organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Acetamido-3-(4-hydr­­oxy-3-meth­oxy­phen­yl)acrylic acid

aSchool of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming 650031, People's Republic of China, and bEngineering and Research Center of Chinese Herb Modernization, Northwest University, Xi'an 710069, People's Republic of China
*Correspondence e-mail: zhengxh@nwu.edu.cn

(Received 1 December 2007; accepted 14 January 2008; online 6 February 2008)

In the title compound, C12H13NO5, the azlactone of vanillin, the acrylic acid side chain has a trans extended conformation. There are inter­molecular N—H⋯O and O—H⋯O hydrogen bonds in the crystal structure.

Related literature

For a related structure, see: Haasbroek et al. (1998[Haasbroek, P. P., Oliver, D. W. & Carpy, A. J. M. (1998). J. Chem. Crystallogr. 28, 193-196.]). For information on the synthesis, see: Wong et al. (1992[Wong, H. N. C., Xu, Z. L., Chang, H. M. & Lee, C. M. (1992). Synthesis, pp. 793-797.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO5

  • Mr = 251.23

  • Orthorhombic, P b c a

  • a = 12.7573 (14) Å

  • b = 12.7518 (14) Å

  • c = 14.7290 (17) Å

  • V = 2396.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 (2) K

  • 0.37 × 0.30 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 11011 measured reflections

  • 2122 independent reflections

  • 1788 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.122

  • S = 1.01

  • 2122 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.82 1.79 2.6044 (15) 171
O1—H1B⋯O5ii 0.82 1.84 2.6582 (13) 177
N1—H1⋯O1iii 0.86 2.13 2.9501 (14) 159
Symmetry codes: (i) -x, -y+2, -z; (ii) -x, -y+2, -z+1; (iii) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular structure of the title compound is illustrated in Fig. 1. There are three intermolecular hydrogen bonds. One is formed between the NH group and the phenolic hydroxyl O atom of another molecule, the others between the carbonyl O atom and OH group.

A similar structure has been reported for a related compound (Haasbroek et al., 1998).

Related literature top

For a related structure, see: Haasbroek et al. (1998). For information on the synthesis, see: Wong et al. (1992).

Experimental top

The azlactone (Wong et al., 1992) of vanillin (2.0 g, 7.3 mmol) was heated at 353 K with stirring in a sodium hydroxide solution (20 ml, 20%). A dark wine-red solution formed. After 3 h, the mixture was cooled and acidified with hydrochloric acid (6 M) to a pH of 1.35. The mixture was stirred well and allowed to cool to 273 K. The crystals that formed were filtered off and dried under vacuum at 318 K (1.45 g, 5.7 mmol). Recrystallization from ethanol/water gave pale-yellow crystals of (I) with a melting point of 481 K. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of a solution in methanol–water at room temperature for two weeks. Spectroscopic analysis: IR (KBr, cm-1): 3256, 2952, 1678, 1656; 1H NMR (DMSO, δ, p.p.m.): 12.389 (s, 1 H), 9.492 (s, 1 H), 9.316 (s, 1 H), 7.286–7.282 (d, 1 H), 7.196 (s, 1 H), 7.088–7.068 (m, 1 H), 6.797–6.781 (d, 1 H), 3.771 (s, 3 H), 1.985 (s, 3 H).

Refinement top

H atoms bonded to N and O atoms were located in a difference map and refined as riding, with O—H = 0.82 and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(O,N). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl groups].

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. H atoms have been omitted.
[Figure 2] Fig. 2. The packing of (I), viewed down the c axis. Molecules are connected by O—H···O and N—H···O hydrogen bonds shown as dashed lines.
2-Acetamido-3-(4-hydroxy-3-methoxyphenyl)acrylic acid top
Crystal data top
C12H13NO5Dx = 1.393 Mg m3
Mr = 251.23Melting point: 481 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 12.7573 (14) ÅCell parameters from 4984 reflections
b = 12.7518 (14) Åθ = 2.7–28.1°
c = 14.7290 (17) ŵ = 0.11 mm1
V = 2396.1 (5) Å3T = 296 K
Z = 8Block, yellow
F(000) = 10560.37 × 0.30 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1788 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.1°, θmin = 2.7°
ϕ and ω scansh = 1513
11011 measured reflectionsk = 1515
2122 independent reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.0344P]
where P = (Fo2 + 2Fc2)/3
2122 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C12H13NO5V = 2396.1 (5) Å3
Mr = 251.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.7573 (14) ŵ = 0.11 mm1
b = 12.7518 (14) ÅT = 296 K
c = 14.7290 (17) Å0.37 × 0.30 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1788 reflections with I > 2σ(I)
11011 measured reflectionsRint = 0.021
2122 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
2122 reflectionsΔρmin = 0.31 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.16380 (8)0.89736 (8)0.23064 (7)0.0337 (3)
H10.23010.90370.22180.040*
O10.12427 (7)1.09483 (8)0.65078 (6)0.0426 (3)
H1B0.07451.12690.67250.064*
O20.22102 (8)0.94162 (8)0.56758 (7)0.0473 (3)
O30.00149 (10)1.06674 (9)0.09716 (8)0.0604 (4)
O40.07449 (9)0.91314 (8)0.06704 (7)0.0521 (3)
H40.05200.92620.01610.078*
O50.03350 (7)0.79383 (7)0.28136 (8)0.0465 (3)
C10.11343 (9)1.08974 (10)0.55890 (9)0.0330 (3)
C20.05408 (9)1.16043 (10)0.50975 (9)0.0363 (3)
H20.02091.21560.53940.044*
C30.04374 (10)1.14964 (10)0.41675 (9)0.0361 (3)
H30.00331.19770.38460.043*
C40.09273 (9)1.06807 (9)0.37029 (9)0.0320 (3)
C50.15561 (10)0.99846 (10)0.42060 (9)0.0353 (3)
H50.19120.94490.39080.042*
C60.16531 (9)1.00837 (10)0.51307 (9)0.0342 (3)
C70.26213 (15)0.85003 (13)0.52600 (12)0.0631 (5)
H7A0.20630.81150.49790.095*
H7B0.29520.80700.57120.095*
H7C0.31270.86960.48080.095*
C80.07026 (10)1.05762 (10)0.27390 (9)0.0339 (3)
H80.02961.11170.25030.041*
C90.09724 (9)0.98457 (10)0.21286 (9)0.0326 (3)
C100.05389 (11)0.98977 (10)0.12025 (9)0.0383 (3)
C110.12612 (9)0.80575 (10)0.26066 (9)0.0344 (3)
C120.20317 (13)0.71764 (12)0.27005 (12)0.0547 (4)
H12A0.19750.68770.32960.082*
H12B0.27290.74390.26120.082*
H12C0.18840.66490.22530.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0316 (6)0.0389 (6)0.0306 (6)0.0028 (4)0.0014 (4)0.0005 (4)
O10.0364 (5)0.0617 (7)0.0295 (6)0.0091 (4)0.0031 (4)0.0095 (4)
O20.0569 (6)0.0501 (6)0.0349 (6)0.0194 (5)0.0089 (4)0.0023 (4)
O30.0912 (8)0.0506 (7)0.0393 (7)0.0255 (6)0.0191 (6)0.0037 (5)
O40.0774 (8)0.0472 (6)0.0317 (6)0.0116 (5)0.0112 (5)0.0069 (4)
O50.0448 (6)0.0363 (6)0.0583 (7)0.0007 (4)0.0118 (5)0.0027 (4)
C10.0288 (6)0.0413 (7)0.0289 (7)0.0045 (5)0.0015 (5)0.0042 (5)
C20.0366 (6)0.0353 (7)0.0370 (8)0.0011 (5)0.0012 (5)0.0052 (6)
C30.0394 (7)0.0332 (7)0.0357 (8)0.0009 (5)0.0019 (5)0.0020 (5)
C40.0343 (6)0.0315 (6)0.0301 (7)0.0032 (5)0.0001 (5)0.0011 (5)
C50.0373 (7)0.0352 (7)0.0333 (8)0.0019 (5)0.0006 (5)0.0038 (5)
C60.0318 (6)0.0368 (7)0.0339 (8)0.0006 (5)0.0040 (5)0.0001 (5)
C70.0809 (11)0.0573 (10)0.0512 (10)0.0334 (9)0.0081 (9)0.0042 (8)
C80.0386 (6)0.0314 (7)0.0319 (8)0.0002 (5)0.0011 (5)0.0030 (5)
C90.0366 (7)0.0326 (7)0.0286 (7)0.0009 (5)0.0006 (5)0.0036 (5)
C100.0490 (8)0.0349 (7)0.0310 (8)0.0019 (5)0.0018 (6)0.0001 (5)
C110.0404 (7)0.0354 (7)0.0275 (7)0.0044 (5)0.0010 (5)0.0042 (5)
C120.0614 (9)0.0458 (9)0.0570 (11)0.0191 (7)0.0032 (7)0.0022 (7)
Geometric parameters (Å, º) top
N1—C111.3383 (17)C3—H30.930
N1—C91.4236 (16)C4—C51.4074 (18)
N1—H10.860C4—C81.4544 (19)
O1—C11.3619 (17)C5—C61.3734 (19)
O1—H1B0.820C5—H50.930
O2—C61.3690 (15)C7—H7A0.960
O2—C71.4192 (18)C7—H7B0.960
O3—C101.2563 (17)C7—H7C0.960
O4—C101.2798 (17)C8—C91.3396 (19)
O4—H40.820C8—H80.930
O5—C111.2298 (15)C9—C101.4733 (19)
C1—C21.3819 (18)C11—C121.4992 (19)
C1—C61.4037 (18)C12—H12A0.960
C2—C31.3831 (19)C12—H12B0.960
C2—H20.930C12—H12C0.960
C3—C41.3931 (18)
C11—N1—C9121.90 (10)O2—C7—H7A109.5
C11—N1—H1119.0O2—C7—H7B109.5
C9—N1—H1119.0H7A—C7—H7B109.5
C1—O1—H1B109.5O2—C7—H7C109.5
C6—O2—C7116.78 (11)H7A—C7—H7C109.5
C10—O4—H4109.5H7B—C7—H7C109.5
O1—C1—C2123.03 (11)C9—C8—C4131.93 (12)
O1—C1—C6117.72 (11)C9—C8—H8114.0
C2—C1—C6119.25 (12)C4—C8—H8114.0
C1—C2—C3120.41 (12)C8—C9—N1124.96 (12)
C1—C2—H2119.8C8—C9—C10119.58 (12)
C3—C2—H2119.8N1—C9—C10115.43 (11)
C2—C3—C4121.20 (12)O3—C10—O4123.11 (13)
C2—C3—H3119.4O3—C10—C9119.79 (12)
C4—C3—H3119.4O4—C10—C9117.10 (12)
C3—C4—C5117.90 (12)O5—C11—N1122.34 (11)
C3—C4—C8117.35 (11)O5—C11—C12120.96 (12)
C5—C4—C8124.65 (11)N1—C11—C12116.69 (12)
C6—C5—C4121.03 (12)C11—C12—H12A109.5
C6—C5—H5119.5C11—C12—H12B109.5
C4—C5—H5119.5H12A—C12—H12B109.5
O2—C6—C5124.83 (12)C11—C12—H12C109.5
O2—C6—C1114.99 (12)H12A—C12—H12C109.5
C5—C6—C1120.16 (12)H12B—C12—H12C109.5
O1—C1—C2—C3178.29 (11)C2—C1—C6—C51.02 (18)
C6—C1—C2—C31.61 (18)C3—C4—C8—C9173.93 (14)
C1—C2—C3—C40.21 (19)C5—C4—C8—C92.4 (2)
C2—C3—C4—C51.73 (18)C4—C8—C9—N13.7 (2)
C2—C3—C4—C8174.86 (11)C4—C8—C9—C10174.16 (13)
C3—C4—C5—C62.31 (18)C11—N1—C9—C889.19 (16)
C8—C4—C5—C6174.01 (12)C11—N1—C9—C1088.76 (15)
C7—O2—C6—C56.86 (19)C8—C9—C10—O35.4 (2)
C7—O2—C6—C1171.24 (13)N1—C9—C10—O3176.52 (13)
C4—C5—C6—O2177.05 (11)C8—C9—C10—O4173.86 (13)
C4—C5—C6—C10.96 (19)N1—C9—C10—O44.20 (18)
O1—C1—C6—O20.68 (16)C9—N1—C11—O55.8 (2)
C2—C1—C6—O2179.22 (11)C9—N1—C11—C12175.51 (12)
O1—C1—C6—C5178.88 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.792.6044 (15)171
O1—H1B···O5ii0.821.842.6582 (13)177
N1—H1···O1iii0.862.132.9501 (14)159
Symmetry codes: (i) x, y+2, z; (ii) x, y+2, z+1; (iii) x+1/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H13NO5
Mr251.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.7573 (14), 12.7518 (14), 14.7290 (17)
V3)2396.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.37 × 0.30 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11011, 2122, 1788
Rint0.021
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.122, 1.01
No. of reflections2122
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.31

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.792.6044 (15)171.2
O1—H1B···O5ii0.821.842.6582 (13)176.5
N1—H1···O1iii0.862.132.9501 (14)158.8
Symmetry codes: (i) x, y+2, z; (ii) x, y+2, z+1; (iii) x+1/2, y+2, z1/2.
 

Acknowledgements

The authors thank the Ministry of Science and Technology of Shaanxi Province and the Ministry of Education of the People's Republic of China for financial support (grant Nos. 2006kz10-G5, 2007ZDKG-70 and 207151).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaasbroek, P. P., Oliver, D. W. & Carpy, A. J. M. (1998). J. Chem. Crystallogr. 28, 193–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, H. N. C., Xu, Z. L., Chang, H. M. & Lee, C. M. (1992). Synthesis, pp. 793–797.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds