metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m505-m506

Di­aqua­bis­(4-chloro­benzoato-κO)bis­­(N,N-di­ethyl­nicotinamide-κN1)manganese(II)

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Sakarya University, 54187 Esentepe, Adapazarı, Turkey, and cDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 19 February 2008; accepted 27 February 2008; online 29 February 2008)

The title compound, [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], is a monomeric complex with the MnII atom lying on an inversion center. It contains two 4-chloro­benzoate and two diethyl­nicotinamide ligands and two water mol­ecules, all of which are monodentate. The four O atoms in the equatorial plane around the Mn atom form a slightly distorted square-planar arrangement, while the distorted octa­hedral geometry is completed by two N atoms in the axial positions. In the crystal structure, O—H⋯O hydrogen bonds link the mol­ecules into an infinite chain.

Related literature

For general background, see: Adiwidjaja et al. (1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]); Amiraslanov et al. (1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]); Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]); Antsyshkina et al. (1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]); Nadzhafov et al. (1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). For related structures, see: Hökelek et al. (1995[Hökelek, T., Necefouglu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.], 1997[Hökelek, T., Budak, K. & Necefoglu, H. (1997). Acta Cryst. C53, 1049-1051.]); Hökelek et al. (2007[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561-m2562.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128-1131.], 1997[Hökelek, T. & Necefouglu, H. (1997). Acta Cryst. C53, 187-189.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2]

  • Mr = 758.54

  • Triclinic, [P \overline 1]

  • a = 7.3552 (1) Å

  • b = 8.6465 (2) Å

  • c = 15.9847 (3) Å

  • α = 84.500 (16)°

  • β = 78.616 (17)°

  • γ = 68.154 (17)°

  • V = 924.73 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 294 (2) K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.902, Tmax = 0.950

  • 4010 measured reflections

  • 3752 independent reflections

  • 2604 reflections with I > 2σ(I)

  • Rint = 0.062

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.254

  • S = 1.04

  • 3752 reflections

  • 225 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.26 e Å−3

  • Δρmin = −1.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn—O1 2.141 (3)
Mn—O4 2.205 (4)
Mn—N1 2.281 (4)
O1i—Mn—O4 90.38 (14)
O1—Mn—O4 89.62 (14)
O1—Mn—N1i 92.23 (14)
O4—Mn—N1i 92.72 (14)
O1—Mn—N1 87.77 (14)
O4—Mn—N1 87.28 (14)
Symmetry code: (i) -x, -y+2, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O2i 0.99 (4) 1.71 (5) 2.670 (6) 162 (7)
O4—H42⋯O3ii 0.93 (5) 1.85 (5) 2.766 (6) 168 (7)
Symmetry codes: (i) -x, -y+2, -z; (ii) -x-1, -y+2, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). The structural functions and coordination relationships of the arylcarboxylate ions in manganese(II) complexes of benzoic acid derivatives may be changed, depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Adiwidjaja et al., 1978; Amiraslanov et al., 1979; Antsyshkina et al., 1980; Nadzhafov et al., 1981; Shnulin et al., 1981).

N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant. The structures of several complexes obtained by reacting divalent transition metal ions with DENA have been determined in our laboratory, including those of Cu2(DENA)2(C6H5COO)4, (II), (Hökelek et al., 1995), [Zn2(DENA)2(C7H5O3)4].2H2O, (III), (Hökelek & Necefoğlu, 1996), [Co(DENA)2(C7H5O3)2(H2O)2], (IV), (Hökelek & Necefoğlu, 1997), [Cu(DENA)2(C7H4NO4)2(H2O)2], (V), (Hökelek et al., 1997) and [Zn(DENA)2(C7H4FO2)2(H2O)2], (VI), (Hökelek et al., 2007). The structure determination of the title compound, (I), a manganese(II) complex with two chlorobenzoate (CB), two DENA ligands and two water molecules, was undertaken in order to determine the properties of the CB and DENA ligands and also to compare the results obtained with those reported previously.

Compound (I) is a monomeric complex, with the Mn atom lying on a center of symmetry. It contains two CB, two DENA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and their symmetry-related atoms) in the equatorial plane around the Mn atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination geometry is completed by the two N atoms of the DENA ligands in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.256 (6) Å] and C1—O2 [1.245 (6) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.259 (9) and 1.273 (9) Å in (II), 1.279 (4) and 1.246 (4) Å in (III), 1.251 (6) and 1.254 (7) Å in (IV), 1.278 (3) and 1.246 (3) Å in (V) and 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4].2H2O, (VII), (Hökelek & Necefoğlu, 2007). This may be due to the intramolecular O—H···O hydrogen bond involving the carboxylate O atom (Table 2). In (I), the average Mn—O bond length is 2.173 (3) Å. The Mn atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.890 (1) Å; this is reported as 2.185 (4) and 1.365 (3) Å, respectively, in (VII). The dihedral angle between the planar carboxylate group and the benzene ring A (C2 to C7) is 3.0 (4)°, while that between rings A and B (N1/C8 to C12) is 81.0 (4)°.

As can be seen from the packing diagram (Fig. 2), the Mn atoms are located at the corners of the unit cell and the molecules of (I) are linked into infinite chains along the a-axis by intermolecular O—H···O hydrogen bonds (Table 2).

Related literature top

For general background, see: Adiwidjaja et al. (1978); Amiraslanov et al. (1979); Antolini et al. (1982); Antsyshkina et al. (1980); Nadzhafov et al. (1981); Shnulin et al. (1981). For related structures, see: Hökelek et al. (1995, 1997); Hökelek et al. (2007); Hökelek & Necefoğlu (1996, 1997, 2007).

Experimental top

The title compound was prepared by the reaction of Mn(NO3)2 (1.79 g, 10 mmol) in H2O (25 ml) and DENA (3.56 g, 20 mmol) in H2O (25 ml) with sodium p-chlorobenzoate (3.57 g, 20 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colorless single crystals.

Refinement top

H atoms of the water molecule were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.96 Å (methyl) and with Uiso(H) = xUeq(C), where x = 1.0 for H atoms of C15 methyl, 1.5 for H atoms of C17 methyl, and 1.2 for other H atoms. The restrains on the C14—C15 bond length and O—H bond lengths and H—O—H bond angle of water molecule were applied. The highest residual electron density was found 0.92 Å from H15B and the deepest hole 0.14 Å from C15.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 20% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, 2 - y, -z.]
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the a-axis, showing hydrogen bonds (dashed lines) linking the molecules into chains. H atoms not involved in hydrogen bonds have been omitted for clarity.
Diaquabis(4-chlorobenzoato-κO)bis(N,N-diethylnicotinamide-κN1)manganese(II) top
Crystal data top
[Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 758.54F(000) = 395
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3552 (1) ÅCell parameters from 25 reflections
b = 8.6465 (2) Åθ = 5.2–11.6°
c = 15.9847 (3) ŵ = 0.56 mm1
α = 84.500 (16)°T = 294 K
β = 78.616 (17)°Block, colorless
γ = 68.154 (17)°0.30 × 0.15 × 0.10 mm
V = 924.73 (12) Å3
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2604 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 26.3°, θmin = 3.0°
ω scansh = 89
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.902, Tmax = 0.950l = 1919
4010 measured reflections3 standard reflections every 120 min
3752 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.254H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1471P)2 + 1.5562P]
where P = (Fo2 + 2Fc2)/3
3752 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 1.26 e Å3
5 restraintsΔρmin = 1.31 e Å3
Crystal data top
[Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2]γ = 68.154 (17)°
Mr = 758.54V = 924.73 (12) Å3
Triclinic, P1Z = 1
a = 7.3552 (1) ÅMo Kα radiation
b = 8.6465 (2) ŵ = 0.56 mm1
c = 15.9847 (3) ÅT = 294 K
α = 84.500 (16)°0.30 × 0.15 × 0.10 mm
β = 78.616 (17)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2604 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.062
Tmin = 0.902, Tmax = 0.9503 standard reflections every 120 min
4010 measured reflections intensity decay: 1%
3752 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0805 restraints
wR(F2) = 0.254H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.26 e Å3
3752 reflectionsΔρmin = 1.31 e Å3
225 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.00001.00000.00000.0323 (3)
Cl0.7397 (3)0.8445 (3)0.46709 (13)0.0925 (7)
O10.1119 (5)0.8758 (4)0.1086 (2)0.0408 (8)
O20.0744 (5)0.8690 (5)0.2036 (3)0.0508 (10)
O30.8388 (6)1.3270 (5)0.1267 (3)0.0576 (11)
O40.2247 (6)0.9829 (5)0.0681 (2)0.0463 (9)
H410.195 (10)1.042 (7)0.122 (2)0.07 (2)*
H420.221 (12)0.880 (5)0.083 (4)0.08 (2)*
N10.2326 (6)1.2447 (5)0.0532 (3)0.0360 (9)
N20.8349 (8)1.4183 (8)0.2506 (4)0.0649 (15)
C10.0808 (7)0.8688 (6)0.1836 (3)0.0366 (11)
C20.2462 (7)0.8636 (5)0.2547 (3)0.0350 (10)
C30.4206 (7)0.8580 (6)0.2372 (3)0.0381 (11)
H30.43580.85890.18070.046*
C40.5733 (8)0.8509 (7)0.3024 (4)0.0487 (13)
H40.68980.84630.29040.058*
C50.5477 (9)0.8509 (8)0.3850 (4)0.0525 (14)
C60.3789 (9)0.8586 (8)0.4047 (4)0.0533 (14)
H60.36550.85850.46130.064*
C70.2282 (8)0.8665 (7)0.3392 (3)0.0434 (12)
H70.11380.87390.35200.052*
C80.2050 (7)1.3893 (6)0.0424 (3)0.0390 (11)
H80.08551.39170.01070.047*
C90.3452 (8)1.5356 (6)0.0760 (4)0.0461 (13)
H90.32031.63430.06760.055*
C100.5227 (8)1.5332 (6)0.1223 (4)0.0442 (13)
H100.61971.63040.14580.053*
C110.5554 (7)1.3848 (6)0.1334 (3)0.0359 (11)
C120.4080 (7)1.2446 (6)0.0965 (3)0.0380 (11)
H120.43151.14530.10200.046*
C130.7519 (7)1.3715 (6)0.1710 (3)0.0413 (12)
C140.7427 (13)1.4762 (10)0.3087 (5)0.080 (2)
H14A0.62471.49350.27700.096*
H14B0.83501.58230.33180.096*
C150.6883 (17)1.3572 (14)0.3785 (7)0.132
H15A0.62901.39890.41510.132*
H15B0.59491.25270.35580.132*
H15C0.80521.34120.41060.132*
C161.0402 (11)1.4197 (10)0.2815 (6)0.080 (2)
H16A1.10311.49420.32910.096*
H16B1.11771.46160.23620.096*
C171.0391 (16)1.2541 (11)0.3085 (7)0.107 (3)
H17A1.17341.25890.32720.160*
H17B0.96591.21370.35460.160*
H17C0.97731.18020.26140.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0261 (5)0.0275 (5)0.0373 (6)0.0030 (4)0.0004 (4)0.0107 (4)
Cl0.0696 (12)0.144 (2)0.0638 (12)0.0517 (13)0.0190 (9)0.0096 (12)
O10.043 (2)0.0384 (19)0.0390 (19)0.0133 (16)0.0033 (15)0.0072 (14)
O20.034 (2)0.061 (3)0.057 (2)0.0162 (18)0.0097 (17)0.0010 (19)
O30.043 (2)0.066 (3)0.070 (3)0.022 (2)0.0078 (19)0.022 (2)
O40.043 (2)0.046 (2)0.054 (2)0.0195 (17)0.0090 (17)0.0081 (18)
N10.030 (2)0.026 (2)0.046 (2)0.0054 (16)0.0002 (17)0.0086 (16)
N20.052 (3)0.079 (4)0.061 (3)0.026 (3)0.011 (2)0.024 (3)
C10.031 (2)0.022 (2)0.049 (3)0.0010 (18)0.007 (2)0.0055 (19)
C20.034 (2)0.022 (2)0.044 (3)0.0032 (18)0.006 (2)0.0050 (18)
C30.037 (3)0.033 (3)0.043 (3)0.012 (2)0.007 (2)0.005 (2)
C40.036 (3)0.058 (3)0.055 (3)0.021 (3)0.005 (2)0.005 (3)
C50.044 (3)0.055 (3)0.051 (3)0.015 (3)0.005 (3)0.005 (3)
C60.055 (3)0.064 (4)0.038 (3)0.018 (3)0.006 (2)0.001 (3)
C70.036 (3)0.045 (3)0.047 (3)0.010 (2)0.008 (2)0.008 (2)
C80.032 (2)0.032 (2)0.051 (3)0.009 (2)0.005 (2)0.009 (2)
C90.042 (3)0.030 (3)0.066 (4)0.012 (2)0.007 (3)0.009 (2)
C100.040 (3)0.027 (2)0.059 (3)0.003 (2)0.005 (2)0.018 (2)
C110.031 (2)0.032 (2)0.040 (3)0.0040 (19)0.0066 (19)0.0103 (19)
C120.030 (2)0.028 (2)0.050 (3)0.0054 (19)0.000 (2)0.010 (2)
C130.031 (2)0.038 (3)0.051 (3)0.007 (2)0.003 (2)0.013 (2)
C140.085 (5)0.078 (5)0.072 (5)0.029 (4)0.002 (4)0.009 (4)
C150.1800.1560.1380.1300.1270.126
C160.060 (4)0.067 (5)0.098 (6)0.015 (4)0.018 (4)0.026 (4)
C170.116 (8)0.071 (6)0.112 (7)0.031 (5)0.030 (6)0.014 (5)
Geometric parameters (Å, º) top
Mn—O1i2.141 (3)C7—C61.383 (8)
Mn—O12.141 (3)C7—H70.9300
Mn—O42.205 (4)C8—H80.9300
Mn—O4i2.205 (4)C9—C81.376 (7)
Mn—N1i2.281 (4)C9—H90.9300
Mn—N12.281 (4)C10—C91.373 (8)
Cl—C51.741 (6)C10—H100.9300
O1—C11.256 (6)C11—C121.378 (6)
O2—C11.245 (6)C11—C101.380 (7)
O3—C131.214 (6)C12—H120.9300
O4—H410.99 (4)C13—N21.328 (7)
O4—H420.93 (5)C13—C111.494 (7)
N1—C81.330 (6)C14—C151.453 (9)
N1—C121.339 (6)C14—H14A0.9700
N2—C141.471 (10)C14—H14B0.9700
N2—C161.489 (9)C15—H15A0.9600
C2—C31.384 (7)C15—H15B0.9600
C2—C71.387 (7)C15—H15C0.9600
C2—C11.502 (7)C16—C171.453 (11)
C3—H30.9300C16—H16A0.9700
C4—C51.369 (8)C16—H16B0.9700
C4—C31.388 (7)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.366 (9)C17—H17C0.9600
C6—H60.9300
O1i—Mn—O1180.000 (1)C6—C7—H7119.7
O1i—Mn—O490.38 (14)C2—C7—H7119.7
O1—Mn—O489.62 (14)N1—C8—C9122.9 (5)
O1i—Mn—O4i89.62 (14)N1—C8—H8118.5
O1—Mn—O4i90.38 (14)C9—C8—H8118.5
O4—Mn—O4i180.00 (16)C10—C9—C8118.8 (5)
O1i—Mn—N1i87.77 (14)C10—C9—H9120.6
O1—Mn—N1i92.23 (14)C8—C9—H9120.6
O4—Mn—N1i92.72 (14)C9—C10—C11119.2 (4)
O4i—Mn—N1i87.28 (14)C9—C10—H10120.4
O1i—Mn—N192.23 (14)C11—C10—H10120.4
O1—Mn—N187.77 (14)C12—C11—C10118.2 (5)
O4—Mn—N187.28 (14)C12—C11—C13117.2 (4)
O4i—Mn—N192.72 (14)C10—C11—C13123.8 (4)
N1i—Mn—N1180.0N1—C12—C11123.0 (5)
C1—O1—Mn127.5 (3)N1—C12—H12118.5
Mn—O4—H41100 (4)C11—C12—H12118.5
Mn—O4—H42121 (5)O3—C13—N2120.8 (5)
H41—O4—H42107 (4)O3—C13—C11119.4 (5)
C8—N1—C12117.7 (4)N2—C13—C11119.7 (5)
C8—N1—Mn123.5 (3)C15—C14—N2111.7 (7)
C12—N1—Mn118.8 (3)C15—C14—H14A109.3
C13—N2—C14124.8 (6)N2—C14—H14A109.3
C13—N2—C16117.3 (6)C15—C14—H14B109.3
C14—N2—C16117.8 (6)N2—C14—H14B109.3
O2—C1—O1125.2 (5)H14A—C14—H14B107.9
O2—C1—C2117.6 (5)C14—C15—H15A109.5
O1—C1—C2117.1 (4)C14—C15—H15B109.5
C3—C2—C7118.6 (5)H15A—C15—H15B109.5
C3—C2—C1120.8 (5)C14—C15—H15C109.5
C7—C2—C1120.6 (5)H15A—C15—H15C109.5
C2—C3—C4121.2 (5)H15B—C15—H15C109.5
C2—C3—H3119.4C17—C16—N2111.5 (7)
C4—C3—H3119.4C17—C16—H16A109.3
C5—C4—C3118.2 (5)N2—C16—H16A109.3
C5—C4—H4120.9C17—C16—H16B109.3
C3—C4—H4120.9N2—C16—H16B109.3
C6—C5—C4122.2 (5)H16A—C16—H16B108.0
C6—C5—Cl119.3 (5)C16—C17—H17A109.5
C4—C5—Cl118.5 (5)C16—C17—H17B109.5
C5—C6—C7119.1 (5)H17A—C17—H17B109.5
C5—C6—H6120.5C16—C17—H17C109.5
C7—C6—H6120.5H17A—C17—H17C109.5
C6—C7—C2120.6 (5)H17B—C17—H17C109.5
O4—Mn—O1—C1164.0 (4)C7—C2—C1—O22.8 (7)
O4i—Mn—O1—C116.0 (4)C3—C2—C1—O13.3 (6)
N1i—Mn—O1—C1103.3 (4)C7—C2—C1—O1175.9 (4)
N1—Mn—O1—C176.7 (4)C7—C2—C3—C41.7 (7)
O1i—Mn—N1—C832.0 (4)C1—C2—C3—C4179.1 (5)
O1—Mn—N1—C8148.0 (4)C5—C4—C3—C20.5 (8)
O4—Mn—N1—C8122.3 (4)C3—C4—C5—C60.4 (9)
O4i—Mn—N1—C857.7 (4)C3—C4—C5—Cl179.2 (4)
O1i—Mn—N1—C12146.8 (4)C4—C5—C6—C70.1 (10)
O1—Mn—N1—C1233.2 (4)Cl—C5—C6—C7178.9 (5)
O4—Mn—N1—C1256.6 (4)C2—C7—C6—C51.2 (9)
O4i—Mn—N1—C12123.4 (4)C10—C9—C8—N10.6 (9)
Mn—O1—C1—O231.6 (7)C11—C10—C9—C80.2 (8)
Mn—O1—C1—C2146.9 (3)C12—C11—C10—C90.7 (8)
Mn—N1—C8—C9178.9 (4)C13—C11—C10—C9170.7 (5)
C12—N1—C8—C92.2 (8)C10—C11—C12—N12.4 (8)
C8—N1—C12—C113.2 (8)C13—C11—C12—N1173.1 (5)
Mn—N1—C12—C11177.9 (4)O3—C13—N2—C14179.1 (6)
C13—N2—C14—C15111.0 (9)C11—C13—N2—C143.4 (10)
C16—N2—C14—C1572.0 (10)O3—C13—N2—C162.2 (9)
C13—N2—C16—C1781.2 (9)C11—C13—N2—C16173.5 (5)
C14—N2—C16—C17101.6 (9)O3—C13—C11—C10114.1 (6)
C3—C2—C7—C62.0 (8)N2—C13—C11—C1061.6 (8)
C1—C2—C7—C6178.8 (5)O3—C13—C11—C1255.9 (7)
C3—C2—C1—O2178.0 (4)N2—C13—C11—C12128.3 (6)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.99 (4)1.71 (5)2.670 (6)162 (7)
O4—H42···O3ii0.93 (5)1.85 (5)2.766 (6)168 (7)
Symmetry codes: (i) x, y+2, z; (ii) x1, y+2, z.

Experimental details

Crystal data
Chemical formula[Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2]
Mr758.54
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.3552 (1), 8.6465 (2), 15.9847 (3)
α, β, γ (°)84.500 (16), 78.616 (17), 68.154 (17)
V3)924.73 (12)
Z1
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.902, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
4010, 3752, 2604
Rint0.062
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.254, 1.04
No. of reflections3752
No. of parameters225
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.26, 1.31

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Mn—O12.141 (3)Mn—N12.281 (4)
Mn—O42.205 (4)
O1i—Mn—O490.38 (14)O4—Mn—N1i92.72 (14)
O1—Mn—O489.62 (14)O1—Mn—N187.77 (14)
O1—Mn—N1i92.23 (14)O4—Mn—N187.28 (14)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.99 (4)1.71 (5)2.670 (6)162 (7)
O4—H42···O3ii0.93 (5)1.85 (5)2.766 (6)168 (7)
Symmetry codes: (i) x, y+2, z; (ii) x1, y+2, z.
 

Acknowledgements

The authors acknowledge the purchase of a CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHökelek, T., Budak, K. & Necefoglu, H. (1997). Acta Cryst. C53, 1049–1051.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1997). Acta Cryst. C53, 187–189.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Necefouglu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m505-m506
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds