organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o571-o572

1,4-Di­hydroxy­quinoxaline-2,3(1H,4H)-dione

aDepartment of Chemistry, Al al-Bayt University, Mafraq, Jordan, bInstitut für Organische Chemie der Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and cChemistry Department, University of Jordan, Amman, Jordan
*Correspondence e-mail: bfali@aabu.edu.jo

(Received 30 January 2008; accepted 4 February 2008; online 8 February 2008)

The asymmetric unit of the title compound, C8H6N2O4, contains one half-mol­ecule; a twofold rotation axis bisects the molecule. The quinoxaline ring is planar, which can be attributed to electron delocalization. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into R22(10) motifs, leading to layers, which inter­act via phen­yl–phenyl inter­actions (C⋯C distances in the range 3.238–3.521 Å).

Related literature

For general background, see: Zarranz et al. (2004[Zarranz, B., Jaso, A., Aldana, I. & Monge, A. (2004). Bioorg. Med. Chem. 12, 3711-3721.]); Chowdhury et al. (2004[Chowdhury, G., Kotandeniya, D., Daniels, J. S., Barnes, C. L. & Gates, K. S. (2004). Chem. Res. Toxicol. 17, 1399-1405.]); Monge et al. (1995[Monge, A., Palop, J. A., Lopez de Cerain, A., Senador, V., Martinez-Crespo, F. J., Sainz, Y., Narro, S., Garcia, E., Miguel, C., Gonzalez, M., Hamilton, E., Barker, A. J., Clarke, E. D. & Greenhow, D. T. (1995). J. Med. Chem. 38, 1786-1792.]); Fuchs et al. (2001[Fuchs, T., Chowdhury, G., Barnes, C. L. & Gates, K. S. (2001). J. Org. Chem. 66, 107-114.]); Dance (1996[Dance, I. G. (1996). Supramolecular Inorganic Chemistry, in The Crystal as a Supramolecular Entity, edited by G. R. Desiraju, pp. 137-233. New York: John Wiley.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related literature, see: Elina & Tsyrul'nikova (1963[Elina, A. S. & Tsyrul'nikova, L. G. (1963). Zh. Obshch. Khim. 33, 1544-1551.]); Akkurt et al. (2004[Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1266-o1268.]); Mustaphi et al. (2001[Mustaphi, N. E., Ferfra, S., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o176-o177.]); Oxtoby et al. (2005[Oxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). Chem. Eur. J. 11, 4643-4654.]); Ley & Seng (1975[Ley, K. & Seng, F. (1975). Synthesis, 415, 415-422.]); For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]);

[Scheme 1]

Experimental

Crystal data
  • C8H6N2O4

  • Mr = 194.15

  • Orthorhombic, C 2221

  • a = 4.2562 (6) Å

  • b = 17.630 (3) Å

  • c = 10.4775 (17) Å

  • V = 786.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 294 (2) K

  • 0.50 × 0.20 × 0.10 mm

Data collection
  • Nicolet P3 diffractometer

  • Absorption correction: none

  • 1004 measured reflections

  • 529 independent reflections

  • 437 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections every 50 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.071

  • S = 1.07

  • 529 reflections

  • 69 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.96 (3) 1.63 (3) 2.584 (2) 174 (3)
Symmetry code: (i) x, -y+1, -z.

Data collection: P3/PC Data Collection Software (Siemens, 1991[Siemens (1991). P3/PC Data Collection Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: P3/PC Data Collection Software; data reduction: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Quinoxalines are of interest owing to their biological activities. They seem to have very interesting anticancer activity (Zarranz et al., 2004). For example, 3-aminoquinoxaline-2-carbonitrile 1,4-dioxide have been studied extensively as bioreductive cytotoxic agent. It was found to be an efficient agent and causes redox-activated DNA damage (Chowdhury et al., 2004), even more active than the first drug clinically used as bioreductive cytotoxic agent (Monge et al., 1995; Fuchs et al., 2001). A nonconvenient synthesis of the title compound, (I), was reported previously (Elina & Tsyruľ nikova, 1963), via the hydrolysis of 2-amino-3-hydroxyquinoxaline 1,4-dioxide, which results as a side product (4%) from oxidation of 2-acetamidoquinoxaline with acetic peroxide acid using boiling HCl solution. We report herein a novel simple synthetic method for (I), along with its crystal structure.

The new synthetic strategy for (I), (Fig. 1), is based on the reaction of (1) with NaOH solution, yielding (2) in an SNAr reaction, which upon hydrolysis with boiling HCl solution, via protonation of amine followed by the attack of water molecule, yielded (I) in a good amount (90%).

The asymmetric unit of the title compound, (I), (Fig. 2) contains one half-molecule. The quinoxaline ring is planar, which can be attributed to a wide range of electron delocalization. Bond lengths and angles are in accordance with the corresponding reported values in 1,4-dihydroquinoxaline -2,3-dione core (Oxtoby et al., 2005) and other similar N-alkyl quinoxalines (Akkurt et al., 2004; Mustaphi et al., 2001). The existence of (I) in the dione form is evident from C1—O2 [1.226 (3) Å] bond, being smaller than a pure single bond, which confirms the double bond character (Allen et al., 1987). The C1—C1i [1.503 (4) Å] bond has single bond character compared to multiple bond characters in C2—C2i [1.381 (4) Å], C2—C3 [1.391 (3) Å], C3—C4 [1.382 (3) Å] and C4—C4i [1.372 (6) Å] [symmetry code: (i) -x, y, 1/2 - z]. The N1—C1 [1.345 (3) Å] bond is significantly shorter than N1—C2 [1.404 (3) Å] and it is an intermediate between those typical for the corresponding single and double bonds, suggesting some degree of delocalization. The N1—C1 bond length is closer to the average Car—Nsp2 (planar) value of 1.353 (7) Å rather than the Car—Nsp3 (pyramidal) value of 1.419 (17) Å (Allen et al., 1987), with the sum of the bond angles around atom N1 [359.81 (18)°], indicating sp2 hybridization.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into R22(10) motifs (Fig. 3) (Bernstein et al., 1995) leading to layers running along the c axis (Fig. 4). Molecules within layers are further interacting via phenyl···phenyl interactions (Dance, 1996), where the layers parallel to a axis interact in an offset stacking motif (C···C distances in the range of 3.238–3.521 Å).

Related literature top

For general background, see: Zarranz et al. (2004); Chowdhury et al. (2004); Monge et al. (1995); Fuchs et al. (2001); Dance (1996); Bernstein et al. (1995). For related literature, see: Elina & Tsyruľ nikova (1963); Akkurt et al. (2004); Mustaphi et al. (2001); Oxtoby et al. (2005); Ley & Seng (1975); For bond-length data, see: Allen et al. (1987)

Experimental top

For the preparation of (I), to a suspension solution of (1) (2.02 g, 10 mmol) (Ley & Seng, 1975) in ethanol (20 ml), NaOH (20 ml, 10%) was added to give a deep blue solution. After refluxing for 5 h, the brown solution was allowed to cool to room temperature. The resulting mixture was then treated with HCl (30 ml, 10%), refluxed for another 5 h and then allowed to stand undisturbed. The resulting residual brown solid was filtered off, washed with cold water (5 ml) and then by cold ethanol (5 ml). The title compound, (I), was recrystallized from ethanol solution (yield; 1.76 g, 90%, m.p. 535–536 K decomposition). Analysis found: C 49.45, H 3.27, N 14.41%; C8H6N2O4 requires: C 49.49, H 3.12, N 14.43%. 1H NMR (300 MHz, DMSO-d6): δ = 7.36 (m, 2H; H4/H7), 7.56 (m, 2H; H5/H6); 13C NMR (75 MHz, DMSO-d6): δ = 111.6 (C4/C7), 123.3 (C5/C6), 124.0 (C4a/C7a), 150.4 (C2/C3) p.p.m.. ESI: m/z = 217.02 (C8H6N2O4Na).

Refinement top

H atom (for OH) was located in a difference synthesis and refined isotropically [O—H = 0.96 (3) Å; Uiso(H) = 0.072 (10) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: P3/PC Data Collection Software (Siemens, 1991); cell refinement: P3/PC Data Collection Software (Siemens, 1991); data reduction: SHELXTL-Plus (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Schematic representation for the steps through which reaction proceeds.
[Figure 2] Fig. 2. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of R22(10) motifs.
[Figure 4] Fig. 4. A packing diagram of (I), showing the layers of molecules parallel to c axis. All hydrogen atoms were omitted for clarity. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) -x, y, -z + 1/2, (ii) x, -y + 1, -z].
1,4-Dihydroxyquinoxaline-2,3(1H,4H)-dione top
Crystal data top
C8H6N2O4F(000) = 400
Mr = 194.15Dx = 1.640 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 20 reflections
a = 4.2562 (6) Åθ = 14–16°
b = 17.630 (3) ŵ = 0.14 mm1
c = 10.4775 (17) ÅT = 294 K
V = 786.2 (2) Å3Plates, colourless
Z = 40.50 × 0.20 × 0.10 mm
Data collection top
Nicolet P3
diffractometer
Rint = 0.022
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.3°
Graphite monochromatorh = 05
Wyckoff scank = 022
1004 measured reflectionsl = 1313
529 independent reflections3 standard reflections every 50 reflections
437 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.4073P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
529 reflectionsΔρmax = 0.12 e Å3
69 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
C8H6N2O4V = 786.2 (2) Å3
Mr = 194.15Z = 4
Orthorhombic, C2221Mo Kα radiation
a = 4.2562 (6) ŵ = 0.14 mm1
b = 17.630 (3) ÅT = 294 K
c = 10.4775 (17) Å0.50 × 0.20 × 0.10 mm
Data collection top
Nicolet P3
diffractometer
Rint = 0.022
1004 measured reflections3 standard reflections every 50 reflections
529 independent reflections intensity decay: 2%
437 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.12 e Å3
529 reflectionsΔρmin = 0.15 e Å3
69 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2116 (4)0.41727 (11)0.15388 (16)0.0350 (5)
C10.1130 (6)0.48556 (11)0.1948 (2)0.0364 (6)
O10.4527 (4)0.41624 (10)0.06569 (15)0.0456 (5)
H10.357 (7)0.4338 (15)0.012 (3)0.072 (10)*
C20.1068 (5)0.34702 (11)0.2004 (2)0.0332 (5)
O20.1965 (5)0.54622 (9)0.14878 (15)0.0531 (6)
C30.2131 (7)0.27901 (13)0.1487 (2)0.0456 (7)
H30.35410.27880.08080.055*
C40.1046 (7)0.21177 (13)0.2002 (2)0.0557 (8)
H40.17450.16590.16690.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0369 (10)0.0401 (9)0.0279 (8)0.0022 (10)0.0011 (9)0.0011 (8)
C10.0452 (15)0.0371 (12)0.0269 (10)0.0036 (11)0.0014 (13)0.0019 (9)
O10.0416 (9)0.0631 (10)0.0320 (8)0.0113 (10)0.0045 (9)0.0052 (9)
C20.0354 (14)0.0334 (10)0.0309 (10)0.0004 (10)0.0096 (12)0.0007 (8)
O20.0823 (16)0.0374 (8)0.0397 (9)0.0123 (10)0.0136 (13)0.0017 (7)
C30.0519 (16)0.0435 (13)0.0415 (13)0.0099 (13)0.0118 (16)0.0077 (10)
C40.072 (2)0.0336 (11)0.0615 (16)0.0086 (13)0.0242 (18)0.0079 (11)
Geometric parameters (Å, º) top
N1—C11.345 (3)C2—C2i1.381 (4)
N1—O11.381 (2)C2—C31.391 (3)
N1—C21.404 (3)C3—C41.382 (3)
C1—O21.226 (3)C3—H30.9300
C1—C1i1.503 (4)C4—C4i1.372 (6)
O1—H10.96 (3)C4—H40.9300
C1—N1—O1117.21 (19)C2i—C2—N1118.08 (11)
C1—N1—C2125.42 (18)C3—C2—N1121.5 (2)
O1—N1—C2117.18 (18)C4—C3—C2118.6 (2)
O2—C1—N1124.4 (2)C4—C3—H3120.7
O2—C1—C1i119.22 (14)C2—C3—H3120.7
N1—C1—C1i116.41 (12)C4i—C4—C3120.93 (16)
N1—O1—H1104.2 (17)C4i—C4—H4119.5
C2i—C2—C3120.47 (15)C3—C4—H4119.5
O1—N1—C1—O28.8 (3)C1—N1—C2—C3177.4 (2)
C2—N1—C1—O2176.4 (2)O1—N1—C2—C37.8 (3)
O1—N1—C1—C1i170.8 (2)C2i—C2—C3—C41.1 (4)
C2—N1—C1—C1i4.1 (4)N1—C2—C3—C4178.9 (2)
C1—N1—C2—C2i2.5 (4)C2—C3—C4—C4i0.3 (5)
O1—N1—C2—C2i172.3 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.96 (3)1.63 (3)2.584 (2)174 (3)
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H6N2O4
Mr194.15
Crystal system, space groupOrthorhombic, C2221
Temperature (K)294
a, b, c (Å)4.2562 (6), 17.630 (3), 10.4775 (17)
V3)786.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.50 × 0.20 × 0.10
Data collection
DiffractometerNicolet P3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1004, 529, 437
Rint0.022
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.071, 1.07
No. of reflections529
No. of parameters69
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.15

Computer programs: P3/PC Data Collection Software (Siemens, 1991), SHELXTL-Plus (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.96 (3)1.63 (3)2.584 (2)174 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We acknowledge financial support from Al al-Bayt University (Jordan). We are grateful for a research grant from Deutsche Forschungsgemeinschaft (DFG) 2007 (to R. Abu-El-Halawa) and for the generous hospitality and discussions of Prof Volker Jäger and to Helmut Griesser at the Institute of Organic Chemistry, University of Stuttgart, Germany. We also thank Mr Raed Soudqi for his help.

References

First citationAkkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1266–o1268.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChowdhury, G., Kotandeniya, D., Daniels, J. S., Barnes, C. L. & Gates, K. S. (2004). Chem. Res. Toxicol. 17, 1399–1405.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDance, I. G. (1996). Supramolecular Inorganic Chemistry, in The Crystal as a Supramolecular Entity, edited by G. R. Desiraju, pp. 137–233. New York: John Wiley.  Google Scholar
First citationElina, A. S. & Tsyrul'nikova, L. G. (1963). Zh. Obshch. Khim. 33, 1544–1551.  CAS Google Scholar
First citationFuchs, T., Chowdhury, G., Barnes, C. L. & Gates, K. S. (2001). J. Org. Chem. 66, 107–114.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLey, K. & Seng, F. (1975). Synthesis, 415, 415–422.  CrossRef Google Scholar
First citationMonge, A., Palop, J. A., Lopez de Cerain, A., Senador, V., Martinez-Crespo, F. J., Sainz, Y., Narro, S., Garcia, E., Miguel, C., Gonzalez, M., Hamilton, E., Barker, A. J., Clarke, E. D. & Greenhow, D. T. (1995). J. Med. Chem. 38, 1786–1792.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMustaphi, N. E., Ferfra, S., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o176–o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). Chem. Eur. J. 11, 4643–4654.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1991). P3/PC Data Collection Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarranz, B., Jaso, A., Aldana, I. & Monge, A. (2004). Bioorg. Med. Chem. 12, 3711–3721.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o571-o572
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds