organic compounds
2-(4-Chlorobenzoyl)-3,6-dimethoxynaphthalene
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan, bSection Manager, Group I, Section III, Functional Chemicals Research Laboratory, Nippon Kayaku Co. Ltd, Shimo 3-chome, Kita-ku, Tokyo 115-0042, Japan, and cInstrumentation Analysis Center, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp
In the title compound, C19H15ClO3, the interplanar angle between the naphthalene and benzene ring systems is 62.67 (6)°. The carbonyl group is twisted from both ring planes, with torsion angles of −44.9 (2)° with respect to the naphthalene ring and −26.7 (2)° with respect to the phenylene ring. There is an intermolecular hydrogen bond between an H atom of one methoxy group and the O atom of the second methoxy group, forming chains along the ac diagonal.
Related literature
For related literature, see: Ahn et al. (2003); Allen et al. (1998); Chen et al. (2005); Crasto & Stevens (1998, 2002); Lorenzetti et al. (2005); Nakaema et al. (2007); Su et al. (2004); Wang & Guen (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808004704/fl2189sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808004704/fl2189Isup2.hkl
The title compound was prepared by electrophilic aromatic aroylation reaction of 2,7-dimethoxynaphthalene with 4-chlorobenzoic acid. Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from ethanol and ethyl acetate.
All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å, and Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C19H15ClO3 | F(000) = 680 |
Mr = 326.76 | Dx = 1.358 Mg m−3 |
Monoclinic, P21/c | Melting point = 424.8–425.2 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54187 Å |
a = 8.1894 (5) Å | Cell parameters from 28831 reflections |
b = 20.5251 (13) Å | θ = 4.3–68.2° |
c = 9.9098 (7) Å | µ = 2.22 mm−1 |
β = 106.358 (4)° | T = 296 K |
V = 1598.29 (18) Å3 | Platelet, colorless |
Z = 4 | 0.50 × 0.25 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 2917 independent reflections |
Radiation source: rotating anode | 2652 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 10.00 pixels mm-1 | θmax = 68.2°, θmin = 4.3° |
ω scans | h = −9→9 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −24→24 |
Tmin = 0.458, Tmax = 0.801 | l = −11→11 |
30087 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.054P)2 + 0.2906P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2917 reflections | Δρmax = 0.17 e Å−3 |
211 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0039 (4) |
C19H15ClO3 | V = 1598.29 (18) Å3 |
Mr = 326.76 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 8.1894 (5) Å | µ = 2.22 mm−1 |
b = 20.5251 (13) Å | T = 296 K |
c = 9.9098 (7) Å | 0.50 × 0.25 × 0.10 mm |
β = 106.358 (4)° |
Rigaku R-AXIS RAPID diffractometer | 2917 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2652 reflections with I > 2σ(I) |
Tmin = 0.458, Tmax = 0.801 | Rint = 0.049 |
30087 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.17 e Å−3 |
2917 reflections | Δρmin = −0.28 e Å−3 |
211 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.25848 (6) | 0.44273 (2) | −0.48382 (4) | 0.06829 (17) | |
O1 | −0.25367 (15) | 0.47599 (6) | 0.18888 (12) | 0.0662 (3) | |
O2 | −0.21482 (13) | 0.30244 (5) | 0.06521 (11) | 0.0560 (3) | |
O3 | 0.44684 (14) | 0.21975 (6) | 0.70829 (12) | 0.0662 (3) | |
C1 | 0.01126 (17) | 0.27069 (7) | 0.26978 (14) | 0.0452 (3) | |
H1 | 0.0024 | 0.2272 | 0.2421 | 0.054* | |
C2 | −0.09091 (17) | 0.31627 (7) | 0.18563 (14) | 0.0439 (3) | |
C3 | −0.07602 (17) | 0.38337 (7) | 0.22433 (14) | 0.0441 (3) | |
C4 | 0.03617 (18) | 0.40089 (7) | 0.35010 (15) | 0.0478 (3) | |
H4 | 0.0430 | 0.4444 | 0.3770 | 0.057* | |
C5 | 0.14146 (17) | 0.35510 (7) | 0.44000 (14) | 0.0457 (3) | |
C6 | 0.2559 (2) | 0.37226 (8) | 0.57153 (17) | 0.0573 (4) | |
H6 | 0.2642 | 0.4155 | 0.6006 | 0.069* | |
C7 | 0.3536 (2) | 0.32631 (8) | 0.65574 (17) | 0.0602 (4) | |
H7 | 0.4280 | 0.3384 | 0.7416 | 0.072* | |
C8 | 0.34269 (17) | 0.26071 (8) | 0.61388 (15) | 0.0515 (4) | |
C9 | 0.23401 (16) | 0.24175 (7) | 0.48760 (15) | 0.0475 (3) | |
H9 | 0.2284 | 0.1982 | 0.4606 | 0.057* | |
C10 | 0.13031 (16) | 0.28874 (7) | 0.39836 (14) | 0.0427 (3) | |
C11 | −0.18305 (18) | 0.43524 (7) | 0.13539 (15) | 0.0474 (3) | |
C12 | −0.19823 (17) | 0.43754 (6) | −0.01795 (15) | 0.0446 (3) | |
C13 | −0.34026 (19) | 0.46603 (8) | −0.11003 (16) | 0.0559 (4) | |
H13 | −0.4242 | 0.4839 | −0.0747 | 0.067* | |
C14 | −0.3593 (2) | 0.46831 (8) | −0.25247 (17) | 0.0579 (4) | |
H14 | −0.4556 | 0.4870 | −0.3132 | 0.070* | |
C15 | −0.2335 (2) | 0.44241 (6) | −0.30339 (15) | 0.0498 (3) | |
C16 | −0.0880 (2) | 0.41601 (8) | −0.21476 (16) | 0.0561 (4) | |
H16 | −0.0017 | 0.4004 | −0.2502 | 0.067* | |
C17 | −0.07217 (19) | 0.41313 (7) | −0.07204 (16) | 0.0527 (4) | |
H17 | 0.0246 | 0.3945 | −0.0116 | 0.063* | |
C18 | −0.2507 (2) | 0.23549 (8) | 0.03027 (17) | 0.0576 (4) | |
H18A | −0.2803 | 0.2140 | 0.1061 | 0.086* | |
H18B | −0.1519 | 0.2151 | 0.0149 | 0.086* | |
H18C | −0.3439 | 0.2324 | −0.0537 | 0.086* | |
C19 | 0.4318 (2) | 0.15190 (9) | 0.6806 (2) | 0.0759 (5) | |
H19A | 0.4573 | 0.1429 | 0.5936 | 0.114* | |
H19B | 0.3178 | 0.1381 | 0.6738 | 0.114* | |
H19C | 0.5102 | 0.1288 | 0.7556 | 0.114* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1005 (4) | 0.0595 (3) | 0.0412 (2) | 0.0008 (2) | 0.0139 (2) | 0.00090 (15) |
O1 | 0.0758 (7) | 0.0705 (7) | 0.0523 (6) | 0.0258 (6) | 0.0178 (5) | 0.0004 (5) |
O2 | 0.0605 (6) | 0.0511 (6) | 0.0437 (5) | −0.0009 (5) | −0.0059 (5) | 0.0007 (4) |
O3 | 0.0597 (6) | 0.0702 (7) | 0.0541 (7) | 0.0035 (5) | −0.0078 (5) | 0.0142 (5) |
C1 | 0.0489 (7) | 0.0428 (7) | 0.0405 (7) | −0.0011 (5) | 0.0070 (6) | −0.0004 (5) |
C2 | 0.0440 (7) | 0.0491 (7) | 0.0355 (7) | −0.0019 (5) | 0.0063 (5) | 0.0004 (5) |
C3 | 0.0458 (7) | 0.0467 (7) | 0.0385 (7) | 0.0014 (5) | 0.0099 (6) | 0.0039 (5) |
C4 | 0.0523 (8) | 0.0437 (7) | 0.0454 (8) | −0.0030 (6) | 0.0105 (6) | 0.0002 (6) |
C5 | 0.0450 (7) | 0.0489 (7) | 0.0407 (7) | −0.0052 (6) | 0.0079 (6) | 0.0018 (6) |
C6 | 0.0609 (9) | 0.0543 (8) | 0.0480 (8) | −0.0101 (7) | 0.0014 (7) | −0.0023 (7) |
C7 | 0.0586 (9) | 0.0664 (10) | 0.0442 (8) | −0.0109 (7) | −0.0039 (7) | 0.0006 (7) |
C8 | 0.0436 (7) | 0.0621 (9) | 0.0439 (8) | −0.0021 (6) | 0.0044 (6) | 0.0109 (6) |
C9 | 0.0458 (7) | 0.0495 (8) | 0.0442 (8) | −0.0006 (6) | 0.0077 (6) | 0.0047 (6) |
C10 | 0.0401 (6) | 0.0487 (7) | 0.0381 (7) | −0.0029 (5) | 0.0090 (5) | 0.0035 (5) |
C11 | 0.0468 (7) | 0.0472 (7) | 0.0467 (8) | 0.0045 (6) | 0.0106 (6) | 0.0016 (6) |
C12 | 0.0474 (7) | 0.0405 (7) | 0.0443 (8) | 0.0040 (5) | 0.0101 (6) | 0.0039 (5) |
C13 | 0.0526 (8) | 0.0628 (9) | 0.0504 (9) | 0.0167 (7) | 0.0117 (7) | 0.0064 (7) |
C14 | 0.0561 (8) | 0.0608 (9) | 0.0497 (9) | 0.0109 (7) | 0.0033 (7) | 0.0088 (7) |
C15 | 0.0652 (9) | 0.0395 (7) | 0.0417 (8) | −0.0021 (6) | 0.0102 (6) | 0.0031 (5) |
C16 | 0.0638 (9) | 0.0562 (8) | 0.0516 (9) | 0.0124 (7) | 0.0218 (7) | 0.0063 (7) |
C17 | 0.0501 (7) | 0.0569 (8) | 0.0491 (8) | 0.0138 (6) | 0.0109 (6) | 0.0100 (7) |
C18 | 0.0579 (9) | 0.0551 (9) | 0.0509 (9) | −0.0030 (7) | 0.0007 (7) | −0.0085 (7) |
C19 | 0.0724 (11) | 0.0675 (11) | 0.0721 (12) | 0.0099 (9) | −0.0050 (9) | 0.0169 (9) |
Cl1—C15 | 1.7415 (15) | C8—C9 | 1.372 (2) |
O1—C11 | 1.2196 (18) | C9—C10 | 1.4180 (19) |
O2—C2 | 1.3610 (16) | C9—H9 | 0.9300 |
O2—C18 | 1.4273 (18) | C11—C12 | 1.490 (2) |
O3—C8 | 1.3638 (17) | C12—C17 | 1.384 (2) |
O3—C19 | 1.418 (2) | C12—C13 | 1.3891 (19) |
C1—C2 | 1.3703 (19) | C13—C14 | 1.377 (2) |
C1—C10 | 1.4184 (18) | C13—H13 | 0.9300 |
C1—H1 | 0.9300 | C14—C15 | 1.376 (2) |
C2—C3 | 1.425 (2) | C14—H14 | 0.9300 |
C3—C4 | 1.3718 (19) | C15—C16 | 1.377 (2) |
C3—C11 | 1.4980 (18) | C16—C17 | 1.385 (2) |
C4—C5 | 1.4098 (19) | C16—H16 | 0.9300 |
C4—H4 | 0.9300 | C17—H17 | 0.9300 |
C5—C10 | 1.419 (2) | C18—H18A | 0.9600 |
C5—C6 | 1.419 (2) | C18—H18B | 0.9600 |
C6—C7 | 1.360 (2) | C18—H18C | 0.9600 |
C6—H6 | 0.9300 | C19—H19A | 0.9600 |
C7—C8 | 1.404 (2) | C19—H19B | 0.9600 |
C7—H7 | 0.9300 | C19—H19C | 0.9600 |
C2—O2—C18 | 117.72 (11) | O1—C11—C3 | 120.14 (13) |
C8—O3—C19 | 117.97 (13) | C12—C11—C3 | 119.31 (12) |
C2—C1—C10 | 121.05 (13) | C17—C12—C13 | 118.41 (13) |
C2—C1—H1 | 119.5 | C17—C12—C11 | 121.76 (12) |
C10—C1—H1 | 119.5 | C13—C12—C11 | 119.81 (13) |
O2—C2—C1 | 124.60 (12) | C14—C13—C12 | 121.32 (14) |
O2—C2—C3 | 115.07 (11) | C14—C13—H13 | 119.3 |
C1—C2—C3 | 120.30 (12) | C12—C13—H13 | 119.3 |
C4—C3—C2 | 118.85 (12) | C15—C14—C13 | 118.88 (14) |
C4—C3—C11 | 118.65 (13) | C15—C14—H14 | 120.6 |
C2—C3—C11 | 122.47 (12) | C13—C14—H14 | 120.6 |
C3—C4—C5 | 122.22 (13) | C14—C15—C16 | 121.41 (14) |
C3—C4—H4 | 118.9 | C14—C15—Cl1 | 119.44 (12) |
C5—C4—H4 | 118.9 | C16—C15—Cl1 | 119.15 (12) |
C4—C5—C10 | 118.58 (12) | C15—C16—C17 | 118.92 (14) |
C4—C5—C6 | 122.91 (13) | C15—C16—H16 | 120.5 |
C10—C5—C6 | 118.50 (13) | C17—C16—H16 | 120.5 |
C7—C6—C5 | 120.92 (15) | C12—C17—C16 | 120.98 (13) |
C7—C6—H6 | 119.5 | C12—C17—H17 | 119.5 |
C5—C6—H6 | 119.5 | C16—C17—H17 | 119.5 |
C6—C7—C8 | 120.41 (14) | O2—C18—H18A | 109.5 |
C6—C7—H7 | 119.8 | O2—C18—H18B | 109.5 |
C8—C7—H7 | 119.8 | H18A—C18—H18B | 109.5 |
O3—C8—C9 | 124.79 (15) | O2—C18—H18C | 109.5 |
O3—C8—C7 | 114.39 (13) | H18A—C18—H18C | 109.5 |
C9—C8—C7 | 120.82 (13) | H18B—C18—H18C | 109.5 |
C8—C9—C10 | 119.77 (14) | O3—C19—H19A | 109.5 |
C8—C9—H9 | 120.1 | O3—C19—H19B | 109.5 |
C10—C9—H9 | 120.1 | H19A—C19—H19B | 109.5 |
C9—C10—C1 | 121.47 (13) | O3—C19—H19C | 109.5 |
C9—C10—C5 | 119.58 (12) | H19A—C19—H19C | 109.5 |
C1—C10—C5 | 118.93 (12) | H19B—C19—H19C | 109.5 |
O1—C11—C12 | 120.53 (13) | ||
C18—O2—C2—C1 | 5.6 (2) | C2—C1—C10—C5 | 0.6 (2) |
C18—O2—C2—C3 | −172.22 (13) | C4—C5—C10—C9 | −179.51 (12) |
C10—C1—C2—O2 | −175.97 (12) | C6—C5—C10—C9 | −0.7 (2) |
C10—C1—C2—C3 | 1.7 (2) | C4—C5—C10—C1 | −1.44 (19) |
O2—C2—C3—C4 | 174.76 (12) | C6—C5—C10—C1 | 177.42 (13) |
C1—C2—C3—C4 | −3.1 (2) | C4—C3—C11—O1 | −44.9 (2) |
O2—C2—C3—C11 | −2.86 (19) | C2—C3—C11—O1 | 132.68 (15) |
C1—C2—C3—C11 | 179.26 (13) | C4—C3—C11—C12 | 133.39 (14) |
C2—C3—C4—C5 | 2.3 (2) | C2—C3—C11—C12 | −48.98 (19) |
C11—C3—C4—C5 | 179.99 (13) | O1—C11—C12—C17 | 151.86 (15) |
C3—C4—C5—C10 | 0.0 (2) | C3—C11—C12—C17 | −26.5 (2) |
C3—C4—C5—C6 | −178.83 (14) | O1—C11—C12—C13 | −26.7 (2) |
C4—C5—C6—C7 | 179.15 (15) | C3—C11—C12—C13 | 154.93 (14) |
C10—C5—C6—C7 | 0.3 (2) | C17—C12—C13—C14 | 2.1 (2) |
C5—C6—C7—C8 | −0.1 (3) | C11—C12—C13—C14 | −179.24 (14) |
C19—O3—C8—C9 | −5.8 (2) | C12—C13—C14—C15 | −0.8 (3) |
C19—O3—C8—C7 | 173.98 (16) | C13—C14—C15—C16 | −1.7 (2) |
C6—C7—C8—O3 | −179.71 (15) | C13—C14—C15—Cl1 | 178.11 (13) |
C6—C7—C8—C9 | 0.1 (2) | C14—C15—C16—C17 | 2.8 (2) |
O3—C8—C9—C10 | 179.38 (13) | Cl1—C15—C16—C17 | −177.04 (12) |
C7—C8—C9—C10 | −0.4 (2) | C13—C12—C17—C16 | −1.0 (2) |
C8—C9—C10—C1 | −177.32 (13) | C11—C12—C17—C16 | −179.62 (14) |
C8—C9—C10—C5 | 0.7 (2) | C15—C16—C17—C12 | −1.4 (2) |
C2—C1—C10—C9 | 178.63 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18C···O3i | 0.96 | 2.51 | 3.460 (2) | 171 |
Symmetry code: (i) x−1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C19H15ClO3 |
Mr | 326.76 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 8.1894 (5), 20.5251 (13), 9.9098 (7) |
β (°) | 106.358 (4) |
V (Å3) | 1598.29 (18) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.22 |
Crystal size (mm) | 0.50 × 0.25 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.458, 0.801 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 30087, 2917, 2652 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.100, 1.07 |
No. of reflections | 2917 |
No. of parameters | 211 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.28 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18C···O3i | 0.96 | 2.51 | 3.460 (2) | 171 |
Symmetry code: (i) x−1, y, z−1. |
Acknowledgements
This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.
References
Ahn, T. H., Park, Y. H., Kim, S. H. & Baik, D. H. (2003). J. Appl. Polym. Sci. 90, 3473–3480. Web of Science CrossRef CAS Google Scholar
Allen, J. M., Horwell, D. C., Lainton, J. A. H., O'Neill, J. A. & Ratcliffe, G. S. (1998). Lett. Pept. Sci., 5, 133–137. CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Chen, B.-K., Tsay, S.-Y. & Chen, J.-Y. (2005). Polymer, 46, 8624-8633. CrossRef CAS Google Scholar
Crasto, C. J. & Stevens, E. D. (1998). J. Mol. Struct. (Theochem), 454, 51–59. CrossRef CAS Google Scholar
Crasto, C. J. & Stevens, E. D. (2002). J. Mol. Struct. (Theochem), 582, 77–84. Web of Science CrossRef CAS Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Lorenzetti, C., Finelli, L., Lotti, N., Vannini, M., Gazzano, M., Berti, C. & Munari, A. (2005). Polymer, 46, 4041-4051. CrossRef CAS Google Scholar
Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, C.-Y., Gorforth, A. M., Smith, M. D. & Loye, H.-N. (2004). Chem. Commun. pp. 2158–2159. Web of Science CSD CrossRef Google Scholar
Wang, Z. Y. & Guen, A. L. (1995). Macromolecules, 28, 3728–3732. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Naphthalene derivatives, such as 1,5-disubstituted and 2,6-disubstituted naphthalenes, have been used widely as key building blocks of functional organic compounds such as liquid crystals and electric materials (Su et al., 2004; Ahn et al., 2003; Lorenzetti et al., 2005; Chen et al., 2005). Recently, 1,8-disubstituted naphthalenes have received much attention as unique structured aromatic core compounds, exemplified by dendron cores and supramolecular building blocks (Wang & Guen, 1995; Allen et al., 1998; Crasto & Stevens, 1998, 2002).
In this paper, the structural characteristics of the title compound, which is one of the products of electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, is reported and discussed. The authors have recently reported the crystal structure of the 1,8-diaroylated derivative of 2,7-dimethoxynaphthalene as the product of regioselective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene with 4-chlorobenzoic acid (Nakaema et al., 2007). As 3-substituted naphthalene compounds are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, the title molecule is of interest from both the stereochemical features of its conformation and the thermodynamic aspects of its molecular structure.
An ORTEPIII (Burnett & Johnson, 1996) plot of the title molecule, (I), is displayed in Fig. 1. The 4-chlorobenzoyl group is twisted away from the attached naphthalene ring. The interplanar angle between the best planes of the chlorophenyl ring and the naphthalene ring is 62.67 (6)°. The torsion angle between the carbonyl group and the naphthalene ring is relatively large [C4—C3—C11—O1 = -44.9 (2)°] and that between 4-chlorophenyl group and carbonyl group is rather small [O1—C11—C12—C13 = -26.7 (2)°].
The crystal packing is stabilized mainly by van der Waals interactions. In addition, there is a C—H···O hydrogen bond between a hydrogen of the 2-methoxy group which is situated adjacent to the chlorobenzoyl group, and the ethereal oxygen of the 7-methoxy group in a neighboring molecule that could also contribute the stabilization of the crystal packing (Table 1, Figure 2).