organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-{[3-(4,6-di­meth­oxy­pyrimidin-2-yl)ureido]sulfonyl­meth­yl}benzoate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fangshi.li@njut.edu.cn

(Received 11 February 2008; accepted 21 February 2008; online 27 February 2008)

In the title compound, C16H18N4O7S, a synthetic sulfonyl­urea herbicide, there are intra­molecular N—H⋯N and C—H⋯O hydrogen bonds. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds form centrosymmetric dimers. The dihedral angle between the two rings is 50.00 (15)°.

Related literature

For related literature, see: Kong et al. (1990[Kong, F., Hu, X., Wang, L., Tao, Z., Wang, X. & Cao, W. (1990). Huaxue Shijie, 31, 211-213.]); Lee et al. (2002[Lee, J. K., Ahn, K. C., Park, O. S., Ko, Y. K. & Kim, D.-W. (2002). J. Agric. Food Chem. 50, 1791-1803.]); Sabadie (1996[Sabadie, J. (1996). Weed Res. 36, 441-448.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N4O7S

  • Mr = 410.41

  • Monoclinic, C 2/c

  • a = 33.831 (7) Å

  • b = 6.9020 (14) Å

  • c = 16.021 (3) Å

  • β = 104.48 (3)°

  • V = 3622.1 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 (2) K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.914, Tmax = 0.978

  • 3325 measured reflections

  • 3265 independent reflections

  • 2421 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.156

  • S = 1.03

  • 3265 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3 0.86 1.94 2.648 (4) 138
N2—H2A⋯O5i 0.86 2.10 2.951 (3) 170
C9—H9B⋯O1 0.97 2.36 2.970 (4) 120
C15—H15C⋯O1i 0.96 2.43 3.068 (4) 124
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, bensulfuron-methyl, belongs to the class of systemic sulfonylurea herbicides inhibiting acetolactate synthase, a key enzyme in the biosynthesis of the branched-chain amino acids of target plants (Lee et al., 2002). It is widely used in transplanted and direct-seeded rice fields to control most annual and perennial broadleaved weeds selectively (Sabadie, 1996).

We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the C3–C8 and C11/N3/C12/C13/C14/N4 rings is 50.00 (15)°. There are intramolecular N1—H1A···N3 and C9—H9B···O1 hydrogen bonds (Fig. 1), and intermolecular N—H···O and C—H···O hydrogen bonds form centrosymmetric dimers (Fig. 2).

Related literature top

For related literature, see: Kong et al. (1990); Lee et al. (2002); Sabadie (1996).

Experimental top

The title compound, (I), was prepared according to the literature method (Kong et al., 1990).

Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.2 g) in ethyl acetate (25 ml) and evaporating the solvent slowly at room temperature for about 15 d.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and were and included in the refinement in a riding model approximation, with Uiso(H) = 1.2 or 1.5Ueq(N,C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. A hydrogen-bonded dimer. Dashed lines indicate hydrogen bonds.
Methyl 2-{[3-(4,6-dimethoxypyrimidin-2-yl)ureido]sulfonylmethyl}benzoate top
Crystal data top
C16H18N4O7SF(000) = 1712
Mr = 410.41Dx = 1.505 Mg m3
Monoclinic, C2/cMelting point = 450–451 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 33.831 (7) ÅCell parameters from 25 reflections
b = 6.9020 (14) Åθ = 10–13°
c = 16.021 (3) ŵ = 0.23 mm1
β = 104.48 (3)°T = 298 K
V = 3622.1 (13) Å3Needle, colorless
Z = 80.40 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2421 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.2°, θmin = 1.2°
ω/2θ scansh = 4038
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.914, Tmax = 0.978l = 019
3325 measured reflections3 standard reflections every 200 reflections
3265 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.08P)2 + 5P]
where P = (Fo2 + 2Fc2)/3
3265 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C16H18N4O7SV = 3622.1 (13) Å3
Mr = 410.41Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.831 (7) ŵ = 0.23 mm1
b = 6.9020 (14) ÅT = 298 K
c = 16.021 (3) Å0.40 × 0.20 × 0.10 mm
β = 104.48 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2421 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.914, Tmax = 0.9783 standard reflections every 200 reflections
3325 measured reflections intensity decay: none
3265 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
3265 reflectionsΔρmin = 0.31 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.12664 (2)0.14338 (13)0.69392 (5)0.0401 (2)
N10.07804 (7)0.1705 (4)0.64572 (16)0.0424 (7)
H1A0.07190.18360.59060.051*
O10.15578 (7)0.0798 (4)0.92720 (16)0.0557 (7)
C10.19376 (12)0.2563 (5)0.9629 (3)0.0570 (10)
H1B0.21210.36460.97040.085*
H1C0.16760.29460.92780.085*
H1D0.19090.21391.01820.085*
O20.20987 (7)0.0991 (3)0.92109 (16)0.0484 (6)
N20.00822 (7)0.1970 (4)0.63164 (16)0.0388 (6)
H2A0.01140.18570.65650.047*
C20.18727 (9)0.0615 (5)0.90655 (19)0.0379 (7)
N30.02372 (7)0.2300 (4)0.49733 (16)0.0363 (6)
O30.13329 (8)0.0390 (4)0.73670 (16)0.0576 (7)
C30.20669 (9)0.2172 (5)0.86550 (18)0.0356 (7)
O40.14650 (7)0.1838 (4)0.62677 (15)0.0542 (7)
N40.04352 (7)0.2765 (4)0.51521 (16)0.0375 (6)
C40.24906 (9)0.2405 (5)0.8922 (2)0.0432 (8)
H4C0.26470.15130.93000.052*
O50.05149 (7)0.1570 (4)0.76305 (14)0.0509 (6)
C50.26803 (10)0.3949 (5)0.8631 (2)0.0470 (8)
H5A0.29620.41010.88190.056*
O60.03580 (7)0.2645 (4)0.36258 (15)0.0531 (6)
C60.24518 (11)0.5258 (6)0.8063 (2)0.0505 (9)
H6A0.25780.63020.78700.061*
O70.09468 (7)0.3699 (4)0.39861 (15)0.0508 (6)
C70.20337 (10)0.5023 (5)0.7779 (2)0.0468 (8)
H7A0.18830.58960.73820.056*
C80.18338 (9)0.3511 (5)0.80731 (19)0.0363 (7)
C90.13757 (9)0.3323 (5)0.7722 (2)0.0406 (8)
H9A0.12640.45370.74600.049*
H9B0.12490.30340.81880.049*
C100.04638 (9)0.1743 (5)0.6850 (2)0.0369 (7)
C110.00401 (9)0.2356 (4)0.54321 (19)0.0341 (7)
C120.00998 (10)0.2704 (5)0.4133 (2)0.0388 (7)
C130.03018 (10)0.3179 (5)0.3764 (2)0.0438 (8)
H13A0.03950.34690.31810.053*
C140.05548 (9)0.3198 (5)0.4314 (2)0.0391 (7)
C150.12294 (10)0.3408 (6)0.4504 (2)0.0573 (10)
H15A0.14960.38340.41930.086*
H15B0.11430.41380.50280.086*
H15C0.12390.20560.46390.086*
C160.07680 (10)0.1963 (6)0.3980 (2)0.0597 (10)
H16A0.09180.20130.35450.090*
H16B0.07600.06520.41750.090*
H16C0.08990.27700.44570.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0287 (4)0.0485 (5)0.0398 (4)0.0025 (3)0.0022 (3)0.0034 (4)
N10.0293 (13)0.0636 (19)0.0332 (14)0.0023 (13)0.0057 (11)0.0033 (13)
O10.0422 (14)0.0684 (17)0.0634 (15)0.0099 (12)0.0260 (12)0.0167 (13)
C10.067 (2)0.041 (2)0.065 (2)0.0069 (18)0.0199 (19)0.0080 (19)
O20.0434 (13)0.0434 (14)0.0610 (15)0.0055 (10)0.0178 (11)0.0100 (11)
N20.0292 (13)0.0450 (16)0.0394 (14)0.0004 (11)0.0035 (11)0.0083 (12)
C20.0350 (17)0.0447 (18)0.0313 (15)0.0025 (14)0.0032 (13)0.0006 (14)
N30.0344 (14)0.0381 (15)0.0353 (14)0.0032 (11)0.0069 (11)0.0003 (11)
O30.0556 (16)0.0440 (15)0.0620 (16)0.0068 (12)0.0061 (12)0.0009 (12)
C30.0359 (16)0.0420 (18)0.0281 (14)0.0003 (14)0.0067 (12)0.0035 (13)
O40.0377 (13)0.0835 (19)0.0434 (13)0.0003 (12)0.0140 (10)0.0076 (12)
N40.0319 (13)0.0339 (14)0.0419 (15)0.0018 (11)0.0001 (11)0.0019 (12)
C40.0339 (16)0.055 (2)0.0373 (17)0.0008 (15)0.0018 (13)0.0002 (16)
O50.0351 (12)0.0769 (18)0.0383 (13)0.0013 (12)0.0046 (10)0.0061 (12)
C50.0336 (17)0.062 (2)0.0423 (18)0.0094 (16)0.0041 (14)0.0014 (17)
O60.0460 (14)0.0707 (17)0.0428 (13)0.0023 (12)0.0117 (11)0.0010 (12)
C60.049 (2)0.057 (2)0.0463 (19)0.0161 (17)0.0120 (16)0.0005 (17)
O70.0359 (12)0.0585 (15)0.0513 (14)0.0048 (11)0.0016 (10)0.0134 (12)
C70.0469 (19)0.050 (2)0.0393 (17)0.0003 (16)0.0035 (15)0.0036 (16)
C80.0306 (15)0.0397 (17)0.0360 (16)0.0009 (13)0.0035 (12)0.0060 (14)
C90.0344 (16)0.0445 (19)0.0406 (17)0.0049 (14)0.0050 (13)0.0014 (15)
C100.0304 (15)0.0371 (17)0.0412 (18)0.0007 (13)0.0052 (13)0.0015 (14)
C110.0312 (15)0.0291 (16)0.0389 (16)0.0024 (12)0.0028 (13)0.0013 (13)
C120.0439 (18)0.0330 (17)0.0385 (17)0.0033 (14)0.0083 (14)0.0030 (14)
C130.0460 (19)0.045 (2)0.0340 (16)0.0047 (15)0.0020 (14)0.0006 (14)
C140.0363 (17)0.0323 (17)0.0433 (18)0.0011 (13)0.0001 (14)0.0054 (14)
C150.0384 (19)0.068 (3)0.062 (2)0.0021 (18)0.0057 (17)0.011 (2)
C160.0396 (19)0.081 (3)0.057 (2)0.0040 (19)0.0105 (16)0.009 (2)
Geometric parameters (Å, º) top
S—O31.424 (3)O5—C101.224 (4)
S—O41.431 (2)C5—C61.374 (5)
S—N11.643 (3)C5—H5A0.930
S—C91.782 (3)O6—C121.334 (4)
N1—C101.372 (4)O6—C161.440 (4)
N1—H1A0.860C6—C71.383 (5)
O1—C21.199 (4)C6—H6A0.930
C1—O21.451 (4)O7—C141.344 (4)
C1—H1B0.960O7—C151.428 (4)
C1—H1C0.960C7—C81.388 (5)
C1—H1D0.960C7—H7A0.930
O2—C21.333 (4)C8—C91.516 (4)
N2—C101.368 (4)C9—H9A0.970
N2—C111.399 (4)C9—H9B0.970
N2—H2A0.860C12—C131.379 (4)
C2—C31.495 (5)C13—C141.373 (5)
N3—C111.329 (4)C13—H13A0.930
N3—C121.339 (4)C15—H15A0.960
C3—C41.399 (4)C15—H15B0.960
C3—C81.406 (4)C15—H15C0.960
N4—C111.330 (4)C16—H16A0.960
N4—C141.336 (4)C16—H16B0.960
C4—C51.384 (5)C16—H16C0.960
C4—H4C0.930
O3—S—O4119.13 (17)C6—C7—H7A119.3
O3—S—N1110.25 (15)C8—C7—H7A119.3
O4—S—N1103.13 (14)C7—C8—C3118.6 (3)
O3—S—C9109.17 (16)C7—C8—C9118.5 (3)
O4—S—C9109.40 (16)C3—C8—C9122.8 (3)
N1—S—C9104.73 (15)C8—C9—S109.7 (2)
C10—N1—S126.2 (2)C8—C9—H9A109.7
C10—N1—H1A116.9S—C9—H9A109.7
S—N1—H1A116.9C8—C9—H9B109.7
O2—C1—H1B109.5S—C9—H9B109.7
O2—C1—H1C109.5H9A—C9—H9B108.2
H1B—C1—H1C109.5O5—C10—N2121.3 (3)
O2—C1—H1D109.5O5—C10—N1122.7 (3)
H1B—C1—H1D109.5N2—C10—N1116.0 (3)
H1C—C1—H1D109.5N3—C11—N4127.5 (3)
C2—O2—C1115.9 (3)N3—C11—N2118.9 (3)
C10—N2—C11130.5 (3)N4—C11—N2113.6 (3)
C10—N2—H2A114.8O6—C12—N3119.4 (3)
C11—N2—H2A114.8O6—C12—C13118.1 (3)
O1—C2—O2123.4 (3)N3—C12—C13122.5 (3)
O1—C2—C3124.3 (3)C14—C13—C12115.6 (3)
O2—C2—C3112.2 (3)C14—C13—H13A122.2
C11—N3—C12115.7 (3)C12—C13—H13A122.2
C4—C3—C8119.3 (3)N4—C14—O7118.1 (3)
C4—C3—C2118.5 (3)N4—C14—C13124.2 (3)
C8—C3—C2121.9 (3)O7—C14—C13117.7 (3)
C11—N4—C14114.4 (3)O7—C15—H15A109.5
C5—C4—C3120.8 (3)O7—C15—H15B109.5
C5—C4—H4C119.6H15A—C15—H15B109.5
C3—C4—H4C119.6O7—C15—H15C109.5
C6—C5—C4119.8 (3)H15A—C15—H15C109.5
C6—C5—H5A120.1H15B—C15—H15C109.5
C4—C5—H5A120.1O6—C16—H16A109.5
C12—O6—C16118.8 (3)O6—C16—H16B109.5
C5—C6—C7120.1 (3)H16A—C16—H16B109.5
C5—C6—H6A120.0O6—C16—H16C109.5
C7—C6—H6A120.0H16A—C16—H16C109.5
C14—O7—C15118.4 (3)H16B—C16—H16C109.5
C6—C7—C8121.4 (3)
O3—S—N1—C1061.5 (3)N1—S—C9—C8167.4 (2)
O4—S—N1—C10170.2 (3)C11—N2—C10—O5173.7 (3)
C9—S—N1—C1055.8 (3)C11—N2—C10—N16.9 (5)
C1—O2—C2—O11.1 (5)S—N1—C10—O50.1 (5)
C1—O2—C2—C3178.5 (3)S—N1—C10—N2179.5 (2)
O1—C2—C3—C4139.0 (3)C12—N3—C11—N40.0 (5)
O2—C2—C3—C438.4 (4)C12—N3—C11—N2179.3 (3)
O1—C2—C3—C834.9 (5)C14—N4—C11—N31.4 (5)
O2—C2—C3—C8147.7 (3)C14—N4—C11—N2178.0 (3)
C8—C3—C4—C51.0 (5)C10—N2—C11—N38.8 (5)
C2—C3—C4—C5173.1 (3)C10—N2—C11—N4170.6 (3)
C3—C4—C5—C60.9 (5)C16—O6—C12—N36.0 (5)
C4—C5—C6—C70.5 (5)C16—O6—C12—C13173.8 (3)
C5—C6—C7—C81.9 (5)C11—N3—C12—O6178.8 (3)
C6—C7—C8—C31.7 (5)C11—N3—C12—C131.0 (5)
C6—C7—C8—C9179.0 (3)O6—C12—C13—C14179.3 (3)
C4—C3—C8—C70.3 (4)N3—C12—C13—C140.5 (5)
C2—C3—C8—C7174.2 (3)C11—N4—C14—O7177.5 (3)
C4—C3—C8—C9177.5 (3)C11—N4—C14—C131.9 (5)
C2—C3—C8—C98.7 (5)C15—O7—C14—N411.2 (4)
C7—C8—C9—S102.8 (3)C15—O7—C14—C13169.4 (3)
C3—C8—C9—S74.3 (3)C12—C13—C14—N41.0 (5)
O3—S—C9—C874.5 (3)C12—C13—C14—O7178.4 (3)
O4—S—C9—C857.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.861.942.648 (4)138
N2—H2A···O5i0.862.102.951 (3)170
C9—H9B···O10.972.362.970 (4)120
C15—H15C···O1i0.962.433.068 (4)124
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H18N4O7S
Mr410.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)33.831 (7), 6.9020 (14), 16.021 (3)
β (°) 104.48 (3)
V3)3622.1 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.914, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
3325, 3265, 2421
Rint0.035
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.156, 1.03
No. of reflections3265
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.31

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.861.942.648 (4)138
N2—H2A···O5i0.862.102.951 (3)170
C9—H9B···O10.972.362.970 (4)120
C15—H15C···O1i0.962.433.068 (4)124
Symmetry code: (i) x, y, z+3/2.
 

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKong, F., Hu, X., Wang, L., Tao, Z., Wang, X. & Cao, W. (1990). Huaxue Shijie, 31, 211–213.  CAS Google Scholar
First citationLee, J. K., Ahn, K. C., Park, O. S., Ko, Y. K. & Kim, D.-W. (2002). J. Agric. Food Chem. 50, 1791–1803.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSabadie, J. (1996). Weed Res. 36, 441–448.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds