metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m491-m492

Poly[tri­aquabis­(μ2-3-carb­oxy­pyrazine-2-carboxyl­ato)dilithium(I)]

aDepartment of Chemistry, Faculty of Arts and Sciences, University of Kırıkkale Campus, Yahşihan, 71450 Kırıkkale, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, University of Kırıkkale Campus, Yahşihan, 71450 Kırıkkale, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: mustafatombul38@gmail.com

(Received 5 February 2008; accepted 14 February 2008; online 20 February 2008)

In the title compound, [Li2(C6H3N2O4)2(H2O)3]n, the coordination number for both independent Li+ cations is five. One of the Li+ ions has a distorted trigonal–bipyramidal geometry, coordinated by one of the carboxyl O atoms of a 3-carboxy­pyrazine-2-carboxyl­ate ligand, two O atoms from two water mol­ecules, and an N and a carboxyl­ate O atom of a second 3-carboxy­pyrazine-2-carboxyl­ate ligand. The other Li+ ion also has a distorted trigonal–bipyramidal geometry, coordinated by one water mol­ecule and two 3-carboxy­pyrazine-2-carboxyl­ate ligands through an N and a carboxyl­ate O atom from each. One of the carboxyl groups of the two ligands takes part in an intra­molecular O—H⋯O hydrogen bond. The stabilization of the crystal structure is further assisted by O—H⋯O, O—H⋯N and C—H⋯O hydrogen-bonding inter­actions involving the water mol­ecules and carboxyl­ate O atoms.

Related literature

For related literature, see: Chen et al. (2007[Chen, Z., Fei, Z., Zhao, D., Feng, Y. & Yu, K. (2007). Inorg. Chem. Commun. 10, 77-79.]); Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]); Erxleben (2003[Erxleben, A. (2003). Coord. Chem. Rev. 246, 203-228.]); Fei, Ang et al. (2006[Fei, Z., Ang, W. H., Geldbach, T. J., Scopelliti, R. & Dyson, P. J. (2006). Chem. Eur. J. 12, 4014-4020.]); Fei, Geldbach et al. 2006[Fei, Z., Geldbach, T. J., Zhao, D. & Dyson, P. J. (2006). Chem. Eur. J. 12, 2122-2130.]); Gao et al. (2005[Gao, S., Liu, J.-W., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. C61, m348-m350.]); López Garzón et al. (2003[López Garzón, R., Godino Salido, M. L., Low, J. N. & Glidewell, C. (2003). Acta Cryst. C59, m255-m258.]); Grossie et al. (2006[Grossie, D. A., Feld, W. A., Scanlon, L., Sandi, G. & Wawrzak, Z. (2006). Acta Cryst. E62, m827-m829.]); Haiduc & Edelmann (1999[Haiduc, I. & Edelmann, F. T. (1999). Supramolecular Organometallic Chemistry. New York: Wiley-VCH.]); Janiak (2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]); Kim et al. (2007[Kim, E.-J., Kim, C.-H. & Yun, S.-S. (2007). Acta Cryst. C63, m427-m429.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Lehn (1995[Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. New York: Wiley-VCH.]); Mueller et al. (2006[Mueller, U., Schubert, M., Teich, F., Puetter, H., Arndt, K. S. & Pastre, J. (2006). J. Mater. Chem. 16, 626-636.]); Nepveu et al. (1993[Nepveu, F., Berkaoui, M. 'H. & Walz, L. (1993). Acta Cryst. C49, 1465-1466.]); Pancholi & Patel (1996[Pancholi, H. B. & Patel, M. M. (1996). J. Polym. Mater. 13, 261-267.]); Ptasiewicz-Bak & Leciejewicz (1997a[Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493-500.],b[Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603-1610.]); Richard et al. (1973[Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111-1115.]); Speakman (1972[Speakman, J. C. (1972). Struct. Bonding (Berlin), 12, 141-199.]); Sreenivasulu & Vittal (2004[Sreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 42, 5769-5772.]); Starosta & Leciejewicz (2005[Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 963-968.]); Takusagawa & Shimada (1973[Takusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121-1126.]); Tombul et al. (2006[Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945-m947.], 2007[Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783-m1784.], 2008[Tombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246-m247.]); Ye et al. (2005[Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2(C6H3N2O4)2(H2O)3]

  • Mr = 402.14

  • Monoclinic, P 21 /c

  • a = 15.3413 (9) Å

  • b = 7.9415 (4) Å

  • c = 14.9097 (9) Å

  • β = 117.371 (4)°

  • V = 1613.13 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 295 (2) K

  • 0.43 × 0.30 × 0.11 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie. (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.947, Tmax = 0.985

  • 13081 measured reflections

  • 3337 independent reflections

  • 2127 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.143

  • S = 1.00

  • 3337 reflections

  • 295 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Li1—O2 1.980 (5)
Li1—O8 2.029 (5)
Li1—O1 2.037 (5)
Li1—O9 2.074 (5)
Li1—N1 2.326 (5)
Li2—O4 1.901 (5)
Li2—O3 1.974 (5)
Li2—O5 1.990 (5)
Li2—N3i 2.198 (5)
Li2—N2 2.272 (5)
N3—Li2ii 2.198 (5)
O2—Li1—O8 109.5 (2)
O2—Li1—O1 102.2 (2)
O8—Li1—O1 146.8 (3)
O2—Li1—O9 99.7 (2)
O8—Li1—O9 87.89 (19)
O1—Li1—O9 96.5 (2)
O2—Li1—N1 102.5 (2)
O8—Li1—N1 71.58 (15)
O1—Li1—N1 92.45 (19)
O9—Li1—N1 153.7 (2)
O4—Li2—O3 101.8 (2)
O4—Li2—O5 104.1 (2)
O3—Li2—O5 154.0 (3)
O4—Li2—N3i 101.6 (2)
O3—Li2—N3i 76.07 (15)
O5—Li2—N3i 97.47 (19)
O4—Li2—N2 99.97 (19)
O3—Li2—N2 101.89 (19)
O5—Li2—N2 74.75 (16)
N3i—Li2—N2 158.3 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x-1, y, z-1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3iii 0.926 (10) 1.830 (12) 2.743 (3) 168 (3)
O4—H4B⋯O5iv 0.93 (4) 1.89 (3) 2.816 (3) 171 (4)
O2—H2A⋯N4v 0.93 (4) 1.98 (4) 2.898 (3) 171 (4)
O2—H2B⋯O8v 0.93 (3) 1.84 (3) 2.772 (3) 175 (3)
O1—H1A⋯O2v 0.94 (5) 2.11 (4) 2.892 (3) 141 (6)
O1—H1B⋯O7vi 0.93 (5) 2.38 (5) 3.305 (3) 174 (6)
C7—H7⋯O11vii 0.93 2.52 3.184 (3) 129
O10—H10⋯O11 0.86 (3) 1.55 (3) 2.404 (3) 174 (5)
O6—H7A⋯O7 0.86 (3) 1.53 (4) 2.380 (3) 172 (9)
Symmetry codes: (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x-1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (vi) x, y+1, z; (vii) x, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie. (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie. (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In prepararation.]).

Supporting information


Comment top

The systematic design of metal-organic frameworks has became the most fascinating and challenging area of research particularly during the last decade (Lehn, 1995; Haiduc & Edelmann, 1999). Hence, the synthesis of novel coordination polymers has advanced rapidly because of their applications in many areas such as, hydrogen storage (Kitagawa et al., 2004; Mueller et al., 2006), ion-exchange resins (Pancholi & Patel, 1996) and catalysis (Janiak, 2003). Multidendate carboxylic acids are found to be excellent ligands for the synthesis of coordination polymers giving the structures with a diverse range of topologies and conformations, due to the carboxylate groups being able to coordinate to a metal centre as a mono-, bi-, or multidentate ligand (Erxleben, 2003; Ye et al., 2005; Fei, Geldbach et al., 2006). Although most of the studies conducted in this area is primarily focused on coordination polymers containing transition metals as connectors, such as Zn, Ni and Co (Sreenivasulu & Vittal, 2004; Fei, Ang et al., 2006), there is little attention on the Group I metal (López Garzón et al., 2003; Gao et al., 2005; Chen et al., 2007).

Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) have been reported to be well suited for the construction of multidimentional frameworks (nD, n = 1–3), owing to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). In recent years, a variety of metal-organic compound of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically due to growing interest in supramolecular chemistry. Examples are including the calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b), sodium (Tombul et al. 2006), caesium (Tombul et al. 2007) and potassium (Tombul et al. 2008) complexes. Continuation our research on Group I dicarboxylates, we present here the synthesis and crystal structure of the hydrated polymeric dinuclear lithium complex, (I), formed with pyrazine-2,3-dicarboxylic acid.

As shown in Fig. 1, compound (I) is a polymeric dinuclear complex with two kinds of Li atoms, two kinds of pyrazine-2,3-dicarboxylate ligands and three water molecules in the asymmetric unit. The geometries of the two independent Li atoms are distorted trigonal-bipyramidal, while the coordination modes of the pyrazine-2,3-dicarboxylate ligands are chelation. The Li1 ion has a five-coordinate geometry and achieves the coordination number by bonding to one of the carboxylate O atom of pyrazine-2,3-dicarboxylate ligand, two O atoms from two water molecules and a chelation pyrazine-2,3-dicarboxylate ligand (through the interactions by utilizing both N and O atoms) of the adjacent molecule. The Li2 ion has also distorted trigonal-bipyramidal geometry, with one water molecule, one chelation ligand molecule (through the interactions by utilizing both N and O atoms of the same ligand) and symmetry related chelation pyrazine-2–3-dicarboxylate ligand. There is no metal to-metal interaction; the Li–Li distance is 7.221 (2) Å. The Li—O distances are in the range 1.980 (5) Å to 2.074 (4) Å (for Li1) and 1.901 (5) Å to 1.974 (4) Å (for Li2), in accordance with the corresponding values reported for other lithium complexes (Chen et al. 2007; Kim et al. 2007). Li—N bond lengths also lie within the normal ranges found for similar bonds in the literature (Grossie et al. 2006). The C—O distances are comparable with structurally similar compounds (Chen et al. 2007). There are appreciable differences between the two carboxyl groups of the each ligand molecule. The C—O distances at C6 and C12 are (1.228 (3) Å, 1.275 and 1.216 (3) Å, 1.283 (3) Å respectively), and these are fairly typical for a carboxylic acid group (Speakman, 1972). On the other hand, those at C5 and C11 are (1.236 (3) Å, 1.268 (3) Å and 1.247 (3) Å, 1.258 (3) Å respectively), giving a strong indication of a carboxylate ion. As is typically the case, the mean value of the four C—O distances in the different carboxyl/carboxylate groups is almost the same, at 1.254 (3) Å, 1.251 (3) Å and 1.252 (3) Å, 1.251 (3) Å, respectively.

In (I), one of the carboxyl groups of each ligand molecule holds its H atom, which takes part in an O—H···O [O···O = 2.380 (3) 2.402 (3) Å respectively] intramolecular hydrogen bonds. Atoms H6A and H10A involved in these bonds and maintain the charge balance within the structure. The dinuclear complexes are linked in a three-dimensional manner by further numerous intermolecular O—H···O··· O—H···N and C—H···O hydrogen bonds (Table 2).

Related literature top

For related literature, see: Chen et al. (2007); Clark & Reid (1995); Erxleben (2003); Fei, Ang et al. (2006); Fei, Geldbach et al. 2006); Gao et al. (2005); López Garzón et al. (2003); Grossie et al. (2006); Haiduc & Edelmann (1999); Janiak (2003); Kim et al. (2007); Kitagawa et al. (2004); Lehn (1995); Mueller et al. (2006); Nepveu et al. (1993); Pancholi & Patel (1996); Ptasiewicz-Bak & Leciejewicz (1997a,b); Richard et al. (1973); Speakman (1972); Sreenivasulu & Vittal (2004); Starosta & Leciejewicz (2005); Takusagawa & Shimada (1973); Tombul et al. (2006, 2007, 2008); Ye et al. (2005).

Experimental top

Li2CO3 (220 mg, 3 mmol) was carefully added to an aqueous solution (20 ml) of pyrazine 2,3-dicarboxylic acid (1008 mg, 6 mmol), until no further bubbles formed. The reaction mixture gave a colourless and clear solution which was stirred at 323 K for 10 h, until it solidified. The solid product was then redissolved in water (5 ml) and allowed to stand for a day at ambient temperature, after which transparent fine crystals were harvested.

Refinement top

All H atoms were repositioned geometrically. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93 Å, O—H in the range 0.86 - 0.94 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Showing the atom-labelling scheme of (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) -1 + x, y, -1 + z; (b) 1 + x, y,1 + z].
[Figure 2] Fig. 2. View of the stacking structure of (I) within the unit cell, down the b axis.
Poly[triaquabis(µ2-3-carboxypyrazine-2-carboxylato)dilithium(I)] top
Crystal data top
[Li2(C6H3N2O4)2(H2O)3]F(000) = 824
Mr = 402.14Dx = 1.656 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15847 reflections
a = 15.3413 (9) Åθ = 1.5–27.2°
b = 7.9415 (4) ŵ = 0.15 mm1
c = 14.9097 (9) ÅT = 295 K
β = 117.371 (4)°Prism, colourless
V = 1613.13 (16) Å30.43 × 0.30 × 0.11 mm
Z = 4
Data collection top
Stoe IPDSII
diffractometer
3337 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2127 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.083
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.5°
rotation method scansh = 1919
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 99
Tmin = 0.947, Tmax = 0.985l = 1818
13081 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0627P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.011
3337 reflectionsΔρmax = 0.38 e Å3
295 parametersΔρmin = 0.34 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (3)
Crystal data top
[Li2(C6H3N2O4)2(H2O)3]V = 1613.13 (16) Å3
Mr = 402.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3413 (9) ŵ = 0.15 mm1
b = 7.9415 (4) ÅT = 295 K
c = 14.9097 (9) Å0.43 × 0.30 × 0.11 mm
β = 117.371 (4)°
Data collection top
Stoe IPDSII
diffractometer
3337 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2127 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.985Rint = 0.083
13081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0512 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.38 e Å3
3337 reflectionsΔρmin = 0.34 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3129 (2)0.1510 (3)0.0633 (2)0.0544 (7)
H10.33430.25980.04090.065*
C20.2287 (2)0.1293 (3)0.15271 (19)0.0483 (6)
H20.19360.22300.18860.058*
C30.24908 (16)0.1569 (3)0.13584 (16)0.0365 (5)
C40.33418 (17)0.1336 (3)0.04375 (17)0.0380 (5)
C50.20414 (17)0.3209 (3)0.18826 (18)0.0430 (6)
C60.40262 (17)0.2658 (3)0.02839 (17)0.0430 (6)
C70.8269 (2)0.3841 (3)0.4244 (2)0.0553 (7)
H70.81550.49400.40020.066*
C80.9085 (2)0.3489 (3)0.51354 (19)0.0509 (7)
H80.94880.43670.55120.061*
C90.87144 (16)0.0679 (3)0.49270 (16)0.0371 (5)
C100.78391 (15)0.1039 (3)0.40504 (15)0.0389 (5)
C110.91273 (18)0.1024 (3)0.53842 (17)0.0412 (6)
C120.70304 (15)0.0156 (3)0.33600 (16)0.0430 (6)
Li10.4924 (3)0.0277 (6)0.1557 (3)0.0524 (10)
Li20.0456 (3)0.1053 (5)0.3065 (3)0.0504 (10)
N10.36462 (15)0.0222 (3)0.00823 (15)0.0479 (5)
N20.19698 (14)0.0232 (2)0.18818 (14)0.0418 (5)
N30.93097 (15)0.1938 (3)0.54689 (14)0.0440 (5)
N40.76397 (16)0.2636 (3)0.37213 (16)0.0501 (6)
O10.53187 (16)0.2659 (3)0.13886 (16)0.0611 (5)
O20.42243 (14)0.0653 (2)0.23731 (14)0.0512 (5)
O30.00554 (13)0.1034 (2)0.38530 (12)0.0490 (5)
O40.02158 (14)0.1093 (2)0.22662 (14)0.0557 (5)
O50.12608 (12)0.3144 (2)0.26734 (13)0.0504 (5)
O60.24547 (15)0.4600 (2)0.15083 (16)0.0669 (6)
O70.38628 (14)0.4221 (2)0.00814 (14)0.0538 (5)
O80.47216 (13)0.2138 (2)0.10579 (13)0.0566 (5)
O90.62851 (13)0.0447 (2)0.26899 (14)0.0584 (5)
O100.71593 (14)0.1755 (2)0.34880 (15)0.0559 (5)
O110.86572 (14)0.2348 (2)0.49878 (15)0.0614 (5)
H4A0.017 (2)0.198 (3)0.1844 (19)0.063 (9)*
H2A0.3649 (19)0.128 (5)0.208 (3)0.116 (15)*
H100.767 (2)0.195 (7)0.405 (2)0.15 (2)*
H2B0.455 (2)0.141 (4)0.290 (2)0.095 (12)*
H4B0.054 (3)0.014 (3)0.221 (3)0.115 (15)*
H7A0.294 (4)0.453 (11)0.091 (2)0.23 (4)*
H1A0.565 (4)0.324 (8)0.200 (3)0.19 (3)*
H1B0.494 (4)0.359 (5)0.106 (4)0.18 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0642 (18)0.0299 (13)0.0526 (15)0.0022 (11)0.0128 (14)0.0020 (11)
C20.0555 (15)0.0325 (12)0.0466 (14)0.0043 (11)0.0145 (12)0.0015 (11)
C30.0414 (12)0.0318 (12)0.0338 (11)0.0007 (9)0.0152 (10)0.0009 (9)
C40.0425 (12)0.0333 (12)0.0334 (11)0.0004 (10)0.0134 (10)0.0031 (9)
C50.0444 (14)0.0357 (12)0.0418 (13)0.0017 (10)0.0139 (11)0.0016 (11)
C60.0443 (13)0.0390 (13)0.0363 (12)0.0013 (10)0.0105 (11)0.0009 (10)
C70.0664 (17)0.0307 (13)0.0525 (15)0.0025 (12)0.0134 (14)0.0038 (12)
C80.0583 (16)0.0382 (14)0.0426 (13)0.0091 (12)0.0116 (12)0.0024 (11)
C90.0403 (12)0.0348 (12)0.0324 (11)0.0008 (9)0.0134 (10)0.0006 (9)
C100.0435 (13)0.0352 (12)0.0340 (11)0.0012 (10)0.0145 (10)0.0007 (10)
C110.0451 (13)0.0382 (13)0.0368 (12)0.0007 (10)0.0158 (11)0.0003 (10)
C120.0422 (13)0.0400 (13)0.0418 (12)0.0001 (11)0.0150 (11)0.0011 (11)
Li10.052 (2)0.047 (2)0.047 (2)0.000 (2)0.0136 (19)0.003 (2)
Li20.051 (2)0.047 (2)0.042 (2)0.0013 (19)0.0126 (19)0.0006 (19)
N10.0539 (12)0.0336 (11)0.0427 (11)0.0021 (9)0.0107 (10)0.0024 (9)
N20.0445 (11)0.0344 (10)0.0399 (10)0.0040 (9)0.0137 (9)0.0036 (9)
N30.0496 (12)0.0379 (11)0.0371 (10)0.0050 (9)0.0136 (9)0.0009 (9)
N40.0543 (13)0.0352 (11)0.0466 (12)0.0027 (9)0.0112 (10)0.0017 (9)
O10.0730 (14)0.0499 (12)0.0585 (12)0.0091 (10)0.0288 (11)0.0100 (10)
O20.0530 (11)0.0438 (10)0.0471 (10)0.0026 (9)0.0147 (9)0.0027 (8)
O30.0503 (10)0.0431 (10)0.0405 (9)0.0047 (8)0.0096 (8)0.0015 (8)
O40.0657 (12)0.0475 (11)0.0541 (11)0.0138 (9)0.0277 (10)0.0132 (9)
O50.0468 (10)0.0426 (10)0.0457 (10)0.0017 (8)0.0076 (8)0.0052 (8)
O60.0637 (12)0.0315 (10)0.0664 (13)0.0012 (8)0.0037 (10)0.0030 (9)
O70.0620 (11)0.0341 (9)0.0468 (10)0.0019 (8)0.0092 (9)0.0023 (8)
O80.0573 (11)0.0441 (10)0.0432 (10)0.0007 (8)0.0015 (9)0.0002 (8)
O90.0437 (10)0.0516 (11)0.0562 (11)0.0001 (8)0.0026 (9)0.0031 (9)
O100.0527 (11)0.0381 (10)0.0572 (11)0.0038 (8)0.0083 (9)0.0052 (9)
O110.0662 (12)0.0322 (9)0.0585 (11)0.0028 (8)0.0053 (9)0.0004 (8)
Geometric parameters (Å, º) top
C1—N11.323 (3)C11—O3i1.247 (3)
C1—C21.376 (4)C11—O111.258 (3)
C1—H10.9300C12—O91.216 (3)
C2—N21.321 (3)C12—O101.283 (3)
C2—H20.9300Li1—O21.980 (5)
C3—N21.342 (3)Li1—O82.029 (5)
C3—C41.406 (3)Li1—O12.037 (5)
C3—C51.512 (3)Li1—O92.074 (5)
C4—N11.342 (3)Li1—N12.326 (5)
C4—C61.524 (3)Li2—O41.901 (5)
C5—O51.236 (3)Li2—O31.974 (5)
C5—O61.268 (3)Li2—O51.990 (5)
C6—O81.228 (3)Li2—N3ii2.198 (5)
C6—O71.275 (3)Li2—N22.272 (5)
C7—N41.328 (3)N3—Li2i2.198 (5)
C7—C81.372 (4)O1—H1A0.94 (5)
C7—H70.9300O1—H1B0.93 (5)
C8—N31.313 (3)O2—H2A0.93 (4)
C8—H80.9300O2—H2B0.93 (3)
C9—N31.345 (3)O3—C11ii1.247 (3)
C9—C101.404 (3)O4—H4A0.926 (10)
C9—C111.516 (3)O4—H4B0.93 (4)
C10—N41.341 (3)O6—H7A0.86 (3)
C10—C121.525 (3)O10—H100.86 (3)
N1—C1—C2122.2 (2)O1—Li1—O996.5 (2)
N1—C1—H1118.9O2—Li1—N1102.5 (2)
C2—C1—H1118.9O8—Li1—N171.58 (15)
N2—C2—C1120.8 (2)O1—Li1—N192.45 (19)
N2—C2—H2119.6O9—Li1—N1153.7 (2)
C1—C2—H2119.6O4—Li2—O3101.8 (2)
N2—C3—C4120.1 (2)O4—Li2—O5104.1 (2)
N2—C3—C5111.87 (19)O3—Li2—O5154.0 (3)
C4—C3—C5128.1 (2)O4—Li2—N3ii101.6 (2)
N1—C4—C3120.4 (2)O3—Li2—N3ii76.07 (15)
N1—C4—C6110.76 (19)O5—Li2—N3ii97.47 (19)
C3—C4—C6128.9 (2)O4—Li2—N299.97 (19)
O5—C5—O6121.7 (2)O3—Li2—N2101.89 (19)
O5—C5—C3117.9 (2)O5—Li2—N274.75 (16)
O6—C5—C3120.4 (2)N3ii—Li2—N2158.3 (2)
O8—C6—O7122.7 (2)C1—N1—C4117.9 (2)
O8—C6—C4116.8 (2)C1—N1—Li1127.8 (2)
O7—C6—C4120.5 (2)C4—N1—Li1113.84 (18)
N4—C7—C8121.0 (2)C2—N2—C3118.8 (2)
N4—C7—H7119.5C2—N2—Li2129.1 (2)
C8—C7—H7119.5C3—N2—Li2110.33 (19)
N3—C8—C7121.5 (2)C8—N3—C9118.8 (2)
N3—C8—H8119.3C8—N3—Li2i128.8 (2)
C7—C8—H8119.3C9—N3—Li2i111.81 (19)
N3—C9—C10119.9 (2)C7—N4—C10118.8 (2)
N3—C9—C11111.43 (19)Li1—O1—H1A114 (4)
C10—C9—C11128.6 (2)Li1—O1—H1B131 (4)
N4—C10—C9119.4 (2)H1A—O1—H1B93 (5)
N4—C10—C12111.14 (19)Li1—O2—H2A117 (3)
C9—C10—C12129.1 (2)Li1—O2—H2B113 (2)
O3i—C11—O11122.8 (2)H2A—O2—H2B94 (3)
O3i—C11—C9116.9 (2)C11ii—O3—Li2119.70 (19)
O11—C11—C9120.2 (2)Li2—O4—H4A122.7 (18)
O9—C12—O10122.2 (2)Li2—O4—H4B120 (3)
O9—C12—C10118.1 (2)H4A—O4—H4B116 (3)
O10—C12—C10119.4 (2)C5—O5—Li2120.9 (2)
O2—Li1—O8109.5 (2)C5—O6—H7A115 (6)
O2—Li1—O1102.2 (2)C6—O8—Li1125.6 (2)
O8—Li1—O1146.8 (3)C12—O9—Li1140.4 (2)
O2—Li1—O999.7 (2)C12—O10—H10110 (4)
O8—Li1—O987.89 (19)
N1—C1—C2—N21.3 (4)C5—C3—N2—C2178.5 (2)
N2—C3—C4—N10.9 (4)C4—C3—N2—Li2164.2 (2)
C5—C3—C4—N1179.3 (2)C5—C3—N2—Li215.6 (3)
N2—C3—C4—C6178.7 (2)O4—Li2—N2—C279.5 (3)
C5—C3—C4—C61.1 (4)O3—Li2—N2—C224.9 (3)
N2—C3—C5—O52.9 (3)O5—Li2—N2—C2178.4 (2)
C4—C3—C5—O5176.9 (2)N3ii—Li2—N2—C2107.1 (6)
N2—C3—C5—O6177.9 (2)O4—Li2—N2—C384.5 (2)
C4—C3—C5—O62.3 (4)O3—Li2—N2—C3171.01 (19)
N1—C4—C6—O80.7 (3)O5—Li2—N2—C317.5 (2)
C3—C4—C6—O8178.9 (2)N3ii—Li2—N2—C388.8 (6)
N1—C4—C6—O7180.0 (2)C7—C8—N3—C91.0 (4)
C3—C4—C6—O70.4 (4)C7—C8—N3—Li2i172.1 (3)
N4—C7—C8—N34.7 (5)C10—C9—N3—C83.6 (3)
N3—C9—C10—N44.7 (3)C11—C9—N3—C8175.8 (2)
C11—C9—C10—N4174.5 (2)C10—C9—N3—Li2i168.9 (2)
N3—C9—C10—C12175.9 (2)C11—C9—N3—Li2i11.7 (3)
C11—C9—C10—C124.8 (4)C8—C7—N4—C103.5 (4)
N3—C9—C11—O3i2.4 (3)C9—C10—N4—C71.1 (4)
C10—C9—C11—O3i176.9 (2)C12—C10—N4—C7179.5 (2)
N3—C9—C11—O11178.5 (2)O4—Li2—O3—C11ii80.7 (3)
C10—C9—C11—O112.1 (4)O5—Li2—O3—C11ii96.8 (6)
N4—C10—C12—O97.6 (3)N3ii—Li2—O3—C11ii18.5 (2)
C9—C10—C12—O9173.1 (2)N2—Li2—O3—C11ii176.33 (19)
N4—C10—C12—O10171.2 (2)O6—C5—O5—Li2164.5 (3)
C9—C10—C12—O108.2 (4)C3—C5—O5—Li214.7 (3)
C2—C1—N1—C42.1 (4)O4—Li2—O5—C579.1 (3)
C2—C1—N1—Li1168.8 (3)O3—Li2—O5—C5103.4 (5)
C3—C4—N1—C11.0 (4)N3ii—Li2—O5—C5176.8 (2)
C6—C4—N1—C1179.3 (2)N2—Li2—O5—C517.6 (2)
C3—C4—N1—Li1171.2 (2)O7—C6—O8—Li1169.6 (3)
C6—C4—N1—Li18.5 (3)C4—C6—O8—Li19.6 (4)
O2—Li1—N1—C174.5 (3)O2—Li1—O8—C686.4 (3)
O8—Li1—N1—C1178.9 (3)O1—Li1—O8—C675.4 (5)
O1—Li1—N1—C128.6 (3)O9—Li1—O8—C6174.0 (2)
O9—Li1—N1—C1138.6 (5)N1—Li1—O8—C610.7 (3)
O2—Li1—N1—C496.8 (2)O10—C12—O9—Li14.5 (5)
O8—Li1—N1—C49.8 (2)C10—C12—O9—Li1176.8 (3)
O1—Li1—N1—C4160.1 (2)O2—Li1—O9—C1278.6 (4)
O9—Li1—N1—C450.1 (6)O8—Li1—O9—C12172.0 (3)
C1—C2—N2—C30.6 (4)O1—Li1—O9—C1225.1 (4)
C1—C2—N2—Li2162.3 (3)N1—Li1—O9—C12134.1 (5)
C4—C3—N2—C21.7 (3)
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3iii0.93 (1)1.83 (1)2.743 (3)168 (3)
O4—H4B···O5iv0.93 (4)1.89 (3)2.816 (3)171 (4)
O2—H2A···N4v0.93 (4)1.98 (4)2.898 (3)171 (4)
O2—H2B···O8v0.93 (3)1.84 (3)2.772 (3)175 (3)
O1—H1A···O2v0.94 (5)2.11 (4)2.892 (3)141 (6)
O1—H1B···O7vi0.93 (5)2.38 (5)3.305 (3)174 (6)
C7—H7···O11vii0.932.523.184 (3)129
O10—H10···O110.86 (3)1.55 (3)2.404 (3)174 (5)
O6—H7A···O70.86 (3)1.53 (4)2.380 (3)172 (9)
Symmetry codes: (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x1, y+1/2, z1/2; (vi) x, y+1, z; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Li2(C6H3N2O4)2(H2O)3]
Mr402.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.3413 (9), 7.9415 (4), 14.9097 (9)
β (°) 117.371 (4)
V3)1613.13 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.43 × 0.30 × 0.11
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.947, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
13081, 3337, 2127
Rint0.083
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 1.00
No. of reflections3337
No. of parameters295
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Li1—O21.980 (5)Li2—O31.974 (5)
Li1—O82.029 (5)Li2—O51.990 (5)
Li1—O12.037 (5)Li2—N3i2.198 (5)
Li1—O92.074 (5)Li2—N22.272 (5)
Li1—N12.326 (5)N3—Li2ii2.198 (5)
Li2—O41.901 (5)
O2—Li1—O8109.5 (2)O4—Li2—O3101.8 (2)
O2—Li1—O1102.2 (2)O4—Li2—O5104.1 (2)
O8—Li1—O1146.8 (3)O3—Li2—O5154.0 (3)
O2—Li1—O999.7 (2)O4—Li2—N3i101.6 (2)
O8—Li1—O987.89 (19)O3—Li2—N3i76.07 (15)
O1—Li1—O996.5 (2)O5—Li2—N3i97.47 (19)
O2—Li1—N1102.5 (2)O4—Li2—N299.97 (19)
O8—Li1—N171.58 (15)O3—Li2—N2101.89 (19)
O1—Li1—N192.45 (19)O5—Li2—N274.75 (16)
O9—Li1—N1153.7 (2)N3i—Li2—N2158.3 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3iii0.926 (10)1.830 (12)2.743 (3)168 (3)
O4—H4B···O5iv0.93 (4)1.89 (3)2.816 (3)171 (4)
O2—H2A···N4v0.93 (4)1.98 (4)2.898 (3)171 (4)
O2—H2B···O8v0.93 (3)1.84 (3)2.772 (3)175 (3)
O1—H1A···O2v0.94 (5)2.11 (4)2.892 (3)141 (6)
O1—H1B···O7vi0.93 (5)2.38 (5)3.305 (3)174 (6)
C7—H7···O11vii0.932.523.184 (3)128.6
O10—H10···O110.86 (3)1.55 (3)2.404 (3)174 (5)
O6—H7A···O70.86 (3)1.53 (4)2.380 (3)172 (9)
Symmetry codes: (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x1, y+1/2, z1/2; (vi) x, y+1, z; (vii) x, y1, z.
 

Acknowledgements

The authors gratefully acknowledge the Faculty of Arts and Sciences, Kırıkkale University, for financial support and the Faculty of Arts and Sciences, Ondokuz Mayıs University, for use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationChen, Z., Fei, Z., Zhao, D., Feng, Y. & Yu, K. (2007). Inorg. Chem. Commun. 10, 77–79.  Web of Science CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationErxleben, A. (2003). Coord. Chem. Rev. 246, 203–228.  Web of Science CrossRef CAS Google Scholar
First citationFei, Z., Ang, W. H., Geldbach, T. J., Scopelliti, R. & Dyson, P. J. (2006). Chem. Eur. J. 12, 4014–4020.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFei, Z., Geldbach, T. J., Zhao, D. & Dyson, P. J. (2006). Chem. Eur. J. 12, 2122–2130.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, S., Liu, J.-W., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. C61, m348–m350.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGrossie, D. A., Feld, W. A., Scanlon, L., Sandi, G. & Wawrzak, Z. (2006). Acta Cryst. E62, m827–m829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaiduc, I. & Edelmann, F. T. (1999). Supramolecular Organometallic Chemistry. New York: Wiley–VCH.  Google Scholar
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationKim, E.-J., Kim, C.-H. & Yun, S.-S. (2007). Acta Cryst. C63, m427–m429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. New York: Wiley–VCH.  Google Scholar
First citationLópez Garzón, R., Godino Salido, M. L., Low, J. N. & Glidewell, C. (2003). Acta Cryst. C59, m255–m258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMueller, U., Schubert, M., Teich, F., Puetter, H., Arndt, K. S. & Pastre, J. (2006). J. Mater. Chem. 16, 626–636.  Web of Science CrossRef CAS Google Scholar
First citationNepveu, F., Berkaoui, M. 'H. & Walz, L. (1993). Acta Cryst. C49, 1465–1466.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPancholi, H. B. & Patel, M. M. (1996). J. Polym. Mater. 13, 261–267.  CAS Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493–500.  CAS Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603–1610.  CAS Google Scholar
First citationRichard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111–1115.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpeakman, J. C. (1972). Struct. Bonding (Berlin), 12, 141–199.  CrossRef CAS Google Scholar
First citationSreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 42, 5769–5772.  Web of Science CSD CrossRef Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 963–968.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie. (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTakusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121–1126.  CrossRef Web of Science Google Scholar
First citationTombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945–m947.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783–m1784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246–m247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In prepararation.  Google Scholar
First citationYe, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m491-m492
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds