metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m460-m461

Bis(4-fluoro­benzoato-κ2O,O′)bis­­(nicotinamide-κN1)zinc(II) monohydrate

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Physics, Faculty of Arts and Science, Sakarya University, 54187 Esentepe, Adapazarı, Turkey, and cDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 22 January 2008; accepted 4 February 2008; online 6 February 2008)

The title compound, [Zn(C7H4FO2)2(C6H6N2O)2]·H2O, is a monomeric complex. It contains two 4-fluoro­benzoate and two nicotinamide ligands and one uncoordinated water mol­ecule. The 4-fluoro­benzoates act as bidentate chelating ligands, while the nicotinamides are monodentate. The six-coordinate geometry around the ZnII atom may be described as highly distorted octa­hedral, with the two nicotinamide ligands arranged cis. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a supra­molecular structure.

Related literature

For general background, see: Adiwidjaja et al. (1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]); Amiraslanov et al. (1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]); Antsyshkina et al. (1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]); Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Day & Selbin (1969[Day, M. C. & Selbin, J. (1969). Theoretical Inorganic Chemistry, p. 109. New York: Van Nostrand Reinhold.]); Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]); Nadzhafov, Shnulin & Mamedov (1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). For related structures, see: Amiraslanov et al. (1980[Amiraslanov, I. R., Nadzhafov, G. N., Usubaliev, B. T., Musaev, A. A., Movsumov, E. M. & Mamedov, Kh. S. (1980). Zh. Strukt. Khim. 21, 140-145.]); Capilla & Aranda (1979[Capilla, A. V. & Aranda, R. A. (1979). Cryst. Struct. Commun. 8, 795-798.]); Clegg et al. (1986a[Clegg, W., Little, I. R. & Straughan, B. P. (1986a). Acta Cryst. C42, 919-920.],b[Clegg, W., Little, I. R. & Straughan, B. P. (1986b). Acta Cryst. C42, 1701-1703.], 1987[Clegg, W., Little, I. R. & Straughan, B. P. (1987). Acta Cryst. C43, 456-457.]); Guseinov et al. (1984[Guseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. & Mamedov, Kh. S. (1984). Koord. Khim. 10, 117-122.]); Hökelek et al. (2007[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561-m2562.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.], 2001[Hökelek, T. & Necefoğlu, H. (2001). Anal. Sci. 17, 1241-1242.]); Nadzhafov, Usubaliev et al. (1981[Nadzhafov, G. N., Usubaliev, B. T., Amiraslanov, I. R., Movsumov, E. M. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 770-775.]); Necefoğlu et al. (2002[Necefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758-m761.]); Niekerk et al. (1953[Niekerk, J. N. van, Schoening, F. R. L. & Talbot, J. H. (1953). Acta Cryst. 6, 720-723.]); Usubaliev et al. (1992[Usubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, 203-2.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4FO2)2(C6H6N2O)2]·H2O

  • Mr = 605.87

  • Triclinic, [P \overline 1]

  • a = 8.2363 (2) Å

  • b = 12.3711 (2) Å

  • c = 14.8971 (3) Å

  • α = 113.178 (14)°

  • β = 99.015 (17)°

  • γ = 99.465 (16)°

  • V = 1334.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 294 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.735, Tmax = 0.816

  • 5794 measured reflections

  • 5401 independent reflections

  • 4454 reflections with I > 2σ(I)

  • Rint = 0.058

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.152

  • S = 1.14

  • 5401 reflections

  • 368 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn—O1 1.978 (2)
Zn—O2 2.564 (3)
Zn—O3 2.010 (3)
Zn—O4 2.458 (3)
Zn—N1 2.079 (2)
Zn—N3 2.095 (3)
O1—Zn—O2 55.96 (12)
O1—Zn—O3 142.65 (12)
O1—Zn—O4 97.49 (10)
O1—Zn—N1 102.97 (9)
O1—Zn—N3 106.17 (10)
O2—Zn—O3 93.35 (10)
O2—Zn—O4 88.13 (10)
O2—Zn—N1 158.51 (9)
O2—Zn—N3 90.70 (9)
O3—Zn—O4 57.04 (10)
O3—Zn—N1 104.14 (10)
O3—Zn—N3 93.66 (11)
O4—Zn—N1 90.96 (10)
O4—Zn—N3 150.53 (10)
N1—Zn—N3 100.39 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯O1 0.97 (7) 2.08 (7) 2.910 (8) 144 (6)
O7—H72⋯O4i 0.92 (8) 1.81 (8) 2.713 (10) 167 (8)
N2—H2A⋯O5ii 0.86 2.07 2.905 (4) 165
N2—H2B⋯O6iii 0.86 2.15 2.977 (4) 161
N4—H4A⋯O2iv 0.86 2.14 2.961 (4) 159
N4—H4B⋯O2v 0.86 2.11 2.920 (4) 157
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z+1; (iii) x, y-1, z; (iv) -x, -y+1, -z; (v) x-1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). The structural functions and coordination relationships of the arylcarboxylate ion in zinc(II) complexes of benzoic acid derivatives may be changed, depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Adiwidjaja et al., 1978; Antsyshkina et al., 1980; Amiraslanov et al., 1979; Nadzhafov, Shnulin & Mamedov, 1981; Shnulin et al., 1981).

The solid-state structures of anhydrous zinc(II) carboxylates include one-dimensional (Clegg et al., 1986a; Guseinov et al., 1984), two-dimensional (Clegg et al., 1986b, 1987) and three-dimensional (Capilla & Aranda, 1979) polymeric motifs of different types, while discerete monomeric complexes with octahedral or tetrahedral coordination geometry are found if water or other donor molecules are coordinated to Zn (Niekerk et al., 1953; Usubaliev et al., 1992). The structures of several complexes obtained by reacting ZnII with NA and DENA have been determined in our laboratory, including those of [Zn(C7H4FO2)2(DENA)2(H2O)2], (II), (Hökelek et al., 2007), [Zn(C7H5O3)2(NA)2], (III), (Necefoğlu et al., 2002), [Zn(C7H5O3)(OH2)3(NA)].C7O3H5, (IV), (Hökelek & Necefoğlu, 2001), [Zn2(C7H5O3)4(DENA)2(H2O)2], (V), (Hökelek & Necefoğlu, 1996). In (III), one of the 4-hydroxybenzoate ions acts as bidentate ligand, while the other one is monodentate, but in (V), two of the benzoate ions act as monodentate ligands, while the other two are bidentate, bridging two Zn atoms. The structure determination of the title compound, (I), a zinc(II) complex with two fluorobenzoate (FB), two NA ligands and one uncoordinated water molecule, was undertaken in order to determine the properties of the FB and NA ligands and also to compare the results obtained with those reported previously.

In the monomeric title complex, the ZnII atom is coordinated by two NA and two FB ligands. Two FB ions act as bidentate ligands, while two NA molecules are monodentate ligands (Fig. 1). Besides four short coordination bonds, the close contact of the O4 atom with the Zn atom [Zn···O4 = 2.458 (3) Å] may be considered to give the fifth coordination bond, as in (III) [Zn···O4 = 2.404 (2) Å]; this distance is much greater than the sum of the corresponding ionic radii (2.14 Å; Day & Selbin, 1969). Similar reported Zn···O contacts are 2.50 (1) Å in [Zn(n-HOC6H4COO)2(C5H5N)2].2C5H5N (Nadzhafov, Usubaliev et al., 1981) and 2.494 (8) Å in [Zn(p-H2NC6H4COO)2]n.1.5nH2O (Amiraslanov et al., 1980). On the other hand, the Zn···O2 distance [2.564 (3) Å] in (I) may also be considered as a coordination bond, although it is weak. Thus, the six-coordination geometry around the ZnII atom may be described as highly distorted octahedral (Table 1), with the two nicotinamide ligands arranged cis.

In the binuclear complex (V), the average Zn—O bond length [1.953 (2) Å] is shorter than the corresponding value in (I) [2.253 (3) Å], but Zn is four-coordinate. In complexes (II), (III) and (IV), where Zn atoms are six-, five- and five-coordinate, the average Zn—O bond lengths are 2.117 (2) Å, 2.107 (2) Å and 2.047 (5) Å, respectively. The average Zn—N bond length [2.087 (3) Å] in (I) is in good agreement with the values reported in (III) [2.075 (2) Å], (IV) [2.089 (5) Å] and (V) [2.049 (2) Å], while it is shorter than the corresponding value in (II) [2.169 (3) Å]. The Zn atom lies -0.0682 (5) and -0.0030 (4) Å out of the O1/C1/O2 and O3/C8/O4 carboxyl planes, respectively.

In the carboxylate group, the C1—O1 and C8—O3 bond lengths [1.266 (4) and 1.264 (4) Å] are a little larger than the C1—O2 and C8—O4 [1.246 (4) and 1.229 (4) Å] bond lengths and may be compared with the corresponding distances: 1.260 (4) and 1.252 (4) Å in (II), 1.281 (3), 1.274 (3) and 1.240 (3), 1.245 (3) Å in (III) and 1.279 (4) and 1.246 (4) Å in (V). The dihedral angles between the mean planes of the carboxyl groups (O1/C1/O2 and O3/C8/O4) and the benzene rings [A (C2 to C7) and B (C9 to C14)] in the FB ligands are 8.2 (2) and 7.5 (2)°, respectively; these may be compared with the corresponding values of 2.8 (3)° in (II), 12.2 (2) and 10.0 (2)° in (III). The configuration around the Zn atom is given by the torsion angles. Rings A, B, C (N1/C15 to C19) and D (N3/C21 to C25) are, of course, planar and they are oriented with respect to each other at dihedral angles of A/B = 81.33 (13), A/C = 25.48 (13), A/D = 85.10 (12), B/C = 79.78 (12), B/D = 3.78 (11) and C/D = 83.06 (12)°.

As can be seen from the packing diagram (Fig. 2), the molecules of (I) are linked by intermolecular O—H···O and N—H···O hydrogen bonds (Table 2), forming a supramolecular structure.

Related literature top

For general background, see: Adiwidjaja et al. (1978); Amiraslanov et al. (1979); Antsyshkina et al. (1980); Bigoli et al. (1972); Day & Selbin (1969); Krishnamachari (1974); Nadzhafov, Shnulin & Mamedov (1981); Shnulin et al. (1981). For related structures, see: Amiraslanov et al. (1980); Capilla & Aranda (1979); Clegg et al. (1986a,b, 1987); Guseinov et al. (1984); Hökelek et al. (2007); Hökelek & Necefoğlu (1996, 2001); Nadzhafov, Usubaliev et al. (1981); Necefoğlu et al. (2002); Niekerk et al. (1953); Usubaliev et al. (1992).

Experimental top

The title compound was prepared by the reaction of Zn(NO3)2 (1.89 g, 10 mmol) in H2O (25 ml) and nicotinamide (2.16 g, 20 mmol) in H2O (25 ml) with sodium p-fluorobenzoate (3.24 g, 20 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colorless single crystals.

Refinement top

H atoms of the water molecule were located in a difference Fourier map and refined with a fixed displacement parameter, Uiso(H) = 0.237 Å2. The restrains on the O—H bond lengths and H—O—H bond angle of water molecule were applied. The remaining H atoms were positioned geometrically and refined as riding atoms, with N—H = 0.86 and C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 10% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the a axis, showing hydrogen bonds (dashed lines) linking the molecules. H atoms have been omitted for clarity.
Bis(4-fluorobenzoato-κ2O,O')bis(nicotinamide-κN1)zinc(II) monohydrate top
Crystal data top
[Zn(C7H4FO2)2(C6H6N2O)2]·H2OZ = 2
Mr = 605.87F(000) = 620
Triclinic, P1Dx = 1.508 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2363 (2) ÅCell parameters from 25 reflections
b = 12.3711 (2) Åθ = 6.3–15.8°
c = 14.8971 (3) ŵ = 0.99 mm1
α = 113.178 (14)°T = 294 K
β = 99.015 (17)°Block, colorless
γ = 99.465 (16)°0.30 × 0.25 × 0.20 mm
V = 1334.7 (2) Å3
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
4454 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 26.3°, θmin = 2.6°
ω scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1515
Tmin = 0.735, Tmax = 0.816l = 1818
5794 measured reflections3 standard reflections every 120 min
5401 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.1013P)2 + 0.1012P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
5401 reflectionsΔρmax = 0.70 e Å3
368 parametersΔρmin = 0.90 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.052 (4)
Crystal data top
[Zn(C7H4FO2)2(C6H6N2O)2]·H2Oγ = 99.465 (16)°
Mr = 605.87V = 1334.7 (2) Å3
Triclinic, P1Z = 2
a = 8.2363 (2) ÅMo Kα radiation
b = 12.3711 (2) ŵ = 0.99 mm1
c = 14.8971 (3) ÅT = 294 K
α = 113.178 (14)°0.30 × 0.25 × 0.20 mm
β = 99.015 (17)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
4454 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.058
Tmin = 0.735, Tmax = 0.8163 standard reflections every 120 min
5794 measured reflections intensity decay: 1%
5401 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0584 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.70 e Å3
5401 reflectionsΔρmin = 0.90 e Å3
368 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.39886 (4)0.27400 (3)0.12795 (2)0.04482 (17)
F10.3683 (5)0.0772 (3)0.46673 (18)0.1135 (10)
F21.3183 (4)0.6557 (3)0.5118 (2)0.1174 (11)
O10.3504 (3)0.14478 (19)0.01064 (16)0.0548 (5)
O20.4950 (3)0.30575 (19)0.01740 (17)0.0551 (5)
O30.5801 (3)0.4167 (3)0.2340 (2)0.0702 (7)
O40.6874 (4)0.2602 (2)0.1867 (2)0.0769 (8)
O50.1224 (4)0.1149 (2)0.48350 (18)0.0745 (8)
O60.0625 (3)0.71261 (19)0.16243 (18)0.0596 (6)
O70.2133 (11)0.0996 (5)0.0339 (6)0.230 (4)
H710.295 (9)0.022 (4)0.005 (7)0.237*
H720.260 (10)0.154 (6)0.078 (6)0.237*
N10.3033 (3)0.1816 (2)0.20611 (18)0.0459 (6)
N20.0163 (4)0.0739 (3)0.3616 (2)0.0637 (8)
H2A0.02660.09980.40070.076*
H2B0.00430.12280.29960.076*
N30.2216 (3)0.3771 (2)0.12605 (18)0.0447 (5)
N40.2859 (4)0.5519 (3)0.0811 (2)0.0590 (7)
H4A0.35430.59640.07730.071*
H4B0.32350.47430.05600.071*
C10.4207 (4)0.1958 (3)0.0584 (2)0.0456 (6)
C20.4091 (4)0.1219 (3)0.1675 (2)0.0468 (7)
C30.4631 (5)0.1776 (3)0.2257 (3)0.0686 (10)
H30.50870.26110.19640.082*
C40.4501 (6)0.1109 (4)0.3262 (3)0.0845 (13)
H40.48580.14820.36550.101*
C50.3844 (6)0.0099 (4)0.3665 (3)0.0733 (10)
C60.3290 (6)0.0687 (3)0.3127 (3)0.0720 (10)
H60.28270.15220.34320.086*
C70.3433 (5)0.0015 (3)0.2115 (3)0.0616 (9)
H70.30810.04000.17290.074*
C80.7031 (4)0.3684 (3)0.2396 (2)0.0561 (8)
C90.8671 (4)0.4466 (3)0.3131 (2)0.0471 (7)
C100.8903 (5)0.5711 (3)0.3645 (3)0.0576 (8)
H100.80250.60650.35370.069*
C111.0424 (5)0.6425 (4)0.4315 (3)0.0723 (11)
H111.05920.72610.46570.087*
C121.1677 (5)0.5872 (4)0.4462 (3)0.0720 (10)
C131.1497 (5)0.4663 (4)0.3980 (3)0.0731 (11)
H131.23790.43190.41030.088*
C140.9975 (5)0.3947 (3)0.3299 (3)0.0601 (8)
H140.98310.31140.29540.072*
C150.3619 (4)0.2332 (3)0.3051 (2)0.0552 (8)
H150.44930.30370.33440.066*
C160.2988 (4)0.1868 (3)0.3668 (2)0.0563 (8)
H160.34190.22680.43620.068*
C170.1730 (4)0.0820 (3)0.3253 (2)0.0468 (7)
C180.1122 (5)0.0265 (3)0.2222 (3)0.0710 (11)
H180.02740.04550.19110.085*
C190.1796 (5)0.0799 (4)0.1658 (3)0.0714 (11)
H190.13640.04300.09630.086*
C200.0998 (5)0.0398 (3)0.3964 (2)0.0536 (8)
C210.0622 (4)0.3283 (3)0.0705 (2)0.0474 (7)
H210.02880.24480.03110.057*
C220.0549 (4)0.3948 (3)0.0684 (2)0.0460 (6)
H220.16490.35630.02880.055*
C230.0092 (4)0.5193 (2)0.1254 (2)0.0415 (6)
C240.1563 (4)0.5696 (3)0.1836 (2)0.0535 (7)
H240.19320.65280.22370.064*
C250.2657 (4)0.4967 (3)0.1819 (3)0.0539 (7)
H250.37600.53260.22170.065*
C260.1227 (4)0.6028 (3)0.1256 (2)0.0451 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0522 (2)0.0428 (2)0.0383 (2)0.00425 (15)0.01085 (15)0.01931 (16)
F10.165 (3)0.109 (2)0.0478 (13)0.020 (2)0.0416 (16)0.0141 (14)
F20.0804 (17)0.103 (2)0.097 (2)0.0022 (15)0.0312 (15)0.0000 (17)
O10.0764 (15)0.0430 (11)0.0404 (11)0.0061 (10)0.0155 (10)0.0162 (9)
O20.0579 (13)0.0396 (11)0.0532 (13)0.0014 (9)0.0015 (10)0.0138 (10)
O30.0574 (14)0.0737 (17)0.0754 (17)0.0012 (12)0.0024 (12)0.0409 (14)
O40.0813 (18)0.0568 (15)0.0639 (16)0.0109 (13)0.0102 (14)0.0110 (13)
O50.118 (2)0.0515 (13)0.0494 (14)0.0009 (14)0.0378 (14)0.0188 (11)
O60.0685 (14)0.0359 (11)0.0611 (14)0.0063 (10)0.0086 (11)0.0128 (10)
O70.314 (9)0.100 (4)0.263 (8)0.007 (5)0.209 (7)0.032 (4)
N10.0529 (14)0.0467 (13)0.0400 (12)0.0058 (11)0.0124 (11)0.0229 (11)
N20.094 (2)0.0480 (15)0.0496 (16)0.0031 (15)0.0304 (15)0.0221 (13)
N30.0516 (13)0.0441 (13)0.0379 (12)0.0068 (11)0.0113 (10)0.0190 (10)
N40.0539 (15)0.0421 (13)0.078 (2)0.0074 (12)0.0060 (14)0.0285 (14)
C10.0475 (15)0.0436 (15)0.0431 (15)0.0108 (12)0.0083 (12)0.0172 (12)
C20.0505 (16)0.0437 (15)0.0422 (15)0.0080 (12)0.0104 (12)0.0164 (12)
C30.087 (3)0.055 (2)0.059 (2)0.0021 (18)0.0273 (19)0.0243 (17)
C40.110 (3)0.086 (3)0.063 (2)0.008 (3)0.039 (2)0.037 (2)
C50.088 (3)0.082 (3)0.0430 (18)0.020 (2)0.0239 (18)0.0166 (18)
C60.103 (3)0.0466 (18)0.0481 (19)0.0094 (19)0.0173 (19)0.0058 (15)
C70.086 (2)0.0482 (17)0.0474 (18)0.0106 (17)0.0178 (17)0.0196 (14)
C80.0600 (19)0.065 (2)0.0458 (17)0.0015 (16)0.0115 (14)0.0338 (16)
C90.0522 (16)0.0520 (16)0.0373 (14)0.0053 (13)0.0119 (12)0.0219 (13)
C100.0627 (19)0.0558 (18)0.0514 (18)0.0169 (15)0.0130 (15)0.0196 (15)
C110.082 (3)0.051 (2)0.056 (2)0.0103 (18)0.0054 (19)0.0022 (16)
C120.059 (2)0.074 (2)0.051 (2)0.0022 (18)0.0064 (16)0.0081 (18)
C130.062 (2)0.077 (3)0.071 (2)0.0246 (19)0.0039 (19)0.024 (2)
C140.069 (2)0.0504 (18)0.0531 (19)0.0128 (16)0.0121 (16)0.0161 (15)
C150.0567 (18)0.0554 (18)0.0450 (16)0.0059 (15)0.0072 (14)0.0228 (14)
C160.0651 (19)0.0599 (19)0.0378 (15)0.0006 (15)0.0093 (14)0.0225 (14)
C170.0584 (17)0.0448 (15)0.0439 (15)0.0130 (13)0.0184 (13)0.0235 (13)
C180.092 (3)0.058 (2)0.0443 (18)0.0178 (19)0.0138 (18)0.0188 (16)
C190.088 (3)0.072 (2)0.0381 (16)0.016 (2)0.0103 (17)0.0226 (16)
C200.072 (2)0.0472 (16)0.0471 (17)0.0085 (15)0.0245 (15)0.0242 (14)
C210.0565 (17)0.0362 (14)0.0408 (14)0.0014 (12)0.0078 (13)0.0133 (12)
C220.0476 (15)0.0407 (14)0.0402 (14)0.0001 (12)0.0045 (12)0.0145 (12)
C230.0504 (15)0.0396 (14)0.0349 (13)0.0036 (12)0.0121 (11)0.0188 (11)
C240.0565 (18)0.0373 (14)0.0522 (17)0.0011 (13)0.0031 (14)0.0134 (13)
C250.0503 (17)0.0437 (16)0.0545 (18)0.0015 (13)0.0016 (14)0.0159 (14)
C260.0553 (17)0.0424 (15)0.0373 (14)0.0059 (13)0.0117 (12)0.0191 (12)
Geometric parameters (Å, º) top
Zn—O11.978 (2)C6—H60.9300
Zn—O22.564 (3)C7—C61.379 (5)
Zn—O32.010 (3)C7—H70.9300
Zn—O42.458 (3)C9—C141.377 (5)
Zn—N12.079 (2)C9—C101.386 (4)
Zn—N32.095 (3)C9—C81.494 (4)
F1—C51.365 (4)C10—H100.9300
F2—C121.354 (4)C11—C101.376 (5)
O2—C11.246 (4)C11—C121.364 (6)
O3—C81.264 (4)C11—H110.9300
O4—C81.229 (4)C12—C131.350 (6)
O5—C201.225 (4)C13—H130.9300
O6—C261.224 (4)C14—C131.384 (5)
O7—H710.97 (8)C14—H140.9300
O7—H720.92 (8)C15—C161.383 (4)
N1—C151.322 (4)C15—H150.9300
N1—C191.332 (4)C16—H160.9300
N2—C201.310 (4)C17—C161.365 (4)
N2—H2A0.8600C17—C181.377 (4)
N2—H2B0.8600C17—C201.514 (4)
N3—C251.332 (4)C18—H180.9300
N3—C211.333 (4)C19—C181.382 (5)
N4—H4A0.8600C19—H190.9300
N4—H4B0.8600C21—H210.9300
C1—O11.266 (4)C22—C211.372 (4)
C1—C21.497 (4)C22—H220.9300
C2—C31.384 (4)C23—C221.384 (4)
C2—C71.372 (4)C23—C241.387 (4)
C3—C41.371 (6)C23—C261.502 (4)
C3—H30.9300C24—C251.371 (5)
C4—H40.9300C24—H240.9300
C5—C41.346 (6)C25—H250.9300
C5—C61.359 (6)C26—N41.326 (4)
O1—Zn—O255.96 (12)O4—C8—Zn70.8 (2)
O1—Zn—O3142.65 (12)C9—C8—Zn168.1 (3)
O1—Zn—O497.49 (10)C10—C9—C8120.9 (3)
O1—Zn—N1102.97 (9)C14—C9—C10119.4 (3)
O1—Zn—N3106.17 (10)C14—C9—C8119.7 (3)
O2—Zn—O393.35 (10)C9—C10—H10119.8
O2—Zn—O488.13 (10)C11—C10—C9120.4 (3)
O2—Zn—N1158.51 (9)C11—C10—H10119.8
O2—Zn—N390.70 (9)C10—C11—H11120.9
O3—Zn—O457.04 (10)C12—C11—C10118.2 (3)
O3—Zn—N1104.14 (10)C12—C11—H11120.9
O3—Zn—N393.66 (11)F2—C12—C11119.1 (4)
O4—Zn—N190.96 (10)C13—C12—F2117.7 (4)
O4—Zn—N3150.53 (10)C13—C12—C11123.1 (3)
N1—Zn—N3100.39 (10)C12—C13—C14118.7 (4)
C1—O1—Zn104.58 (18)C12—C13—H13120.7
C8—O3—Zn101.0 (2)C14—C13—H13120.7
C8—O4—Zn81.0 (2)C9—C14—C13120.1 (3)
H72—O7—H71107 (4)C9—C14—H14119.9
C15—N1—C19117.5 (3)C13—C14—H14119.9
C15—N1—Zn116.9 (2)N1—C15—C16122.8 (3)
C19—N1—Zn125.4 (2)N1—C15—H15118.6
C20—N2—H2A120.0C16—C15—H15118.6
C20—N2—H2B120.0C15—C16—H16120.2
H2A—N2—H2B120.0C17—C16—C15119.6 (3)
C21—N3—Zn122.8 (2)C17—C16—H16120.2
C25—N3—C21117.0 (3)C16—C17—C18118.1 (3)
C25—N3—Zn120.2 (2)C16—C17—C20117.5 (3)
C26—N4—H4A120.0C18—C17—C20124.2 (3)
C26—N4—H4B120.0C17—C18—C19118.8 (3)
H4A—N4—H4B120.0C17—C18—H18120.6
O1—C1—C2118.5 (3)C19—C18—H18120.6
O2—C1—O1121.6 (3)N1—C19—C18123.2 (3)
O2—C1—C2119.8 (3)N1—C19—H19118.4
C3—C2—C1120.2 (3)C18—C19—H19118.4
C7—C2—C3119.1 (3)O5—C20—N2124.0 (3)
C7—C2—C1120.7 (3)O5—C20—C17117.5 (3)
C2—C3—H3119.7N2—C20—C17118.5 (3)
C4—C3—C2120.7 (3)N3—C21—C22123.4 (3)
C4—C3—H3119.7N3—C21—H21118.3
C3—C4—H4120.8C22—C21—H21118.3
C5—C4—C3118.4 (4)C21—C22—C23119.9 (3)
C5—C4—H4120.8C21—C22—H22120.0
C4—C5—C6123.2 (3)C23—C22—H22120.0
C4—C5—F1119.1 (4)C22—C23—C24116.5 (3)
C6—C5—F1117.8 (4)C22—C23—C26125.0 (3)
C5—C6—C7118.3 (3)C24—C23—C26118.5 (3)
C5—C6—H6120.9C23—C24—H24120.0
C7—C6—H6120.9C25—C24—C23120.1 (3)
C2—C7—C6120.4 (3)C25—C24—H24120.0
C2—C7—H7119.8N3—C25—C24123.2 (3)
C6—C7—H7119.8N3—C25—H25118.4
O3—C8—Zn50.10 (17)C24—C25—H25118.4
O3—C8—C9118.0 (3)O6—C26—N4122.7 (3)
O4—C8—O3120.9 (3)O6—C26—C23120.1 (3)
O4—C8—C9121.1 (3)N4—C26—C23117.2 (3)
O1—Zn—N1—C15159.4 (2)C3—C2—C7—C60.9 (6)
O1—Zn—N1—C1925.8 (3)C1—C2—C7—C6178.4 (4)
O3—Zn—N1—C155.4 (3)C7—C2—C3—C40.5 (6)
O3—Zn—N1—C19179.9 (3)C1—C2—C3—C4178.8 (4)
O4—Zn—N1—C1561.5 (3)C6—C5—C4—C30.6 (8)
O4—Zn—N1—C19123.7 (3)F1—C5—C4—C3179.0 (4)
N3—Zn—N1—C1591.1 (3)C2—C3—C4—C50.3 (7)
N3—Zn—N1—C1983.6 (3)C4—C5—C6—C71.0 (7)
O1—Zn—N3—C2135.9 (2)F1—C5—C6—C7179.4 (4)
O1—Zn—N3—C25144.1 (2)C2—C7—C6—C51.1 (6)
O3—Zn—N3—C21176.1 (2)C14—C9—C8—O46.9 (4)
O3—Zn—N3—C253.9 (2)C10—C9—C8—O4172.9 (3)
O4—Zn—N3—C21178.0 (2)C14—C9—C8—O3172.5 (3)
O4—Zn—N3—C252.0 (3)C10—C9—C8—O37.7 (4)
N1—Zn—N3—C2171.0 (2)C14—C9—C8—Zn170.6 (8)
N1—Zn—N3—C25109.0 (2)C10—C9—C8—Zn9.6 (12)
O3—Zn—O1—C138.7 (3)C14—C9—C10—C110.3 (5)
O4—Zn—O1—C181.6 (2)C8—C9—C10—C11179.5 (3)
N1—Zn—O1—C1174.32 (19)C10—C9—C14—C130.4 (5)
N3—Zn—O1—C180.6 (2)C8—C9—C14—C13179.8 (3)
O1—Zn—O3—C853.5 (3)C12—C11—C10—C90.7 (6)
N1—Zn—O3—C881.8 (2)C10—C11—C12—C130.4 (7)
N3—Zn—O3—C8176.5 (2)C10—C11—C12—F2180.0 (4)
O4—Zn—O3—C80.04 (18)F2—C12—C13—C14179.3 (4)
O1—Zn—O4—C8150.46 (19)C11—C12—C13—C140.3 (7)
O3—Zn—O4—C80.04 (19)C9—C14—C13—C120.7 (6)
N1—Zn—O4—C8106.3 (2)N1—C15—C16—C171.3 (6)
N3—Zn—O4—C87.0 (3)C18—C17—C16—C150.5 (5)
Zn—O3—C8—O40.1 (4)C20—C17—C16—C15175.8 (3)
Zn—O3—C8—C9179.5 (2)C16—C17—C18—C190.7 (6)
Zn—O4—C8—O30.1 (3)C20—C17—C18—C19174.2 (4)
Zn—O4—C8—C9179.5 (3)C16—C17—C20—O519.1 (5)
C19—N1—C15—C160.8 (6)C18—C17—C20—O5155.9 (4)
Zn—N1—C15—C16174.4 (3)C16—C17—C20—N2161.1 (3)
C15—N1—C19—C180.5 (6)C18—C17—C20—N223.9 (5)
Zn—N1—C19—C18175.2 (3)N1—C19—C18—C171.3 (7)
C25—N3—C21—C220.2 (4)C23—C22—C21—N30.6 (5)
Zn—N3—C21—C22179.8 (2)C24—C23—C22—C210.9 (4)
C21—N3—C25—C240.5 (5)C26—C23—C22—C21176.7 (3)
Zn—N3—C25—C24179.5 (3)C22—C23—C24—C250.6 (5)
O2—C1—O1—Zn2.1 (3)C26—C23—C24—C25177.2 (3)
C2—C1—O1—Zn179.6 (2)C23—C24—C25—N30.1 (5)
O2—C1—C2—C7173.3 (3)C22—C23—C26—O6165.7 (3)
O1—C1—C2—C78.3 (5)C24—C23—C26—O611.9 (4)
O2—C1—C2—C37.4 (5)C22—C23—C26—N411.7 (4)
O1—C1—C2—C3171.0 (3)C24—C23—C26—N4170.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O10.97 (7)2.08 (7)2.910 (8)144 (6)
O7—H72···O4i0.92 (8)1.81 (8)2.713 (10)167 (8)
N2—H2A···O5ii0.862.072.905 (4)165
N2—H2B···O6iii0.862.152.977 (4)161
N4—H4A···O2iv0.862.142.961 (4)159
N4—H4B···O2v0.862.112.920 (4)157
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H4FO2)2(C6H6N2O)2]·H2O
Mr605.87
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.2363 (2), 12.3711 (2), 14.8971 (3)
α, β, γ (°)113.178 (14), 99.015 (17), 99.465 (16)
V3)1334.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.735, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
5794, 5401, 4454
Rint0.058
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.152, 1.14
No. of reflections5401
No. of parameters368
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.90

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn—O11.978 (2)Zn—O42.458 (3)
Zn—O22.564 (3)Zn—N12.079 (2)
Zn—O32.010 (3)Zn—N32.095 (3)
O1—Zn—O255.96 (12)O2—Zn—N390.70 (9)
O1—Zn—O3142.65 (12)O3—Zn—O457.04 (10)
O1—Zn—O497.49 (10)O3—Zn—N1104.14 (10)
O1—Zn—N1102.97 (9)O3—Zn—N393.66 (11)
O1—Zn—N3106.17 (10)O4—Zn—N190.96 (10)
O2—Zn—O393.35 (10)O4—Zn—N3150.53 (10)
O2—Zn—O488.13 (10)N1—Zn—N3100.39 (10)
O2—Zn—N1158.51 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O10.97 (7)2.08 (7)2.910 (8)144 (6)
O7—H72···O4i0.92 (8)1.81 (8)2.713 (10)167 (8)
N2—H2A···O5ii0.862.072.905 (4)165
N2—H2B···O6iii0.862.152.977 (4)161
N4—H4A···O2iv0.862.142.961 (4)159
N4—H4B···O2v0.862.112.920 (4)157
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x1, y, z.
 

Acknowledgements

The authors acknowledge the purchase of a CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAmiraslanov, I. R., Nadzhafov, G. N., Usubaliev, B. T., Musaev, A. A., Movsumov, E. M. & Mamedov, Kh. S. (1980). Zh. Strukt. Khim. 21, 140–145.  CAS Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCapilla, A. V. & Aranda, R. A. (1979). Cryst. Struct. Commun. 8, 795–798.  Google Scholar
First citationClegg, W., Little, I. R. & Straughan, B. P. (1986a). Acta Cryst. C42, 919–920.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClegg, W., Little, I. R. & Straughan, B. P. (1986b). Acta Cryst. C42, 1701–1703.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClegg, W., Little, I. R. & Straughan, B. P. (1987). Acta Cryst. C43, 456–457.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDay, M. C. & Selbin, J. (1969). Theoretical Inorganic Chemistry, p. 109. New York: Van Nostrand Reinhold.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. & Mamedov, Kh. S. (1984). Koord. Khim. 10, 117–122.  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2001). Anal. Sci. 17, 1241–1242.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationNadzhafov, G. N., Usubaliev, B. T., Amiraslanov, I. R., Movsumov, E. M. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 770–775.  CAS Google Scholar
First citationNecefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758–m761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNiekerk, J. N. van, Schoening, F. R. L. & Talbot, J. H. (1953). Acta Cryst. 6, 720–723.  CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationUsubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, 203–2.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m460-m461
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds