS Google Scholar
Martin, R., Murruzzu, C., Pericas, M. A. & Riera, A. (2005). J. Org. Chem. 70, 2325–2328. Web of Science CrossRef PubMed CAS Google Scholar
Nemr, A. E. (2000). Tetrahedron, 56, 8579–8629. Web of Science CrossRef Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Oishi, T., Iwakuma, T., Hirama, M. & Ito, S. (1995). Synlett, pp. 404–406. CrossRef Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. Web of Science CrossRef PubMed CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.