organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(6S)-Methyl-L-swainsonine [(1R,2S,6S,8S,8aS)-6-methyl­octa­hydro­indolizine-1,2,8-triol]

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: anders.hakansson@chem.ox.ac.uk

(Received 28 November 2006; accepted 1 December 2006; online 8 December 2006)

(6S)-Methyl-L-swainsonine, C9H17NO3, together with the 6R-epimer, was formed in a synthetic sequence in which there was an ambiguity in configuration at position C-6. This ambiguity was resolved by establishing the relative stereochemistry of the title compound by X-ray crystallographic analysis. The absolute configuration was determined by the use of D-glycero-D-gulo-heptono-1,4-lactone as the starting material.

Comment

Imino sugars, in which the ring oxygen of a sugar is replaced, are a class of glycosidase inhibitor with a range of chemotherapeutic targets (Watson et al., 2001[Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.]; Asano et al., 2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]). D-Swainsonine (1)[link], a natural product isolated from Swainsona canescens (Colegate et al., 1979[Colegate, S. M., Dorling, P. R. & Huxtable, C. R. (1979). Aust. J. Chem. 32, 2257-2264.]), is a mimic of D-mannofuran­ose (2)[link] and a powerful α-mannosidase inhibitor. Potential use of 1 for the chemotherapy of cancer (Lagana et al., 2006[Lagana, A., Goetz, J. G., Cheung, P., Raz, A., Dennis, J. W. & Nabi, I. R. (2006). Mol. Cell. Biol. 26, 3181-3193.]; Klein et al., 1999[Klein, J. L. D., Roberts, J. D., George, M. D., Kurtzberg, J., Breton, P., Chermann, J. C. & Olden, K. (1999). Br. J. Cancer, 80, 87-95.]; Goss et al., 1997[Goss, P. E., Reid, C. L., Bailey, D. & Dennis, J. W. (1997). Clin. Cancer Res. 3, 1077-1086.]) has led to the publication of over 40 syntheses (Au & Pyne, 2006[Au, C. W. G. & Pyne, S. G. (2006). J. Org. Chem. 71, 7097-7099.]; Ceccon et al., 2006[Ceccon, J., Greene, A. E. & Poisson, J. F. (2006). Org. Lett. 8, 4739-4742.]; Martin et al., 2005[Martin, R., Murruzzu, C., Pericas, M. A. & Riera, A. (2005). J. Org. Chem. 70, 2325-2328.]; Heimgaertner et al., 2005[Heimgaertner, G., Raatz, D. & Reiser, O. (2005). Tetrahedron, 61, 643-655.]; Nemr, 2000[Nemr, A. E. (2000). Tetrahedron, 56, 8579-8629.]). L-Swainsonine (4)[link], the enantiomer of the natural product (1), is the corresponding imino sugar mimic of L-rhamnofuran­ose (3)[link] and is a potent inhibitor of naringinase – an α-rhamnosidase (Davis et al., 1996[Davis, B., Bell, A. A., Nash, R. J., Watson, A. A., Griffiths, R. C., Jones, M. G., Smith, C. & Fleet, G. W. J. (1996). Tetrahedron Lett. 37, 8565-8568.]). Very few syntheses of 4, with different therapeutic targets, have been reported (Guo & O'Doherty, 2006[Guo, H. B. & O'Doherty, G. A. (2006). Org. Lett. 8, 1609-1612.]; Oishi et al., 1995[Oishi, T., Iwakuma, T., Hirama, M. & Ito, S. (1995). Synlett, pp. 404-406.]). No carbon-branched swainsonine analogues have been described. In order to determine how such a substitution changes the structure of the swainsonine nucleus, the C6-methyl analogues (5) and (6) were prepared (Håkansson et al., 2007[Håkansson, A. E., van Ameijde, J., Horne, G., Wormald, M. R., Nash, R. J. & Fleet, G. W. J. (2007). In preparation.]); in order to firmly establish the relative configuration at C6 of the two epimers, X-ray crystallographic analysis of (6) is reported in this paper. The absolute configuration of (6S)-methyl-L-swainsonine (6) was determined by the use of D-glycero-D-gulo-heptono-1,4-lactone as the starting material.

[Scheme 1]

The mol­ecular structure of (6) (Fig. 1[link]) shows no unusual features. The largest differences from the MOGUL norms (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) are C5—O6 (0.01 Å) and C11—C10—C1 (2.9°). As is normal in sugar derivatives, all the hydroxyl groups are involved in hydrogen bonding. Each mol­ecule takes part in two different hydrogen-bonded helices (Fig. 2[link] and Table 1[link]). The helix around ([1\over3], [2\over3], z) only involves O12; that at ([2\over3], [1\over3], z) involves both O7 and N2. The fact that each mol­ecule is involved in two helices leads to a very rigid framework and explains the high melting point (422 K).

[Figure 1]
Figure 1
The mol­ecular structure of 6, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2]
Figure 2
Part of the crystal structure of 6, with hydrogen bonds shown as dotted lines. Each mol­ecule contributes to two helices. That at ([1\over 3], [2\over3], z) only involves O12; that at ([2\over3], [1\over3], z) involves both O7 and N2. [Symmetry codes: (i) x, y, z − 1; (ii) −y + 1, x − y, z − [{2\over 3}]; (iv) −y + 1, x − y + 1, z − [{2\over 3}]; (vi) −x + y, −x + 1, z − [{1\over 3}]; (vii) −x + y + 1, −x + 1, z − [{1\over 3}].]

Experimental

(6S)-Methyl-L-swainsonine (6) (Håkansson et al., 2007[Håkansson, A. E., van Ameijde, J., Horne, G., Wormald, M. R., Nash, R. J. & Fleet, G. W. J. (2007). In preparation.]) was purified by Dowex 50WX8–200 ion exchange resin (H+ form, eluent 2 M aqueous ammonia) and recrystallized from ethyl acetate and cyclo­hexane to yield fine colourless brittle needles (m.p. 421–423 K). [α]D21 = +43.7 (c = 1.72, H2O).

Crystal data
  • C9H17NO3

  • Mr = 187.24

  • Trigonal, P 31

  • a = 11.4494 (6) Å

  • c = 6.1727 (2) Å

  • V = 700.76 (6) Å3

  • Z = 3

  • Dx = 1.331 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 190 K

  • Needle, colourless

  • 0.80 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.81, Tmax = 0.99

  • 6022 measured reflections

  • 1025 independent reflections

  • 982 reflections with I > 2σ(I)

  • Rint = 0.044

  • θmax = 27.1°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 0.97

  • 1020 reflections

  • 118 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.04P)2 + 0.1P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Selected bond angles (°)

N2—C8—C9 110.76 (14)
C8—C9—C10 109.86 (15)
C8—C9—C13 112.68 (16)
C10—C9—C13 112.04 (15)
C9—C10—C11 113.00 (14)
C10—C11—C1 109.68 (13)
C10—C11—O12 110.95 (13)
C1—C11—O12 110.92 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H3⋯O12i 0.85 1.88 2.708 (2) 165
O6—H5⋯O7 0.82 1.93 2.541 (2) 131
O7—H1⋯N2ii 0.87 1.99 2.846 (2) 167
Symmetry codes: (i) [-y+1, x-y+1, z+{\script{1\over 3}}]; (ii) [-y+1, x-y, z+{\script{1\over 3}}].

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration assigned from the starting material.

The sample consisted of fine brittle plates which could not be cut without being destroyed. The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.22) reflects changes in the illuminated volume of the crystal. The changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]) by the multi-scan inter-frame scaling (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: user defined structure solution: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: user defined structure solution; program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

(1R,2S,6S,8S,8aS)-6-methyloctahydroindolizine-1,2,8-triol top
Crystal data top
C9H17NO3Dx = 1.331 Mg m3
Mr = 187.24Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31Cell parameters from 1020 reflections
Hall symbol: P 31θ = 1–27°
a = 11.4494 (6) ŵ = 0.10 mm1
c = 6.1727 (2) ÅT = 190 K
V = 700.76 (6) Å3Plate, colourless
Z = 30.80 × 0.10 × 0.10 mm
F(000) = 306
Data collection top
Nonius KappaCCD
diffractometer
982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1414
Tmin = 0.81, Tmax = 0.99k = 1212
6022 measured reflectionsl = 77
1025 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(F2) + (0.04P)2 + 0.1P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.97(Δ/σ)max = 0.000219
1020 reflectionsΔρmax = 0.17 e Å3
118 parametersΔρmin = 0.12 e Å3
35 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53634 (17)0.59057 (16)0.8235 (3)0.0242
N20.66713 (13)0.60020 (14)0.8706 (2)0.0241
C30.63458 (18)0.50300 (18)1.0487 (3)0.0310
C40.49845 (18)0.38209 (17)0.9851 (3)0.0282
C50.44047 (17)0.43864 (18)0.8097 (3)0.0273
O60.44492 (14)0.38857 (13)0.6023 (2)0.0336
O70.51498 (14)0.27798 (13)0.8919 (2)0.0322
C80.76987 (19)0.73864 (18)0.9248 (3)0.0317
C90.79406 (18)0.83322 (17)0.7343 (3)0.0321
C100.65986 (19)0.82114 (17)0.6624 (3)0.0318
C110.54856 (16)0.67521 (16)0.6254 (3)0.0251
O120.42283 (13)0.66811 (14)0.5784 (2)0.0328
C130.86788 (19)0.8108 (2)0.5457 (3)0.0366
H110.51210.62670.94850.0292*
H310.62780.54181.18700.0378*
H320.70140.47291.06040.0364*
H410.43860.34641.11140.0336*
H510.34850.41620.84380.0326*
H810.85220.73970.96580.0365*
H820.73920.77231.05030.0356*
H910.85130.92410.79160.0356*
H1010.62930.85800.78000.0391*
H1020.67200.87050.52900.0394*
H1110.56940.63550.49760.0293*
H1310.89580.88270.44160.0520*
H1320.94720.80810.59700.0527*
H1330.80660.72370.47440.0519*
H30.40630.70960.67620.0529*
H50.46700.33170.62580.0520*
H10.48620.20750.97620.0503*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (8)0.0264 (8)0.0237 (7)0.0148 (6)0.0011 (6)0.0034 (6)
N20.0236 (7)0.0251 (7)0.0241 (7)0.0126 (6)0.0047 (5)0.0019 (5)
C30.0364 (9)0.0319 (9)0.0255 (9)0.0178 (8)0.0056 (7)0.0014 (6)
C40.0305 (9)0.0283 (8)0.0276 (8)0.0161 (7)0.0032 (6)0.0027 (7)
C50.0240 (8)0.0287 (8)0.0302 (8)0.0141 (7)0.0010 (6)0.0002 (6)
O60.0418 (7)0.0304 (7)0.0324 (6)0.0210 (6)0.0098 (5)0.0078 (5)
O70.0368 (7)0.0288 (6)0.0345 (7)0.0190 (6)0.0037 (5)0.0036 (5)
C80.0324 (9)0.0291 (9)0.0303 (8)0.0130 (8)0.0088 (7)0.0065 (7)
C90.0321 (9)0.0221 (8)0.0379 (10)0.0105 (7)0.0043 (7)0.0031 (7)
C100.0360 (10)0.0253 (8)0.0369 (10)0.0174 (8)0.0012 (7)0.0004 (7)
C110.0277 (8)0.0287 (8)0.0248 (8)0.0185 (7)0.0026 (6)0.0029 (6)
O120.0348 (7)0.0411 (7)0.0318 (6)0.0260 (6)0.0070 (5)0.0069 (5)
C130.0318 (9)0.0309 (9)0.0433 (10)0.0127 (8)0.0020 (8)0.0045 (8)
Geometric parameters (Å, º) top
C1—N21.474 (2)C8—C91.527 (3)
C1—C51.526 (2)C8—H810.971
C1—C111.523 (2)C8—H821.004
C1—H110.979C9—C101.538 (3)
N2—C31.474 (2)C9—C131.534 (3)
N2—C81.464 (2)C9—H910.978
C3—C41.530 (2)C10—C111.529 (2)
C3—H310.983C10—H1010.988
C3—H320.986C10—H1020.968
C4—C51.569 (2)C11—O121.430 (2)
C4—O71.419 (2)C11—H1110.997
C4—H410.982O12—H30.845
C5—O61.414 (2)C13—H1310.964
C5—H510.974C13—H1320.977
O6—H50.821C13—H1330.990
O7—H10.875
N2—C1—C5102.77 (12)N2—C8—H81108.8
N2—C1—C11110.11 (13)C9—C8—H81111.2
C5—C1—C11117.74 (14)N2—C8—H82110.3
N2—C1—H11107.8C9—C8—H82107.2
C5—C1—H11109.4H81—C8—H82108.6
C11—C1—H11108.6C8—C9—C10109.86 (15)
C1—N2—C3103.09 (13)C8—C9—C13112.68 (16)
C1—N2—C8111.23 (13)C10—C9—C13112.04 (15)
C3—N2—C8114.20 (13)C8—C9—H91105.3
N2—C3—C4104.51 (13)C10—C9—H91108.0
N2—C3—H31110.8C13—C9—H91108.7
C4—C3—H31110.9C9—C10—C11113.00 (14)
N2—C3—H32111.8C9—C10—H101107.5
C4—C3—H32108.6C11—C10—H101107.3
H31—C3—H32110.1C9—C10—H102110.4
C3—C4—C5104.67 (13)C11—C10—H102108.0
C3—C4—O7111.13 (15)H101—C10—H102110.7
C5—C4—O7109.17 (14)C10—C11—C1109.68 (13)
C3—C4—H41110.9C10—C11—O12110.95 (13)
C5—C4—H41111.6C1—C11—O12110.92 (13)
O7—C4—H41109.3C10—C11—H111110.9
C1—C5—C4102.73 (13)C1—C11—H111108.2
C1—C5—O6111.19 (14)O12—C11—H111106.1
C4—C5—O6110.44 (13)C11—O12—H3108.9
C1—C5—H51110.8C9—C13—H131109.7
C4—C5—H51111.5C9—C13—H132111.0
O6—C5—H51110.0H131—C13—H132109.1
C5—O6—H5104.4C9—C13—H133109.5
C4—O7—H1112.8H131—C13—H133109.2
N2—C8—C9110.76 (14)H132—C13—H133108.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H3···O12i0.851.882.708 (2)165
O6—H5···O70.821.932.541 (2)131
O7—H1···N2ii0.871.992.846 (2)167
Symmetry codes: (i) y+1, xy+1, z+1/3; (ii) y+1, xy, z+1/3.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationAu, C. W. G. & Pyne, S. G. (2006). J. Org. Chem. 71, 7097–7099.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCeccon, J., Greene, A. E. & Poisson, J. F. (2006). Org. Lett. 8, 4739–4742.  Web of Science CrossRef PubMed CAS Google Scholar
First citationColegate, S. M., Dorling, P. R. & Huxtable, C. R. (1979). Aust. J. Chem. 32, 2257–2264.  CrossRef CAS Google Scholar
First citationDavis, B., Bell, A. A., Nash, R. J., Watson, A. A., Griffiths, R. C., Jones, M. G., Smith, C. & Fleet, G. W. J. (1996). Tetrahedron Lett. 37, 8565–8568.  CrossRef CAS Web of Science Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoss, P. E., Reid, C. L., Bailey, D. & Dennis, J. W. (1997). Clin. Cancer Res. 3, 1077–1086.  CAS PubMed Web of Science Google Scholar
First citationGuo, H. B. & O'Doherty, G. A. (2006). Org. Lett. 8, 1609–1612.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHåkansson, A. E., van Ameijde, J., Horne, G., Wormald, M. R., Nash, R. J. & Fleet, G. W. J. (2007). In preparation.  Google Scholar
First citationHeimgaertner, G., Raatz, D. & Reiser, O. (2005). Tetrahedron, 61, 643–655.  Web of Science CrossRef CAS Google Scholar
First citationKlein, J. L. D., Roberts, J. D., George, M. D., Kurtzberg, J., Breton, P., Chermann, J. C. & Olden, K. (1999). Br. J. Cancer, 80, 87–95.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLagana, A., Goetz, J. G., Cheung, P., Raz, A., Dennis, J. W. & Nabi, I. R. (2006). Mol. Cell. Biol. 26, 3181–3193.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMartin, R., Murruzzu, C., Pericas, M. A. & Riera, A. (2005). J. Org. Chem. 70, 2325–2328.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNemr, A. E. (2000). Tetrahedron, 56, 8579–8629.  Web of Science CrossRef Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOishi, T., Iwakuma, T., Hirama, M. & Ito, S. (1995). Synlett, pp. 404–406.  CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWatson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds