organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(methyl­amine-κN)boron(III) chloride

aMax-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
*Correspondence e-mail: m.jansen@fkf.mpg.de

(Received 30 January 2008; accepted 1 February 2008; online 13 February 2008)

The title compound, C2H10BCl2N2+·Cl or [BCl2(H3CNH2)2]+·Cl, is the first crystallographically characterized di(alkyl­amine)–BCl2+ salt. The B atom is tetra­hedrally coordinated by two Cl and two methyl­amine N atoms. In the crystal structure, the cations and anions inter­act via N—H⋯Cl hydrogen bonds (mean H⋯Cl = 2.40 Å), resulting in a layered structure.

Related literature

For more details of the synthesis and background, see Weinmann, Nuss et al. (2007[Weinmann, M., Nuss, J. & Jansen, M. (2007). Acta Cryst. E63, o4235.]); Weinmann, Kroschel et al. (2007[Weinmann, M., Kroschel, M., Jäschke, T., Nuss, J., Jansen, M., Kolios, F., Morillo, A., Tellaeche, C. & Nieken, U. (2007). J. Mater. Chem. In the press.]). For related structures, see: Nöth & Lukas (1962[Nöth, H. & Lukas, S. (1962). Chem. Ber. 95, 1505-1512.]); Mikhailov et al. (1964[Mikhailov, B. M., Shchegoleva, T. A. & Sheludyakov, V. D. (1964). Izv. Akad. Nauk. SSSR Ser. Khim. 12, 2165-2170.]); Nöth et al. (1966[Nöth, H., Schweizer, P. & Ziegelgänsberger, F. (1966). Chem. Ber. 99, 1089-1096.]); Ryschkewitz & Myers (1975[Ryschkewitz, G. E. & Myers, W. H. (1975). Syn. React. Inorg. Met.-Org. Chem. 5, 123-134.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10BCl2N2+·Cl

  • Mr = 179.28

  • Orthorhombic, P b c a

  • a = 9.9881 (11) Å

  • b = 11.8071 (13) Å

  • c = 14.1039 (15) Å

  • V = 1663.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 100 (2) K

  • 0.30 × 0.02 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS. Version 2007/4. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.751, Tmax = 0.980

  • 19044 measured reflections

  • 2430 independent reflections

  • 2123 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.089

  • S = 1.22

  • 2430 reflections

  • 113 parameters

  • All H-atom parameters refined

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.89 (3) 2.39 (3) 3.2232 (18) 156 (2)
N1—H1B⋯Cl1i 0.85 (3) 2.34 (3) 3.1862 (18) 173 (2)
N2—H2A⋯Cl1 0.86 (3) 2.46 (3) 3.2168 (18) 148 (2)
N2—H2B⋯Cl1ii 0.86 (3) 2.36 (3) 3.2016 (18) 165 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 2005[Dowty, E. (2005). ATOMS. Version 6.3. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Borazonium cations BCl2+ coordinated by secondary amines R2NH are very few in number whereas those coordinated by primary amines are more or less unknown. To our knowledge, there has appeared so far no publication dealing with H3CNH2-coordinated BCl2+ cations.

We recently published the continuous synthesis of Cl3Si-NCH3—BCl2 (DMTA) by a two-step gas phase synthesis. This reaction proceeds with the formation of solid by-products which are separated from the desired product by filtration. The solid mainly consists of MeNH3Cl. Moreover we observed formation of crystalline 2,4,6-trichloro-1,3,5-trimethylborazine, (CH3NBCl)3 (Weinmann, Nuss et al., 2007). Re-crystallization of the solid from THF/n-pentane now additionally afforded crystals of the title compound, (I) (Fig. 1).

The boron atom in the BCl2L2+ cation in (I) is tetrahedrally coordinated by two chlorine atoms Cl2 and Cl3 and two nitrogen atoms N1 and N2 of the methylamine ligands. The smallest angle (N2—B—Cl2) measures 106.38 (13)°, while the biggest (Cl2—B—Cl3) amounts to 113.08 (11)°. The B—Cl bond distances are 1.837 (2) and 1.841 (2) Å whereas the B—N bond lengths measure 1.566 (3) and 1.562 (3) Å. These are values typically found in tetrachloroborate (BCl4-) or tetraaminoborate (B(NR2)4-) anions, respectively.

The chloride counter anions are associated with the cations via N—H···Cl hydrogen bonds (Table 1). From Figure 2 it is evident that the anions are each connetcted to four hydrogen atoms, thereby linking three cations. Consequently all the N-bonded H atoms contribute to hydrogen-bond bridges.

A further special feature is the formation of a layered structure in (001) which results from the H-bridge formation. The layers, which are stacked in [001] are connected via less polar van-der-Vaals interactions.

Related literature top

For more details of the synthesis and background, see Weinmann, Nuss et al. (2007); Weinmann, Kroschel et al. (2007). For related structures, see: Nöth & Lukas (1962); Mikhailov et al. (1964); Nöth et al. (1966); Ryschkewitz & Myers (1975).

Experimental top

[BCl2(H3CNH2)2]Cl was obtained as a side-product in amounts < 5% during the continuous synthesis of DMTA. Details of the experimental setup are found elsewhere (Weinmann, Nuss et al., 2007; Weinmann, Kroschel et al., 2007). Re-crystallization of the reaction mixture from THF/n-hexane afforded colourless needles of (I).

Refinement top

All H atoms were found in a difference map and their positions and Uiso values were freely refined.

Computing details top

Data collection: SMART (Bruker 2005); cell refinement: SAINT (Bruker 2005); data reduction: SAINT (Bruker 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms). Hydrogen bonds are indicated by thin red lines.
[Figure 2] Fig. 2. Packing diagram of (I) with hydrogen bonds indicated by dashed lines.
Dichloridobis(methylamine-κN)boron(III) chloride top
Crystal data top
C2H10BCl2N2+·ClF(000) = 736
Mr = 179.28Dx = 1.432 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5369 reflections
a = 9.9881 (11) Åθ = 2.6–34.8°
b = 11.8071 (13) ŵ = 1.01 mm1
c = 14.1039 (15) ÅT = 100 K
V = 1663.3 (3) Å3Needle, colourless
Z = 80.30 × 0.02 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
2430 independent reflections
Radiation source: fine-focus sealed tube2123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1414
Tmin = 0.751, Tmax = 0.980k = 1616
19044 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.089All H-atom parameters refined
S = 1.22 w = 1/[σ2(Fo2) + (0.036P)2 + 0.6817P]
where P = (Fo2 + 2Fc2)/3
2430 reflections(Δ/σ)max = 0.001
113 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C2H10BCl2N2+·ClV = 1663.3 (3) Å3
Mr = 179.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.9881 (11) ŵ = 1.01 mm1
b = 11.8071 (13) ÅT = 100 K
c = 14.1039 (15) Å0.30 × 0.02 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
2430 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2123 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.980Rint = 0.050
19044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.089All H-atom parameters refined
S = 1.22Δρmax = 0.62 e Å3
2430 reflectionsΔρmin = 0.28 e Å3
113 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43797 (5)0.04596 (4)0.73581 (4)0.02091 (13)
Cl20.54279 (5)0.21105 (4)0.55584 (3)0.01808 (12)
Cl30.82564 (5)0.25006 (4)0.63429 (4)0.01710 (12)
B0.6695 (2)0.16781 (17)0.64305 (15)0.0120 (4)
N10.70412 (17)0.03969 (14)0.62830 (12)0.0136 (3)
H1A0.630 (3)0.002 (2)0.6429 (17)0.021 (6)*
H1B0.767 (3)0.023 (2)0.6669 (19)0.024 (7)*
N20.60546 (17)0.18659 (14)0.74288 (12)0.0137 (3)
H2A0.535 (3)0.145 (2)0.7468 (19)0.030 (7)*
H2B0.579 (3)0.256 (3)0.744 (2)0.028 (7)*
C30.7536 (3)0.01034 (19)0.53109 (16)0.0212 (4)
H3A0.831 (3)0.059 (2)0.519 (2)0.032 (7)*
H3B0.682 (3)0.020 (3)0.488 (2)0.040 (8)*
H3C0.782 (3)0.066 (2)0.5310 (19)0.027 (7)*
C40.6894 (3)0.1676 (2)0.82892 (16)0.0253 (5)
H4A0.636 (3)0.178 (2)0.8830 (19)0.025 (7)*
H4B0.766 (4)0.218 (3)0.831 (2)0.045 (9)*
H4C0.724 (3)0.094 (3)0.825 (2)0.034 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0190 (2)0.0103 (2)0.0334 (3)0.00027 (17)0.0106 (2)0.00070 (18)
Cl20.0168 (2)0.0200 (2)0.0174 (2)0.00113 (18)0.00353 (18)0.00502 (18)
Cl30.0131 (2)0.0133 (2)0.0249 (3)0.00233 (17)0.00170 (18)0.00173 (18)
B0.0121 (9)0.0100 (9)0.0140 (10)0.0011 (7)0.0011 (7)0.0001 (7)
N10.0143 (8)0.0125 (8)0.0141 (8)0.0001 (6)0.0007 (6)0.0001 (6)
N20.0144 (8)0.0105 (7)0.0161 (8)0.0011 (6)0.0004 (6)0.0003 (6)
C30.0308 (12)0.0155 (10)0.0173 (10)0.0007 (9)0.0065 (9)0.0034 (8)
C40.0299 (12)0.0321 (13)0.0140 (10)0.0132 (10)0.0023 (9)0.0022 (9)
Geometric parameters (Å, º) top
B—Cl21.837 (2)N2—H2A0.86 (3)
B—Cl31.841 (2)N2—H2B0.86 (3)
B—N21.562 (3)C3—H3A0.98 (3)
B—N11.566 (3)C3—H3B0.95 (3)
N1—C31.498 (3)C3—H3C0.95 (3)
N1—H1A0.89 (3)C4—H4A0.94 (3)
N1—H1B0.85 (3)C4—H4B0.97 (3)
N2—C41.492 (3)C4—H4C0.93 (3)
N2—B—N1110.33 (15)C4—N2—H2B107.4 (18)
N2—B—Cl2106.38 (13)B—N2—H2B106.0 (18)
N1—B—Cl2109.37 (13)H2A—N2—H2B107 (3)
N2—B—Cl3109.41 (13)N1—C3—H3A106.6 (16)
N1—B—Cl3108.27 (13)N1—C3—H3B108.3 (18)
Cl2—B—Cl3113.08 (11)H3A—C3—H3B114 (2)
C3—N1—B114.71 (16)N1—C3—H3C108.7 (16)
C3—N1—H1A111.9 (16)H3A—C3—H3C109 (2)
B—N1—H1A105.4 (17)H3B—C3—H3C110 (2)
C3—N1—H1B106.6 (18)N2—C4—H4A108.8 (17)
B—N1—H1B107.7 (18)N2—C4—H4B112.0 (19)
H1A—N1—H1B110 (2)H4A—C4—H4B110 (3)
C4—N2—B118.80 (16)N2—C4—H4C107.7 (18)
C4—N2—H2A108.7 (18)H4A—C4—H4C112 (2)
B—N2—H2A108.1 (18)H4B—C4—H4C106 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.89 (3)2.39 (3)3.2232 (18)156 (2)
N1—H1B···Cl1i0.85 (3)2.34 (3)3.1862 (18)173 (2)
N2—H2A···Cl10.86 (3)2.46 (3)3.2168 (18)148 (2)
N2—H2B···Cl1ii0.86 (3)2.36 (3)3.2016 (18)165 (2)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC2H10BCl2N2+·Cl
Mr179.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)9.9881 (11), 11.8071 (13), 14.1039 (15)
V3)1663.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.30 × 0.02 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.751, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
19044, 2430, 2123
Rint0.050
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.089, 1.22
No. of reflections2430
No. of parameters113
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.62, 0.28

Computer programs: SMART (Bruker 2005), SAINT (Bruker 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.89 (3)2.39 (3)3.2232 (18)156 (2)
N1—H1B···Cl1i0.85 (3)2.34 (3)3.1862 (18)173 (2)
N2—H2A···Cl10.86 (3)2.46 (3)3.2168 (18)148 (2)
N2—H2B···Cl1ii0.86 (3)2.36 (3)3.2016 (18)165 (2)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge financial support by the Max Planck Society and the German Research Foundation.

References

First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SADABS. Version 2007/4. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2005). ATOMS. Version 6.3. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationMikhailov, B. M., Shchegoleva, T. A. & Sheludyakov, V. D. (1964). Izv. Akad. Nauk. SSSR Ser. Khim. 12, 2165–2170.  Google Scholar
First citationNöth, H. & Lukas, S. (1962). Chem. Ber. 95, 1505–1512.  Google Scholar
First citationNöth, H., Schweizer, P. & Ziegelgänsberger, F. (1966). Chem. Ber. 99, 1089–1096.  Google Scholar
First citationRyschkewitz, G. E. & Myers, W. H. (1975). Syn. React. Inorg. Met.-Org. Chem. 5, 123–134.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeinmann, M., Kroschel, M., Jäschke, T., Nuss, J., Jansen, M., Kolios, F., Morillo, A., Tellaeche, C. & Nieken, U. (2007). J. Mater. Chem. In the press.  Google Scholar
First citationWeinmann, M., Nuss, J. & Jansen, M. (2007). Acta Cryst. E63, o4235.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds