organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,8-Di­benzoyl-2,7-di­meth­oxy­naphthalene

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan, and bInstrumentation Analysis Center, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 10 March 2008; accepted 13 March 2008; online 4 April 2008)

The mol­ecule of the title compound, C26H20O4, is located on a twofold rotation axis. The two benzoyl groups are situated in an anti orientation. The dihedral angle between the mean planes of the phenyl ring and the naphthalene ring system is 80.25 (6)°. The phenyl and carbonyl groups in each benzoyl group are almost coplanar. The mol­ecular packing is stabilized by weak C—H⋯O hydrogen bonds and a ππ stacking inter­action between the phenyl rings [centroid–centroid and inter­planar distances of 3.6383 (10) and 3.294 Å, respectively].

Related literature

For related literature, see: Cohen et al. (2004[Cohen, S., Thirumalaikumar, M., Pogodin, S. & Agranat, I. (2004). Struct. Chem. 15, 339-345.]); Gore & Henrick (1980[Gore, P. H. & Henrick, K. (1980). Acta Cryst. B36, 2462-2465.]); Nakaema et al. (2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20O4

  • Mr = 396.42

  • Monoclinic, C 2/c

  • a = 13.9677 (4) Å

  • b = 10.2145 (3) Å

  • c = 14.6966 (4) Å

  • β = 109.711 (2)°

  • V = 1973.95 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 93 (2) K

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.838, Tmax = 0.930

  • 17362 measured reflections

  • 1807 independent reflections

  • 1461 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.08

  • 1807 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.60 3.4987 (19) 159
C14—H14B⋯O1ii 0.98 2.39 3.344 (2) 164
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecules with naphthalene frame, especially, peri-substituted naphthalenes, have received much attention as unique structured aromatic core compounds for variety of the functional materials. Therefore, structural analyses of peri-substituted naphthalenes have been actively performed (Cohen et al., 2004; Gore & Henrick, 1980). Recently, we have reported the structure of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007). In this paper, the crystallographical structural characteristics of a 1,8-diphenylated naphthalene derivative having two methoxy groups at the 2,7-positions are described as the most simple homolog of the previously reported compound. The title compound was successfully synthesized by regioselective electrophilic aromatic substitution reaction of 2,7-dimethoxynaphthalene with benzoic acid.

ORTEPIII (Burnett & Johnson, 1996) plot of title compound is displayed in Fig. 1. The molecule of (I) lies across a crystallographic 2-fold axis so that the asymmetric unit contains one-half of the molecules. Thus, the two benzoyl groups are situated in anti orientation. The benzoyl groups are twisted away from the naphthalene moiety, and the dihedral angle is 80.25 (6)°. The torsion angles between the carbonyl groups and the naphthalene ring are -76.73 (18)° [C6—C1—C7—O1], and those between the carbonyl groups and the phenyl groups are 179.75 (15)° [C13—C8—C7—O1].

In the crystal structure, the molecular packing of (I) is mainly stabilized by van der Waals interaction. In addition, the packing of the molecule is stabilized by relatively weak C—H···O hydrogen bonding, namely, C12—H12···O1i [symmetry code: (i) x, -y+1, z + 1/2], C14—H14B···O1ii [symmetry code: (ii) -x+1/2, y - 1/2, -z+1/2], and a ππ stacking interaction. In the packing, the molecules are arranged by C—H···O hydrogen bonding along the c axis of the unit cell, and by a ππ stacking interaction perpendicular the bc plane of the unit cell (Fig. 2).

Related literature top

For related literature, see: Cohen et al. (2004); Gore & Henrick (1980); Nakaema et al. (2007).

Experimental top

The title compound was prepared by electrophilic aromatic diaroylation reaction of 2,7-dimethoxynaphthalene with benzoic acid. White single crystals suitable for X-ray diffraction were obtained by recrystallization from ethanol.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 Å (methyl), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. The symbol "_2" refers to symmetry code: -x, y, -z+1/2.
[Figure 2] Fig. 2. A partial packing diagram of the title compound, viewed down the b axis. The dashed lines indicate hydrogen bonds (blue dashed lines) and ππ stacking interactions (green dashed lines).
1,8-Dibenzoyl-2,7-dimethoxynaphthalene top
Crystal data top
C26H20O4F(000) = 832
Mr = 396.42Dx = 1.334 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -C 2ycCell parameters from 10115 reflections
a = 13.9677 (4) Åθ = 3.2–68.1°
b = 10.2145 (3) ŵ = 0.72 mm1
c = 14.6966 (4) ÅT = 93 K
β = 109.711 (2)°Needle, colorless
V = 1973.95 (10) Å30.50 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1807 independent reflections
Radiation source: rotating anode1461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 5.5°
ω scansh = 1616
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1212
Tmin = 0.838, Tmax = 0.930l = 1717
17362 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.9602P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1807 reflectionsΔρmax = 0.19 e Å3
139 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00121 (18)
Crystal data top
C26H20O4V = 1973.95 (10) Å3
Mr = 396.42Z = 4
Monoclinic, C2/cCu Kα radiation
a = 13.9677 (4) ŵ = 0.72 mm1
b = 10.2145 (3) ÅT = 93 K
c = 14.6966 (4) Å0.50 × 0.10 × 0.10 mm
β = 109.711 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1807 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
1461 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.930Rint = 0.027
17362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.08Δρmax = 0.19 e Å3
1807 reflectionsΔρmin = 0.21 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11104 (8)0.59739 (10)0.22559 (7)0.0399 (3)
O20.26822 (8)0.39816 (11)0.37874 (9)0.0530 (4)
C10.09424 (11)0.39621 (13)0.29711 (10)0.0325 (3)
C20.18262 (12)0.32529 (15)0.33814 (11)0.0393 (4)
C30.18231 (14)0.18652 (16)0.33535 (12)0.0470 (4)
H30.24360.13850.36260.056*
C40.09246 (14)0.12359 (15)0.29280 (11)0.0463 (4)
H40.09190.03060.29190.056*
C50.00000.19109 (19)0.25000.0383 (5)
C60.00000.33146 (18)0.25000.0319 (4)
C70.10671 (10)0.54368 (14)0.29822 (10)0.0313 (3)
C80.11341 (10)0.61894 (13)0.38633 (10)0.0316 (3)
C90.12438 (11)0.75478 (14)0.38552 (11)0.0368 (4)
H90.12760.79700.32910.044*
C100.13055 (12)0.82794 (16)0.46611 (12)0.0431 (4)
H100.13840.92030.46520.052*
C110.12535 (12)0.76686 (17)0.54845 (12)0.0448 (4)
H110.12960.81730.60400.054*
C120.11397 (12)0.63233 (17)0.54997 (11)0.0447 (4)
H120.11020.59060.60640.054*
C130.10816 (11)0.55857 (15)0.46934 (10)0.0376 (4)
H130.10060.46620.47070.045*
C140.36309 (13)0.3343 (2)0.42144 (14)0.0592 (5)
H14A0.41710.39990.44470.071*
H14B0.37710.27830.37330.071*
H14C0.36060.28050.47580.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0505 (6)0.0371 (6)0.0351 (6)0.0020 (4)0.0185 (5)0.0020 (4)
O20.0393 (6)0.0456 (7)0.0658 (8)0.0087 (5)0.0068 (5)0.0046 (6)
C10.0421 (8)0.0273 (7)0.0311 (7)0.0034 (6)0.0161 (6)0.0006 (5)
C20.0446 (9)0.0366 (8)0.0366 (8)0.0058 (6)0.0134 (7)0.0009 (6)
C30.0591 (10)0.0375 (9)0.0442 (9)0.0160 (7)0.0170 (8)0.0021 (7)
C40.0708 (12)0.0281 (8)0.0428 (9)0.0076 (7)0.0227 (8)0.0014 (6)
C50.0583 (13)0.0268 (10)0.0342 (11)0.0000.0212 (10)0.000
C60.0454 (11)0.0266 (9)0.0278 (10)0.0000.0177 (9)0.000
C70.0307 (7)0.0306 (7)0.0330 (8)0.0011 (5)0.0116 (6)0.0022 (6)
C80.0300 (7)0.0312 (7)0.0333 (8)0.0003 (5)0.0101 (6)0.0011 (6)
C90.0415 (8)0.0320 (7)0.0367 (8)0.0012 (6)0.0130 (6)0.0018 (6)
C100.0453 (9)0.0353 (8)0.0478 (10)0.0000 (6)0.0143 (7)0.0069 (7)
C110.0426 (9)0.0515 (10)0.0415 (9)0.0001 (7)0.0157 (7)0.0136 (7)
C120.0493 (9)0.0534 (10)0.0356 (9)0.0040 (7)0.0199 (7)0.0013 (7)
C130.0408 (8)0.0359 (8)0.0381 (8)0.0025 (6)0.0159 (6)0.0013 (6)
C140.0465 (10)0.0653 (11)0.0578 (11)0.0221 (9)0.0070 (8)0.0151 (9)
Geometric parameters (Å, º) top
O1—C71.2197 (16)C8—C91.396 (2)
O2—C21.3633 (19)C9—C101.378 (2)
O2—C141.4194 (19)C9—H90.9500
C1—C21.382 (2)C10—C111.385 (2)
C1—C61.4264 (17)C10—H100.9500
C1—C71.5158 (19)C11—C121.384 (2)
C2—C31.418 (2)C11—H110.9500
C3—C41.360 (2)C12—C131.383 (2)
C3—H30.9500C12—H120.9500
C4—C51.4110 (19)C13—H130.9500
C4—H40.9500C14—H14A0.9800
C5—C61.434 (3)C14—H14B0.9800
C7—C81.4814 (19)C14—H14C0.9800
C8—C131.3908 (19)
C2—O2—C14119.52 (13)C13—C8—C7122.02 (13)
C2—C1—C6120.72 (14)C9—C8—C7118.88 (13)
C2—C1—C7115.70 (13)C10—C9—C8120.44 (14)
C6—C1—C7123.36 (13)C10—C9—H9119.8
O2—C2—C1115.29 (13)C8—C9—H9119.8
O2—C2—C3123.51 (14)C9—C10—C11120.00 (15)
C1—C2—C3121.19 (15)C9—C10—H10120.0
C4—C3—C2118.62 (15)C11—C10—H10120.0
C4—C3—H3120.7C12—C11—C10120.09 (15)
C2—C3—H3120.7C12—C11—H11120.0
C3—C4—C5122.54 (15)C10—C11—H11120.0
C3—C4—H4118.7C13—C12—C11120.05 (15)
C5—C4—H4118.7C13—C12—H12120.0
C4i—C5—C4121.50 (19)C11—C12—H12120.0
C4i—C5—C6119.25 (10)C12—C13—C8120.31 (14)
C4—C5—C6119.25 (10)C12—C13—H13119.8
C1—C6—C1i124.75 (17)C8—C13—H13119.8
C1—C6—C5117.62 (9)O2—C14—H14A109.5
C1i—C6—C5117.62 (9)O2—C14—H14B109.5
O1—C7—C8121.63 (13)H14A—C14—H14B109.5
O1—C7—C1118.49 (12)O2—C14—H14C109.5
C8—C7—C1119.88 (12)H14A—C14—H14C109.5
C13—C8—C9119.10 (13)H14B—C14—H14C109.5
C14—O2—C2—C1179.05 (14)C4—C5—C6—C1i177.70 (9)
C14—O2—C2—C30.3 (2)C2—C1—C7—O197.99 (16)
C6—C1—C2—O2178.29 (11)C6—C1—C7—O176.73 (16)
C7—C1—C2—O23.43 (18)C2—C1—C7—C881.97 (16)
C6—C1—C2—C30.5 (2)C6—C1—C7—C8103.32 (14)
C7—C1—C2—C3175.33 (14)O1—C7—C8—C13179.76 (13)
O2—C2—C3—C4179.86 (14)C1—C7—C8—C130.29 (19)
C1—C2—C3—C41.2 (2)O1—C7—C8—C90.4 (2)
C2—C3—C4—C51.1 (2)C1—C7—C8—C9179.69 (12)
C3—C4—C5—C4i179.31 (17)C13—C8—C9—C100.4 (2)
C3—C4—C5—C60.69 (17)C7—C8—C9—C10179.81 (13)
C2—C1—C6—C1i177.80 (14)C8—C9—C10—C110.3 (2)
C7—C1—C6—C1i3.35 (9)C9—C10—C11—C120.0 (2)
C2—C1—C6—C52.20 (14)C10—C11—C12—C130.2 (2)
C7—C1—C6—C5176.65 (9)C11—C12—C13—C80.2 (2)
C4i—C5—C6—C1177.70 (9)C9—C8—C13—C120.1 (2)
C4—C5—C6—C12.30 (9)C7—C8—C13—C12179.53 (13)
C4i—C5—C6—C1i2.30 (9)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1ii0.952.603.4987 (19)159
C14—H14B···O1iii0.982.393.344 (2)164
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H20O4
Mr396.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)93
a, b, c (Å)13.9677 (4), 10.2145 (3), 14.6966 (4)
β (°) 109.711 (2)
V3)1973.95 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.838, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
17362, 1807, 1461
Rint0.027
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.08
No. of reflections1807
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.952.603.4987 (19)159
C14—H14B···O1ii0.982.393.344 (2)164
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCohen, S., Thirumalaikumar, M., Pogodin, S. & Agranat, I. (2004). Struct. Chem. 15, 339–345.  Web of Science CSD CrossRef CAS Google Scholar
First citationGore, P. H. & Henrick, K. (1980). Acta Cryst. B36, 2462–2465.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds