organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o642-o643

(E)-2-[4-(Di­methyl­amino)styr­yl]-1-methyl­quinolinium 4-meth­oxy­benzene­sulfonate monohydrate

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 14 February 2008; accepted 24 February 2008; online 29 February 2008)

In the title compound, C20H21N2+·C7H7O4S·H2O, the cation is nearly planar and exists in the E configuration. The cations and anions form individual chains along the b axis and are inter­connected by weak C—H⋯O inter­actions. The 4-methoxy­benzensulfonate anions are linked to water mol­ecules through O—H⋯O hydrogen bonds, forming a three-dimensional network. The crystal structure is further stabilized by a C—H⋯π inter­action involving the methoxy­phenyl ring. The sulfonate anion is also involved in a weak intra­molecular C—H⋯O inter­action which generates an S(5) ring motif.

Related literature

For bond lengths and angles, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to NLO materials research, see: Chia et al., (1995[Chia, W.-L., Chen, C.-N. & Sheu, H.-J. (1995). Mater. Res. Bull. 30, 1421-1430.]); Otero et al., (2002[Otero, M., Herranz, M. A., Seoane, C., Martín, N., Garín, J., Orduna, J., Alcalá, R. & Villacampa, B. (2002). Tetrahedron, 58, 7463-7475.]). For related structures, see for example: Chantrapromma et al. (2006[Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2006). Acta Cryst. E62, o1802-o1804.], 2007[Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2007). Anal. Sci. 23, x27-x28.], 2007a[Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007a). Anal. Sci. 23, x81-x82.],b[Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007b). Acta Cryst. E63, o2124-o2126.]); Jindawong et al. (2005[Jindawong, B., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2005). Acta Cryst. E61, o3237-o3239.]); Dittrich et al. (2003[Dittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci. 220, 88-95.]); Nogi et al. (2000[Nogi, K., Anwar, U., Tsuji, K., Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (2000). Nonlinear Optics, 24, 35-40.]); Sato et al. (1999[Sato, N., Rikukawa, M., Sanui, K. & Ogata, N. (1999). Synth. Met. 101, 132-133.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N2+·C7H7O4S·H2O

  • Mr = 494.60

  • Monoclinic, P 21 /c

  • a = 14.6064 (5) Å

  • b = 10.4253 (4) Å

  • c = 19.5025 (6) Å

  • β = 126.737 (2)°

  • V = 2379.94 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100.0 (1) K

  • 0.58 × 0.27 × 0.19 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.904, Tmax = 0.967

  • 33983 measured reflections

  • 6953 independent reflections

  • 5445 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.139

  • S = 1.06

  • 6953 reflections

  • 350 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2i 0.84 2.04 2.875 (3) 169
O1W—H2W⋯O4ii 0.85 2.10 2.926 (2) 161
C7—H7A⋯O3iii 0.93 2.49 3.015 (3) 116
C8—H8A⋯O3iii 0.93 2.57 3.049 (3) 113
C20—H20A⋯O4iv 0.96 2.46 3.325 (2) 151
C23—H23A⋯O1Wv 0.93 2.44 3.365 (2) 176
C26—H26A⋯O4 0.93 2.56 2.921 (2) 104
C27—H27A⋯O1Wvi 0.96 2.58 3.160 (3) 119
C27—H27A⋯O1vii 0.96 2.55 3.282 (2) 133
C16—H16ACg1iv 0.93 2.81 3.6513 (19) 151
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) -x+2, -y-1, -z+2. Cg1 is the centroid of the C21–C26 methoxy­phenyl ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

A lot of research have been done to search for second-order nonlinear optic (NLO) materials. Organic crystals with the required conjugated π electrons are attractive candidates because of their large NLO coefficients (Chia et al., 1995; Dittrich et al., 2003; Otero et al., 2002; Nogi et al., 2000; Sato et al., 1999). In our research on this kind of materials, we have previously synthesized and crystallized several organic ionic salts of quinolinium derivatives to study their non-linear optical properties (Chantrapromma et al., 2006; 2007a,b; 2007; Jindawong et al., 2005). Previous studies (Dittrich et al., 2003; Nogi et al., 2000; Sato et al., 1999) have shown that the 1-methyl-4-(2-(4-(dimethylamino)phenyl)ethynyl)pyridinium p-toluenesulfonate (DAST) and its analogues exhibit second-order non-linear optical properties. Based on these previous studies, we have synthesized the title compound which was designed to increase the π-conjugation in the system with the replacement of the cationic 4-hydroxy-3-methoxyphenyl ring that is present in 2-[(E)-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-methylquinolinium 4-methoxybenzenesulfonate (Chantrapromma et al., 2007a) by the 4-dimethylaminophenyl ring. The synthesis and crystal structure of the title compound, (I), Fig 1, are reported in this study. Unfortunately this crystal does not have second-order NLO properties because it crystallized out in a centrosymmetric space group.

The asymmetric unit of the title compound consists of the C20H21N2+ cation, C7H7O4S- anion and one H2O molecule. The cation exists in the E configuration with respect to the C10?C11 double bond [1.350 (2) Å] and is nearly planar as indicated by the dihedral angle between the quinolinium and the dimethylaminophenyl rings being 3.41 (7)° and the torsion angles C8–C9–C10–C11 = -8.7 (2)° and C10–C11–C12–C17 = 3.2 (3)°. The relative arrangement of cation and anion is shown by the angles between the mean plane of the methoxyphenyl ring and those of the quinolinium and dimethylaminophenyl systems which are 81.29 (7)° and 78.29 (8)°, respectively.

The atom O4 of the sulfonate contributes to a weak intramolecular C—H···O interaction (Fig. 1 and Table 1) forming an S(5) ring motif (Bernstein et al., 1995). The bond lengths and angles are normal (Allen et al., 1987) and are comparable with closely related structures (Chantrapromma et al., 2006; 2007a; 2007b; 2007c).

In the crystal packing, the O2 and O4 atoms of 4-methoxybenzenesulfonate anion are involved in the O—H···O hydrogen bonds whereas O3 and O4 atoms are involved in weak C—H···O interactions (Table 1). The cations and anions form individual chains along the b axis and are interconnected by weak C—H···O interactions. The 4-methoxybenzensulfonate anions are linked to water molecules through O—H···O hydrogen bonds forming a three dimensional network (Fig. 2). The crystal structure is further stabilized by a C16—H16A···π interaction to the methoxyphenyl ring [C21–C26]: C16—H16A=0.93; H16A···Cgi=2.8096; C16—Cg1i=3.6513 (19) Å; C16—H16A···Cg1i= 151°. [Cg1i is the centroid of the C21–C26 methoxyphenyl ring (symmetry code: (i): 1 - x, 1 - y, 1 - z).]

Related literature top

For bond lengths and angles, see: Allen (2002); Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For background to NLO materials research, see: Chia et al., (1995); Otero et al., (2002). For related structures, see for example: Chantrapromma et al. (2006, 2007, 2007a,b); Jindawong et al. (2005); Dittrich et al. (2003); Nogi et al. (2000); Sato et al. (1999).

Experimental top

2-(4-dimethylaminostyryl)-1-methylquinolinium iodide (compound A) was synthesized by mixing a solution (1:1:1 molar ratio) of 1,2-dimethylquinolinium iodide (2.00 g, 7.01 mmol), dimethylaminobenzaldehyde (1.05 g, 7.01 mmol) and piperidine (0.70 g, 7.01 mmol) in hot methanol (50 ml). The resulting solution was refluxed for 6 h under a nitrogen atmosphere. The resultant solid was filtered off, washed with methanol and recrystallized from methanol to give green crystals of compound A. Silver(I) 4-methoxybenzenesulfonate (compound B) was synthesized according to our previously reported procedure (Chantrapromma et al., 2007a). The title compound was synthesized by mixing compound A (0.2 g, 0.48 mmol) in hot methanol (50 ml) and compound B (0.14 g, 0.48 mmol) in hot methanol (20 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for ca 30 min, the precipitate was removed and the resulting solution was evaporated yielding a brown solid. Brown block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from methanol/ethanol solvent (3:1 v/v) by slow evaporation of the solvent at room temperature after a few weeks. (Mp. 545–547 K).

Refinement top

All H atoms were placed in calculated positions with d(O—H) = 0.85 Å, Uiso=1.2Ueq(O), d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic and CH, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.88 Å from C9 and the deepest hole is located at 0.69 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. The weak intramolecular C—H···O interaction is drawn as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the b axis. The O—H···O and weak C—H···O interactions are drawn as dashed lines.
(E)-2-[4-(Dimethylamino)styryl]-1-methylquinolinium 4-methoxybenzenesulfonate monohydrate top
Crystal data top
C20H21N2+·C7H7O4S·H2OF(000) = 1048
Mr = 494.60Dx = 1.380 Mg m3
Monoclinic, P21/cMelting point = 545–547 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.6064 (5) ÅCell parameters from 6593 reflections
b = 10.4253 (4) Åθ = 2.1–30.0°
c = 19.5025 (6) ŵ = 0.18 mm1
β = 126.737 (2)°T = 100 K
V = 2379.94 (16) Å3Block, brown
Z = 40.58 × 0.27 × 0.19 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
6953 independent reflections
Radiation source: fine-focus sealed tube5445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.1°
ω scansh = 2019
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1414
Tmin = 0.904, Tmax = 0.967l = 2427
33983 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0641P)2 + 1.1852P]
where P = (Fo2 + 2Fc2)/3
6953 reflections(Δ/σ)max = 0.001
350 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C20H21N2+·C7H7O4S·H2OV = 2379.94 (16) Å3
Mr = 494.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6064 (5) ŵ = 0.18 mm1
b = 10.4253 (4) ÅT = 100 K
c = 19.5025 (6) Å0.58 × 0.27 × 0.19 mm
β = 126.737 (2)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
6953 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5445 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.967Rint = 0.045
33983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.06Δρmax = 0.75 e Å3
6953 reflectionsΔρmin = 0.42 e Å3
350 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cryosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61826 (3)0.05907 (4)0.76956 (2)0.02112 (11)
O10.95438 (10)0.35916 (12)0.95862 (7)0.0250 (3)
O20.53003 (10)0.00579 (13)0.68519 (7)0.0275 (3)
O30.57692 (12)0.08820 (15)0.81913 (8)0.0360 (3)
O40.67900 (11)0.16597 (13)0.76497 (8)0.0301 (3)
O1W0.66931 (11)0.09083 (15)0.33524 (10)0.0429 (4)
H1W0.60580.06600.32240.058 (8)*
H2W0.66330.16820.31870.050 (7)*
N10.56771 (11)0.67419 (14)0.49475 (8)0.0215 (3)
N20.05342 (12)1.30700 (15)0.29537 (8)0.0235 (3)
C10.64527 (13)0.57400 (17)0.54367 (9)0.0217 (3)
C20.70847 (15)0.51470 (19)0.52077 (11)0.0277 (4)
H2A0.70210.54170.47260.038 (6)*
C30.77995 (16)0.4162 (2)0.56969 (11)0.0322 (4)
H3A0.82270.37720.55450.055 (7)*
C40.79097 (16)0.37240 (19)0.64227 (11)0.0304 (4)
H4A0.83930.30400.67370.043 (6)*
C50.73095 (14)0.42956 (18)0.66701 (10)0.0268 (4)
H5A0.73840.40090.71530.024 (5)*
C60.65650 (13)0.53407 (17)0.61789 (10)0.0229 (3)
C70.59337 (14)0.59648 (18)0.64128 (10)0.0237 (3)
H7A0.59890.56870.68890.026 (5)*
C80.52447 (14)0.69699 (18)0.59453 (10)0.0241 (3)
H8A0.48570.73960.61200.024 (5)*
C90.51057 (13)0.73831 (17)0.51874 (9)0.0216 (3)
C100.43701 (13)0.84531 (17)0.46835 (10)0.0220 (3)
H10A0.43840.87630.42430.032 (6)*
C110.36646 (13)0.90197 (17)0.48240 (9)0.0211 (3)
H11A0.36850.87100.52800.033 (6)*
C120.28800 (13)1.00599 (16)0.43337 (9)0.0197 (3)
C130.22320 (13)1.05721 (17)0.45820 (9)0.0218 (3)
H13A0.23241.02390.50620.039 (6)*
C140.14611 (13)1.15578 (17)0.41354 (9)0.0215 (3)
H14A0.10481.18760.43210.029 (5)*
C150.12911 (12)1.20908 (16)0.33990 (9)0.0188 (3)
C160.19398 (13)1.15699 (17)0.31446 (9)0.0202 (3)
H16A0.18451.18930.26610.025 (5)*
C170.27101 (13)1.05893 (17)0.36003 (9)0.0206 (3)
H17A0.31281.02700.34190.023 (5)*
C180.01161 (15)1.3601 (2)0.32301 (11)0.0292 (4)
H18A0.03961.38440.38210.029 (5)*
H18B0.06421.29680.31620.034 (6)*
H18C0.05321.43410.28900.054 (8)*
C190.03078 (15)1.35334 (19)0.21618 (10)0.0260 (4)
H19A0.10001.38660.22770.036 (6)*
H19B0.02571.42000.19260.043 (7)*
H19C0.00311.28390.17600.028 (5)*
C200.54745 (16)0.7057 (2)0.41323 (11)0.0288 (4)
H20A0.47130.73840.37380.051 (7)*
H20B0.55640.62990.38980.044 (7)*
H20C0.60140.76950.42280.048 (7)*
C210.72090 (13)0.06494 (16)0.82541 (9)0.0190 (3)
C220.68657 (13)0.19286 (17)0.81620 (9)0.0210 (3)
H22A0.60940.21360.77930.024 (5)*
C230.76655 (14)0.28880 (17)0.86144 (9)0.0218 (3)
H23A0.74320.37370.85530.032 (6)*
C240.88269 (13)0.25763 (16)0.91662 (9)0.0198 (3)
C250.91782 (13)0.13092 (16)0.92572 (9)0.0209 (3)
H25A0.99500.11020.96230.030 (5)*
C260.83634 (13)0.03516 (17)0.87967 (9)0.0207 (3)
H26A0.85960.04970.88530.021 (5)*
C271.07377 (14)0.33401 (19)1.02041 (11)0.0272 (4)
H27A1.11310.41291.04750.024 (5)*
H27B1.08480.27551.06280.031 (5)*
H27C1.10350.29680.99240.038 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02159 (18)0.0248 (2)0.01629 (17)0.00406 (15)0.01098 (14)0.00242 (14)
O10.0220 (5)0.0216 (6)0.0234 (5)0.0026 (5)0.0093 (4)0.0033 (5)
O20.0230 (6)0.0336 (7)0.0176 (5)0.0029 (5)0.0077 (5)0.0016 (5)
O30.0390 (7)0.0486 (9)0.0284 (6)0.0158 (7)0.0244 (6)0.0072 (6)
O40.0289 (6)0.0248 (7)0.0309 (6)0.0018 (5)0.0148 (5)0.0054 (5)
O1W0.0259 (7)0.0310 (8)0.0591 (9)0.0033 (6)0.0186 (7)0.0143 (7)
N10.0211 (6)0.0261 (8)0.0164 (6)0.0002 (5)0.0107 (5)0.0007 (5)
N20.0241 (6)0.0285 (8)0.0181 (6)0.0070 (6)0.0128 (5)0.0032 (5)
C10.0180 (7)0.0230 (8)0.0167 (6)0.0035 (6)0.0065 (5)0.0007 (6)
C20.0264 (8)0.0331 (10)0.0228 (7)0.0006 (7)0.0143 (7)0.0013 (7)
C30.0326 (9)0.0343 (11)0.0284 (8)0.0044 (8)0.0175 (7)0.0010 (7)
C40.0309 (9)0.0274 (10)0.0274 (8)0.0069 (7)0.0145 (7)0.0042 (7)
C50.0231 (7)0.0299 (10)0.0210 (7)0.0015 (7)0.0097 (6)0.0015 (7)
C60.0194 (7)0.0258 (9)0.0205 (7)0.0050 (6)0.0102 (6)0.0058 (6)
C70.0238 (7)0.0290 (9)0.0165 (6)0.0025 (7)0.0109 (6)0.0001 (6)
C80.0213 (7)0.0291 (9)0.0210 (7)0.0012 (7)0.0121 (6)0.0021 (6)
C90.0176 (6)0.0240 (9)0.0205 (7)0.0033 (6)0.0099 (6)0.0048 (6)
C100.0205 (7)0.0253 (9)0.0177 (6)0.0007 (6)0.0101 (6)0.0001 (6)
C110.0207 (7)0.0237 (8)0.0171 (6)0.0009 (6)0.0103 (6)0.0007 (6)
C120.0179 (6)0.0217 (8)0.0173 (6)0.0011 (6)0.0094 (5)0.0020 (6)
C130.0215 (7)0.0276 (9)0.0169 (6)0.0001 (6)0.0117 (6)0.0012 (6)
C140.0211 (7)0.0278 (9)0.0174 (6)0.0014 (6)0.0126 (6)0.0017 (6)
C150.0169 (6)0.0208 (8)0.0158 (6)0.0003 (6)0.0082 (5)0.0020 (5)
C160.0202 (7)0.0256 (8)0.0160 (6)0.0007 (6)0.0114 (6)0.0005 (6)
C170.0180 (6)0.0275 (9)0.0178 (6)0.0009 (6)0.0114 (5)0.0027 (6)
C180.0274 (8)0.0354 (10)0.0247 (8)0.0099 (8)0.0156 (7)0.0014 (7)
C190.0251 (8)0.0296 (9)0.0191 (7)0.0019 (7)0.0110 (6)0.0039 (6)
C200.0325 (9)0.0341 (10)0.0243 (8)0.0077 (8)0.0195 (7)0.0077 (7)
C210.0202 (7)0.0234 (8)0.0139 (6)0.0012 (6)0.0105 (5)0.0017 (6)
C220.0188 (7)0.0259 (9)0.0162 (6)0.0012 (6)0.0093 (6)0.0004 (6)
C230.0247 (7)0.0210 (8)0.0178 (6)0.0019 (6)0.0118 (6)0.0006 (6)
C240.0221 (7)0.0222 (8)0.0156 (6)0.0028 (6)0.0115 (6)0.0020 (6)
C250.0187 (7)0.0239 (8)0.0157 (6)0.0011 (6)0.0080 (6)0.0000 (6)
C260.0221 (7)0.0210 (8)0.0175 (6)0.0016 (6)0.0110 (6)0.0006 (6)
C270.0216 (7)0.0300 (10)0.0230 (7)0.0039 (7)0.0095 (6)0.0039 (7)
Geometric parameters (Å, º) top
S1—O31.4455 (13)C11—H11A0.9299
S1—O41.4602 (14)C12—C131.401 (2)
S1—O21.4628 (12)C12—C171.410 (2)
S1—C211.7754 (16)C13—C141.382 (2)
O1—C241.3644 (19)C13—H13A0.9301
O1—C271.431 (2)C14—C151.417 (2)
O1W—H1W0.8450C14—H14A0.9297
O1W—H2W0.8529C15—C161.415 (2)
N1—C91.353 (2)C16—C171.380 (2)
N1—C11.411 (2)C16—H16A0.9299
N1—C201.470 (2)C17—H17A0.9299
N2—C151.368 (2)C18—H18A0.9600
N2—C181.453 (2)C18—H18B0.9600
N2—C191.455 (2)C18—H18C0.9600
C1—C21.388 (2)C19—H19A0.9600
C1—C61.418 (2)C19—H19B0.9600
C2—C31.365 (3)C19—H19C0.9600
C2—H2A0.9299C20—H20A0.9600
C3—C41.402 (3)C20—H20B0.9600
C3—H3A0.9301C20—H20C0.9600
C4—C51.365 (3)C21—C261.387 (2)
C4—H4A0.9300C21—C221.398 (2)
C5—C61.429 (2)C22—C231.382 (2)
C5—H5A0.9301C22—H22A0.9300
C6—C71.409 (2)C23—C241.399 (2)
C7—C81.358 (2)C23—H23A0.9301
C7—H7A0.9300C24—C251.390 (2)
C8—C91.433 (2)C25—C261.393 (2)
C8—H8A0.9301C25—H25A0.9300
C9—C101.450 (2)C26—H26A0.9301
C10—C111.350 (2)C27—H27A0.9600
C10—H10A0.9299C27—H27B0.9600
C11—C121.447 (2)C27—H27C0.9600
O3—S1—O4113.13 (9)C13—C14—H14A119.6
O3—S1—O2113.11 (8)C15—C14—H14A119.6
O4—S1—O2112.31 (8)N2—C15—C16121.37 (14)
O3—S1—C21106.25 (7)N2—C15—C14121.43 (14)
O4—S1—C21105.80 (7)C16—C15—C14117.20 (14)
O2—S1—C21105.44 (8)C17—C16—C15121.17 (14)
C24—O1—C27118.33 (14)C17—C16—H16A119.4
H1W—O1W—H2W109.3C15—C16—H16A119.4
C9—N1—C1122.94 (14)C16—C17—C12121.62 (15)
C9—N1—C20119.79 (14)C16—C17—H17A119.2
C1—N1—C20117.24 (14)C12—C17—H17A119.2
C15—N2—C18120.55 (14)N2—C18—H18A109.5
C15—N2—C19120.40 (14)N2—C18—H18B109.5
C18—N2—C19118.91 (14)H18A—C18—H18B109.5
C2—C1—N1122.11 (15)N2—C18—H18C109.5
C2—C1—C6120.29 (16)H18A—C18—H18C109.5
N1—C1—C6117.60 (15)H18B—C18—H18C109.5
C3—C2—C1119.21 (17)N2—C19—H19A109.5
C3—C2—H2A120.4N2—C19—H19B109.5
C1—C2—H2A120.4H19A—C19—H19B109.5
C2—C3—C4121.91 (18)N2—C19—H19C109.5
C2—C3—H3A119.0H19A—C19—H19C109.5
C4—C3—H3A119.1H19B—C19—H19C109.5
C5—C4—C3120.31 (18)N1—C20—H20A109.5
C5—C4—H4A119.8N1—C20—H20B109.5
C3—C4—H4A119.8H20A—C20—H20B109.5
C4—C5—C6119.22 (16)N1—C20—H20C109.5
C4—C5—H5A120.5H20A—C20—H20C109.5
C6—C5—H5A120.3H20B—C20—H20C109.5
C7—C6—C1119.76 (16)C26—C21—C22119.36 (15)
C7—C6—C5121.21 (16)C26—C21—S1120.01 (13)
C1—C6—C5119.03 (16)C22—C21—S1120.63 (11)
C8—C7—C6120.31 (16)C23—C22—C21120.46 (14)
C8—C7—H7A119.8C23—C22—H22A119.7
C6—C7—H7A119.9C21—C22—H22A119.8
C7—C8—C9121.03 (16)C22—C23—C24119.73 (16)
C7—C8—H8A119.5C22—C23—H23A120.1
C9—C8—H8A119.5C24—C23—H23A120.2
N1—C9—C8118.18 (15)O1—C24—C25124.66 (14)
N1—C9—C10120.42 (14)O1—C24—C23115.07 (15)
C8—C9—C10121.40 (15)C25—C24—C23120.28 (15)
C11—C10—C9123.04 (15)C24—C25—C26119.41 (14)
C11—C10—H10A118.5C24—C25—H25A120.3
C9—C10—H10A118.5C26—C25—H25A120.3
C10—C11—C12126.36 (15)C21—C26—C25120.74 (16)
C10—C11—H11A116.8C21—C26—H26A119.6
C12—C11—H11A116.9C25—C26—H26A119.7
C13—C12—C17117.13 (15)O1—C27—H27A109.5
C13—C12—C11119.28 (14)O1—C27—H27B109.5
C17—C12—C11123.58 (15)H27A—C27—H27B109.5
C14—C13—C12121.99 (15)O1—C27—H27C109.5
C14—C13—H13A119.0H27A—C27—H27C109.5
C12—C13—H13A119.0H27B—C27—H27C109.5
C13—C14—C15120.88 (15)
C9—N1—C1—C2175.88 (16)C12—C13—C14—C150.3 (2)
C20—N1—C1—C25.9 (2)C18—N2—C15—C16179.39 (16)
C9—N1—C1—C64.6 (2)C19—N2—C15—C165.0 (2)
C20—N1—C1—C6173.66 (15)C18—N2—C15—C140.4 (2)
N1—C1—C2—C3178.39 (16)C19—N2—C15—C14175.14 (15)
C6—C1—C2—C31.1 (3)C13—C14—C15—N2179.73 (15)
C1—C2—C3—C40.4 (3)C13—C14—C15—C160.1 (2)
C2—C3—C4—C51.1 (3)N2—C15—C16—C17179.42 (15)
C3—C4—C5—C60.3 (3)C14—C15—C16—C170.4 (2)
C2—C1—C6—C7178.90 (16)C15—C16—C17—C120.4 (2)
N1—C1—C6—C71.6 (2)C13—C12—C17—C160.0 (2)
C2—C1—C6—C51.9 (2)C11—C12—C17—C16179.05 (15)
N1—C1—C6—C5177.59 (14)O3—S1—C21—C2697.34 (14)
C4—C5—C6—C7179.62 (17)O4—S1—C21—C2623.18 (15)
C4—C5—C6—C11.2 (2)O2—S1—C21—C26142.35 (13)
C1—C6—C7—C81.9 (2)O3—S1—C21—C2281.83 (14)
C5—C6—C7—C8178.93 (16)O4—S1—C21—C22157.66 (13)
C6—C7—C8—C92.7 (3)O2—S1—C21—C2238.48 (15)
C1—N1—C9—C83.9 (2)C26—C21—C22—C230.8 (2)
C20—N1—C9—C8174.28 (15)S1—C21—C22—C23178.35 (12)
C1—N1—C9—C10176.41 (14)C21—C22—C23—C240.2 (2)
C20—N1—C9—C105.4 (2)C27—O1—C24—C253.9 (2)
C7—C8—C9—N10.2 (2)C27—O1—C24—C23175.95 (14)
C7—C8—C9—C10179.86 (16)C22—C23—C24—O1179.57 (14)
N1—C9—C10—C11170.96 (15)C22—C23—C24—C250.3 (2)
C8—C9—C10—C118.7 (2)O1—C24—C25—C26179.62 (14)
C9—C10—C11—C12177.83 (15)C23—C24—C25—C260.2 (2)
C10—C11—C12—C13177.82 (16)C22—C21—C26—C250.9 (2)
C10—C11—C12—C173.2 (3)S1—C21—C26—C25178.29 (12)
C17—C12—C13—C140.3 (2)C24—C25—C26—C210.4 (2)
C11—C12—C13—C14179.40 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.842.042.875 (3)169
O1W—H2W···O4ii0.852.102.926 (2)161
C7—H7A···O3iii0.932.493.015 (3)116
C8—H8A···O3iii0.932.573.049 (3)113
C20—H20A···O4iv0.962.463.325 (2)151
C23—H23A···O1Wv0.932.443.365 (2)176
C26—H26A···O40.932.562.921 (2)104
C27—H27A···O1Wvi0.962.583.160 (3)119
C27—H27A···O1vii0.962.553.282 (2)133
C16—H16A···Cg1iv0.932.813.6513 (19)151
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x, y1/2, z+1/2; (vi) x+2, y1/2, z+3/2; (vii) x+2, y1, z+2.

Experimental details

Crystal data
Chemical formulaC20H21N2+·C7H7O4S·H2O
Mr494.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.6064 (5), 10.4253 (4), 19.5025 (6)
β (°) 126.737 (2)
V3)2379.94 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.58 × 0.27 × 0.19
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.904, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
33983, 6953, 5445
Rint0.045
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.139, 1.06
No. of reflections6953
No. of parameters350
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.42

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.842.04132.875 (3)169
O1W—H2W···O4ii0.852.10402.926 (2)161
C7—H7A···O3iii0.932.48593.015 (3)116
C8—H8A···O3iii0.932.56943.049 (3)113
C20—H20A···O4iv0.962.45573.325 (2)151
C23—H23A···O1Wv0.932.43663.365 (2)176
C26—H26A···O40.932.55532.921 (2)104
C27—H27A···O1Wvi0.962.57633.160 (3)119
C27—H27A···O1vii0.962.54793.282 (2)133
C16—H16A···Cg1iv0.932.80963.6513 (19)151
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x, y1/2, z+1/2; (vi) x+2, y1/2, z+3/2; (vii) x+2, y1, z+2.
 

Footnotes

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of science in Thailand.

Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors thank Prince of Songkla University for financial support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advance­ment Grant Allocation (SAGA) No. 304/PFIZIK/653003/A118.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007a). Anal. Sci. 23, x81–x82.  Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007b). Acta Cryst. E63, o2124–o2126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2006). Acta Cryst. E62, o1802–o1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2007). Anal. Sci. 23, x27–x28.  CSD CrossRef CAS Google Scholar
First citationChia, W.-L., Chen, C.-N. & Sheu, H.-J. (1995). Mater. Res. Bull. 30, 1421–1430.  CrossRef CAS Web of Science Google Scholar
First citationDittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci. 220, 88–95.  Web of Science CrossRef CAS Google Scholar
First citationJindawong, B., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2005). Acta Cryst. E61, o3237–o3239.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNogi, K., Anwar, U., Tsuji, K., Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (2000). Nonlinear Optics, 24, 35–40.  CAS Google Scholar
First citationOtero, M., Herranz, M. A., Seoane, C., Martín, N., Garín, J., Orduna, J., Alcalá, R. & Villacampa, B. (2002). Tetrahedron, 58, 7463–7475.  Web of Science CrossRef CAS Google Scholar
First citationSato, N., Rikukawa, M., Sanui, K. & Ogata, N. (1999). Synth. Met. 101, 132–133.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o642-o643
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds