organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o803-o804

3,5,7-Tri­propyl-1-aza­adamantane-4,6,10-triol

aLaboratoire de Chimie, UMR CNRS 5182, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France, and bCentre de Diffractométrie Henri Longchambon, Université Claude Bernard Lyon1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: erwann.jeanneau@univ-lyon1.fr

(Received 26 February 2008; accepted 6 March 2008; online 4 April 2008)

The title compound, C18H33NO3, was prepared according to a highly diastereoselective hydrogenation procedure from 3,5,7-triallyl-1-aza­adamantane-4,6,10-trione. The crystal structure of the title compound contains two crystallographically independent mol­ecules (Z′ = 2), which are linked by inter­molecular hydrogen bonding into chains. In contrast to the aza­adamantanones, the aza­adamantanetriol core of the title compound does not show any particular C—C bond elongation.

Related literature

For related literature on the consequences of through-bond donor–acceptor inter­actions in β-amino­ketones azaadaman­tones, see: Lampkins et al. (2008[Lampkins, A. J., Li, Y., Al Abbas, A., Abboud, K. A., Ghiviriga, I. & Castellano, R. K. (2008). Chem. Eur. J. 14, 1452-1463.]). For details on mol­ecular receptors based on a polyfunctionalized rigid platform, see: Guarise et al. (2006[Guarise, C., Prins, L. J. & Scrimin, P. (2006). Tetrahedron, 62, 11670-11674.]); Haberhauer et al. (2005[Haberhauer, G., Oeser, T. & Rominger, F. (2005). Chem. Eur. J. 11, 6718-6726.]); Li et al. (2005[Li, H. F., Homan, E. A., Lampkins, A. J., Ghiviriga, I. & Castellano, R. K. (2005). Org. Lett. 7, 443-446.]). For information about mol­ecules displaying multiple formula units per crystallographic asymmetric unit, see: Steiner (2000[Steiner, T. (2000). Acta Cryst. B56, 673-676.]). For bond lengths in similar compounds, see: Lampkins et al. (2008[Lampkins, A. J., Li, Y., Al Abbas, A., Abboud, K. A., Ghiviriga, I. & Castellano, R. K. (2008). Chem. Eur. J. 14, 1452-1463.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). Details on the synthesis can be found in: Risch (1985[Risch, N. (1985). Chem. Ber. 118, 4849-4856.]); Li et al. (2005[Li, H. F., Homan, E. A., Lampkins, A. J., Ghiviriga, I. & Castellano, R. K. (2005). Org. Lett. 7, 443-446.]). For details of data collection and refinement procedures, see: Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]); Guarise et al. (2006[Guarise, C., Prins, L. J. & Scrimin, P. (2006). Tetrahedron, 62, 11670-11674.]); Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • C18H33NO3

  • Mr = 311.45

  • Monoclinic, P 21 /c

  • a = 13.1922 (2) Å

  • b = 22.6174 (5) Å

  • c = 13.1144 (3) Å

  • β = 114.4470 (10)°

  • V = 3562.17 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.43 × 0.35 × 0.14 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 16642 measured reflections

  • 8498 independent reflections

  • 5272 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.054

  • S = 1.06

  • 5272 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H261⋯O4i 0.97 2.38 3.261 (3) 151
C35—H351⋯O4i 0.97 2.54 3.344 (3) 140
C31—H312⋯O1ii 0.97 2.54 3.355 (3) 142
O3—H3⋯N2iii 0.84 1.87 2.696 (3) 168
O2—H2⋯O3 0.82 2.08 2.788 (3) 143
O4—H4⋯O5 0.84 1.96 2.696 (3) 147
O5—H5⋯N1iv 0.83 1.90 2.713 (3) 167
O1—H1⋯O3 0.79 2.07 2.777 (3) 149
O6—H6⋯O5 0.83 2.07 2.810 (3) 148
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x-1, y, z.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1996[Brandenburg, K. & Putz, H. (1996). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Recently, an increasing number of molecular receptors based on a polyfunctionalized rigid platform have been reported (Guarise et al., 2006; Haberhauer et al., 2005 ; Li et al., 2005). Among them, adamantane and aza-adamantane scaffolds offer the guarantee of a well-defined environment as a result of axial or equatorial substituent orientation. The title compound shows a perfectly constraint face with three hydroxyl groups in axial positions that could potentially be used, after introduction of suitable ligands, as oriented binding sites for a wide range of applications.

The asymmetric unit of the title compound consists of two independent molecules(A and B) per unit-cell (Z'=2) (Steiner, 2000). This feature arises from the different orientation of one of the propyl group (C11-C12-C13 and C29-C30-C31). Contrary to the case of aza-adamantanone systems which show several C-C bond elongations (Lampkins et al., 2008), all angles and distances within the two molecules agree well with the expected values from the literature (Allen et al., 2006). Each independant molecule of the title compound displays two intra-molecular O-H···O hydrogen bonds and one O-H···N inter-molecular. The later leads to the formation of infinite one-dimensional chains along [2 0 1]. The chains are composed of alternated molecules A and B.

Related literature top

For related literature on the consequences of through-bond donor–acceptor interactions in β-aminoketones aza-adamantones, see: Lampkins et al. (2008). For details on molecular receptors based on a polyfunctionalized rigid platform, see: Guarize et al. (2006); Haberhauer et al. (2005); Li et al. (2005) For information about molecules displaying formula units per asymmetric crystal unit greater than one, see: Steiner (2000). For bond lengths in similar compounds, see: Lampkins et al. (2008); Allen et al. (2006). Details on the synthesis can be found in: Risch (1985); Li et al. (2005).

For related literature, see: Görbitz (1999); Guarize et al. (2006); Prince (1982); Watkin (1994).

Experimental top

The title compound was prepared according to a hydrogenation procedure adapted from Risch (1985). A 100-ml reactor vessel was charged with 80 mg of 3,5,7-triallyl-1-aza-adamantane-4,6,10-trione (0.267 mmol) (Li et al., 2005), 88 mg of platinum oxide (0.388 mmol) and 20 ml of a 1:1 THF/0.1 N HCl mixture. The reaction mixture was hydrogenated (10 bar H2) for 50 h at room temperature. After filtration over Celite, the aqueous solution was concentrated under reduced pressure (200 mbar) basified with potassium carbonate and extracted with four 80-ml portions of ethyl acetate. The combined organic phases were then dried over Na2SO4 and concentrated in vacuo. Flash chromatography purification (petroleum ether/ethyl acetate 1:1 then neat ethyl acetate) afforded the title compound as a cristalline white powder (54 mg, 65%). X-ray quality single crystals were obtained by slow evaporation from a cyclohexane/ethyl acetate solution.

Refinement top

Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997). All non hydrogen atoms were refined with anisotropic displacement parameters. The H atoms were all located in a difference map and initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.954–1.014 and O—H = 0.794–0.836 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom). In the final refinement the H-atoms were refined using a riding model.

Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: DIAMOND (Brandenburg & Putz, 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Molecule A of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted fo clarity.
[Figure 2] Fig. 2. Molecule B of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted fo clarity.
3,5,7-Tripropyl-1-azaadamantane-4,6,10-triol top
Crystal data top
C18H33NO3F(000) = 1376
Mr = 311.45Dx = 1.162 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 8626 reflections
a = 13.1922 (2) Åθ = 0.7–27.9°
b = 22.6174 (5) ŵ = 0.08 mm1
c = 13.1144 (3) ÅT = 150 K
β = 114.447 (1)°Block, colorless
V = 3562.17 (13) Å30.43 × 0.35 × 0.14 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.027
Graphite monochromatorθmax = 27.9°, θmin = 1.8°
ϕ & ω scansh = 1617
16642 measured reflectionsk = 2929
8498 independent reflectionsl = 1717
5272 reflections with I > 2σ(I)
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.054 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.361 0.287 0.915E-01
S = 1.06(Δ/σ)max = 0.000263
5272 reflectionsΔρmax = 0.29 e Å3
397 parametersΔρmin = 0.18 e Å3
0 restraints
Crystal data top
C18H33NO3V = 3562.17 (13) Å3
Mr = 311.45Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.1922 (2) ŵ = 0.08 mm1
b = 22.6174 (5) ÅT = 150 K
c = 13.1144 (3) Å0.43 × 0.35 × 0.14 mm
β = 114.447 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5272 reflections with I > 2σ(I)
16642 measured reflectionsRint = 0.027
8498 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
5272 reflectionsΔρmin = 0.18 e Å3
397 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.22669 (10)0.25151 (5)0.14425 (9)0.0370
C220.31510 (13)0.23591 (7)0.24925 (13)0.0319
C210.32122 (13)0.16842 (7)0.27185 (13)0.0317
C280.22217 (13)0.14597 (8)0.29517 (13)0.0321
O60.11955 (9)0.14471 (6)0.19701 (9)0.0394
C250.21442 (12)0.18139 (7)0.39228 (13)0.0307
C240.20674 (12)0.24822 (7)0.36626 (13)0.0307
C230.30828 (13)0.27030 (7)0.34760 (13)0.0318
C320.30115 (14)0.33789 (8)0.32981 (15)0.0363
C330.40054 (15)0.36720 (8)0.31923 (16)0.0427
C340.38186 (18)0.43335 (9)0.29532 (17)0.0490
C270.41327 (13)0.25457 (7)0.45347 (14)0.0335
N20.42274 (11)0.19088 (6)0.47731 (11)0.0325
C260.32503 (13)0.17096 (8)0.49585 (13)0.0323
C200.42662 (13)0.15834 (8)0.38098 (13)0.0332
O50.10637 (9)0.26078 (5)0.26700 (9)0.0358
C350.11432 (13)0.16295 (8)0.41669 (14)0.0348
C360.11823 (16)0.10271 (9)0.47005 (18)0.0468
C370.01314 (19)0.09196 (11)0.4888 (2)0.0652
C290.32990 (14)0.13606 (8)0.17273 (14)0.0360
C300.33494 (17)0.06849 (8)0.17741 (15)0.0426
C310.33958 (17)0.04267 (9)0.07231 (16)0.0464
O20.67551 (10)0.29792 (6)0.42136 (11)0.0413
C60.77461 (13)0.29360 (8)0.40309 (14)0.0353
C70.75659 (13)0.26000 (8)0.29401 (14)0.0338
C80.87254 (14)0.25041 (8)0.29625 (15)0.0380
N10.93330 (11)0.30585 (7)0.30284 (12)0.0385
C20.86849 (14)0.34194 (9)0.20364 (14)0.0380
C30.75199 (13)0.35754 (8)0.19632 (13)0.0333
C100.69017 (12)0.29876 (8)0.19190 (13)0.0320
O30.58136 (9)0.30951 (5)0.18883 (9)0.0341
C40.76841 (13)0.39174 (8)0.30365 (13)0.0350
C50.83343 (13)0.35359 (8)0.40852 (14)0.0351
C90.94652 (14)0.33854 (9)0.40532 (14)0.0392
C140.85052 (15)0.38593 (8)0.51758 (14)0.0402
C150.91418 (17)0.44422 (9)0.54001 (16)0.0468
C160.9286 (2)0.47099 (10)0.65167 (17)0.0577
O10.66640 (10)0.41465 (6)0.30104 (10)0.0421
C110.68602 (14)0.39337 (8)0.08912 (14)0.0377
C120.72891 (18)0.45457 (9)0.08051 (17)0.0520
C130.6514 (2)0.48575 (10)0.02511 (18)0.0578
C170.70163 (15)0.19948 (8)0.29070 (15)0.0399
C180.6838 (2)0.16093 (9)0.19042 (19)0.0578
C190.6477 (2)0.09893 (10)0.1998 (2)0.0639
H2210.38440.24680.24350.0364*
H2810.23870.10390.32010.0372*
H2410.20470.26950.43120.0362*
H3210.29180.35570.39260.0433*
H3220.23440.34610.26170.0433*
H3310.46650.36210.39060.0517*
H3320.41400.34820.25790.0522*
H3410.44530.45150.28840.0734*
H3420.37100.45310.35530.0734*
H3430.31520.44000.22680.0738*
H2710.41150.27540.51810.0400*
H2720.48030.26690.44410.0397*
H2610.32310.19270.55870.0376*
H2620.33350.12850.51320.0369*
H2010.49230.17160.37040.0379*
H2020.43540.11620.40030.0387*
H3510.10730.19260.46730.0420*
H3520.04680.16520.34510.0413*
H3610.18260.10050.54240.0572*
H3620.12550.07140.42110.0579*
H3720.01810.05450.52400.1066*
H3730.00580.12340.53650.1065*
H3710.05290.09130.41760.1066*
H2920.39770.14990.16660.0441*
H2910.26600.14730.10590.0432*
H3020.39930.05530.24350.0525*
H3010.26750.05280.18380.0534*
H3120.34370.00010.07750.0710*
H3110.40580.05790.06420.0701*
H3130.27270.05380.00720.0718*
H810.91510.22630.36110.0457*
H820.86590.22910.22870.0451*
H1010.68000.27750.12260.0385*
H410.81780.42700.30910.0411*
H910.98520.37620.40790.0453*
H920.99110.31500.47070.0451*
H1410.89030.35870.57970.0480*
H1420.77830.39310.51830.0461*
H1510.98770.43770.53960.0542*
H1520.87300.47200.48040.0538*
H1610.96920.50900.66480.0816*
H1630.97160.44480.71310.0814*
H1620.85700.47910.65490.0813*
H1120.68280.36970.02560.0445*
H1110.61000.39820.08300.0418*
H1220.80280.45120.08040.0611*
H1210.73580.47860.14460.0606*
H1320.67940.52450.03290.0821*
H1310.64030.46270.09070.0830*
H1330.57900.49140.02440.0836*
H1710.74900.17780.35840.0495*
H1720.63030.20580.29530.0493*
H1810.75070.16010.17840.0724*
H1820.62650.17910.12360.0733*
H1920.63090.07680.13050.0976*
H1930.70680.07900.26040.0985*
H1910.58230.09930.21720.0980*
H610.82580.26990.46570.0408*
H30.53790.31250.12090.0493*
H20.62480.30680.36080.0653*
H40.17290.26120.15860.0565*
H50.06050.27830.28410.0541*
H10.62090.39010.27050.0617*
H60.09360.17860.19390.0573*
H210.90780.37820.20690.0497*
H220.86200.32150.13580.0487*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0343 (6)0.0458 (7)0.0311 (6)0.0050 (5)0.0137 (5)0.0050 (5)
C220.0273 (7)0.0388 (9)0.0293 (8)0.0020 (6)0.0116 (6)0.0026 (6)
C210.0291 (8)0.0384 (8)0.0284 (7)0.0031 (6)0.0126 (6)0.0005 (6)
C280.0279 (7)0.0374 (8)0.0287 (7)0.0001 (6)0.0093 (6)0.0001 (6)
O60.0324 (6)0.0493 (7)0.0323 (6)0.0034 (5)0.0091 (5)0.0039 (5)
C250.0259 (7)0.0370 (8)0.0297 (8)0.0015 (6)0.0119 (6)0.0009 (6)
C240.0263 (7)0.0367 (8)0.0288 (7)0.0024 (6)0.0113 (6)0.0015 (6)
C230.0285 (7)0.0350 (8)0.0323 (8)0.0013 (6)0.0128 (6)0.0010 (6)
C320.0349 (8)0.0369 (9)0.0381 (9)0.0024 (7)0.0163 (7)0.0005 (7)
C330.0433 (10)0.0418 (10)0.0456 (10)0.0037 (8)0.0210 (8)0.0041 (8)
C340.0589 (12)0.0426 (10)0.0478 (10)0.0065 (9)0.0245 (9)0.0020 (8)
C270.0267 (7)0.0394 (9)0.0326 (8)0.0008 (6)0.0105 (6)0.0015 (7)
N20.0265 (6)0.0394 (7)0.0308 (7)0.0020 (5)0.0111 (5)0.0001 (6)
C260.0282 (7)0.0392 (9)0.0288 (8)0.0032 (6)0.0110 (6)0.0016 (6)
C200.0278 (8)0.0410 (9)0.0314 (8)0.0048 (6)0.0130 (6)0.0011 (6)
O50.0264 (5)0.0481 (7)0.0328 (6)0.0075 (5)0.0121 (5)0.0040 (5)
C350.0289 (8)0.0404 (9)0.0352 (8)0.0007 (7)0.0135 (7)0.0011 (7)
C360.0419 (10)0.0494 (11)0.0528 (11)0.0029 (8)0.0233 (9)0.0110 (9)
C370.0587 (13)0.0608 (14)0.0930 (18)0.0020 (11)0.0483 (13)0.0190 (13)
C290.0375 (9)0.0402 (9)0.0331 (8)0.0017 (7)0.0175 (7)0.0010 (7)
C300.0536 (11)0.0412 (10)0.0369 (9)0.0001 (8)0.0228 (8)0.0020 (7)
C310.0568 (11)0.0452 (10)0.0413 (10)0.0021 (9)0.0245 (9)0.0061 (8)
O20.0349 (6)0.0527 (8)0.0416 (6)0.0001 (5)0.0211 (5)0.0007 (6)
C60.0289 (8)0.0454 (9)0.0318 (8)0.0045 (7)0.0127 (6)0.0035 (7)
C70.0295 (8)0.0390 (9)0.0341 (8)0.0035 (7)0.0145 (6)0.0015 (7)
C80.0308 (8)0.0448 (10)0.0388 (9)0.0054 (7)0.0148 (7)0.0018 (7)
N10.0295 (7)0.0484 (9)0.0376 (7)0.0019 (6)0.0139 (6)0.0005 (6)
C20.0308 (8)0.0489 (10)0.0359 (9)0.0027 (7)0.0156 (7)0.0004 (7)
C30.0295 (8)0.0387 (8)0.0323 (8)0.0026 (7)0.0133 (6)0.0001 (7)
C100.0252 (7)0.0399 (9)0.0320 (8)0.0005 (6)0.0129 (6)0.0005 (6)
O30.0246 (5)0.0460 (7)0.0304 (5)0.0011 (5)0.0103 (4)0.0000 (5)
C40.0285 (8)0.0433 (9)0.0323 (8)0.0009 (7)0.0118 (6)0.0004 (7)
C50.0282 (8)0.0445 (9)0.0314 (8)0.0007 (7)0.0110 (6)0.0005 (7)
C90.0291 (8)0.0518 (11)0.0344 (8)0.0001 (7)0.0108 (7)0.0000 (7)
C140.0353 (9)0.0511 (11)0.0324 (8)0.0014 (8)0.0121 (7)0.0009 (7)
C150.0441 (10)0.0503 (11)0.0395 (9)0.0010 (8)0.0108 (8)0.0031 (8)
C160.0637 (13)0.0567 (13)0.0444 (11)0.0011 (10)0.0141 (10)0.0097 (9)
O10.0347 (6)0.0481 (7)0.0407 (6)0.0053 (5)0.0127 (5)0.0058 (6)
C110.0360 (9)0.0427 (9)0.0318 (8)0.0043 (7)0.0115 (7)0.0005 (7)
C120.0532 (11)0.0482 (11)0.0472 (11)0.0104 (9)0.0133 (9)0.0067 (9)
C130.0705 (14)0.0475 (12)0.0478 (11)0.0071 (10)0.0170 (10)0.0088 (9)
C170.0400 (9)0.0391 (9)0.0432 (9)0.0016 (7)0.0200 (8)0.0034 (7)
C180.0787 (15)0.0433 (11)0.0572 (13)0.0092 (10)0.0340 (12)0.0053 (9)
C190.0616 (14)0.0473 (12)0.0867 (17)0.0052 (10)0.0344 (13)0.0071 (12)
Geometric parameters (Å, º) top
O4—C221.4323 (19)O2—C61.427 (2)
O4—H40.836O2—H20.824
C22—C211.551 (2)C6—C71.549 (2)
C22—C231.540 (2)C6—C51.550 (2)
C22—H2210.979C6—H610.979
C21—C281.546 (2)C7—C81.533 (2)
C21—C201.545 (2)C7—C101.536 (2)
C21—C291.537 (2)C7—C171.541 (2)
C28—O61.4311 (19)C8—N11.471 (2)
C28—C251.543 (2)C8—H810.970
C28—H2811.000C8—H820.980
O6—H60.833N1—C21.473 (2)
C25—C241.544 (2)N1—C91.480 (2)
C25—C261.546 (2)C2—C31.541 (2)
C25—C351.540 (2)C2—H210.962
C24—C231.541 (2)C2—H220.974
C24—O51.4498 (18)C3—C101.548 (2)
C24—H2410.988C3—C41.541 (2)
C23—C321.543 (2)C3—C111.542 (2)
C23—C271.543 (2)C10—O31.4400 (19)
C32—C331.526 (2)C10—H1010.987
C32—H3210.969O3—H30.839
C32—H3220.978C4—C51.548 (2)
C33—C341.528 (3)C4—O11.429 (2)
C33—H3310.986C4—H411.014
C33—H3320.990C5—C91.548 (2)
C34—H3410.970C5—C141.538 (2)
C34—H3420.965C9—H910.986
C34—H3430.974C9—H920.973
C27—N21.468 (2)C14—C151.525 (3)
C27—H2710.978C14—H1410.982
C27—H2720.982C14—H1420.970
N2—C261.477 (2)C15—C161.522 (3)
N2—C201.481 (2)C15—H1510.983
C26—H2610.969C15—H1520.975
C26—H2620.982C16—H1610.990
C20—H2010.979C16—H1630.972
C20—H2020.981C16—H1620.981
O5—H50.829O1—H10.794
C35—C361.523 (3)C11—C121.517 (3)
C35—H3510.974C11—H1120.976
C35—H3520.992C11—H1110.979
C36—C371.525 (3)C12—C131.513 (3)
C36—H3610.978C12—H1220.978
C36—H3620.987C12—H1210.973
C37—H3720.954C13—H1320.974
C37—H3730.978C13—H1310.964
C37—H3710.979C13—H1330.967
C29—C301.530 (3)C17—C181.513 (3)
C29—H2920.981C17—H1710.980
C29—H2910.965C17—H1720.977
C30—C311.521 (3)C18—C191.502 (3)
C30—H3020.976C18—H1810.960
C30—H3010.992C18—H1820.980
C31—H3120.969C19—H1920.980
C31—H3110.986C19—H1930.964
C31—H3130.973C19—H1910.979
C22—O4—H4106.1C6—O2—H2106.8
O4—C22—C21112.55 (13)O2—C6—C7112.81 (14)
O4—C22—C23111.96 (13)O2—C6—C5114.11 (14)
C21—C22—C23110.71 (13)C7—C6—C5110.76 (13)
O4—C22—H221106.2O2—C6—H61105.0
C21—C22—H221106.7C7—C6—H61107.1
C23—C22—H221108.5C5—C6—H61106.4
C22—C21—C28112.32 (13)C6—C7—C8106.33 (14)
C22—C21—C20106.14 (13)C6—C7—C10109.84 (14)
C28—C21—C20106.18 (13)C8—C7—C10107.59 (13)
C22—C21—C29108.86 (13)C6—C7—C17110.63 (14)
C28—C21—C29112.08 (14)C8—C7—C17109.20 (14)
C20—C21—C29111.09 (13)C10—C7—C17112.98 (14)
C21—C28—O6113.01 (13)C7—C8—N1113.30 (14)
C21—C28—C25110.05 (13)C7—C8—H81107.9
O6—C28—C25113.04 (13)N1—C8—H81108.9
C21—C28—H281106.8C7—C8—H82109.7
O6—C28—H281105.8N1—C8—H82108.4
C25—C28—H281107.7H81—C8—H82108.6
C28—O6—H6104.0C8—N1—C2108.51 (13)
C28—C25—C24110.28 (13)C8—N1—C9109.61 (14)
C28—C25—C26106.56 (12)C2—N1—C9109.42 (14)
C24—C25—C26107.18 (13)N1—C2—C3112.43 (14)
C28—C25—C35112.72 (13)N1—C2—H21109.2
C24—C25—C35109.14 (13)C3—C2—H21108.2
C26—C25—C35110.79 (13)N1—C2—H22110.1
C25—C24—C23111.76 (13)C3—C2—H22110.1
C25—C24—O5110.02 (13)H21—C2—H22106.6
C23—C24—O5108.96 (12)C2—C3—C10107.58 (14)
C25—C24—H241108.0C2—C3—C4107.37 (13)
C23—C24—H241108.3C10—C3—C4109.76 (13)
O5—C24—H241109.7C2—C3—C11110.44 (13)
C22—C23—C24108.97 (13)C10—C3—C11109.11 (13)
C22—C23—C32113.24 (14)C4—C3—C11112.46 (14)
C24—C23—C32110.03 (13)C7—C10—C3110.85 (13)
C22—C23—C27107.17 (13)C7—C10—O3108.86 (13)
C24—C23—C27107.33 (13)C3—C10—O3111.07 (13)
C32—C23—C27109.90 (13)C7—C10—H101109.6
C23—C32—C33116.31 (14)C3—C10—H101108.8
C23—C32—H321107.7O3—C10—H101107.6
C33—C32—H321108.2C10—O3—H3106.2
C23—C32—H322107.5C3—C4—C5110.40 (14)
C33—C32—H322108.5C3—C4—O1112.65 (13)
H321—C32—H322108.3C5—C4—O1113.17 (14)
C32—C33—C34111.86 (16)C3—C4—H41107.6
C32—C33—H331108.5C5—C4—H41105.8
C34—C33—H331108.3O1—C4—H41106.8
C32—C33—H332109.5C4—C5—C6111.37 (13)
C34—C33—H332109.1C4—C5—C9106.53 (14)
H331—C33—H332109.6C6—C5—C9106.02 (14)
C33—C34—H341111.2C4—C5—C14112.05 (15)
C33—C34—H342110.6C6—C5—C14109.69 (14)
H341—C34—H342107.8C9—C5—C14110.97 (14)
C33—C34—H343110.3C5—C9—N1112.46 (14)
H341—C34—H343109.5C5—C9—H91107.4
H342—C34—H343107.3N1—C9—H91109.1
C23—C27—N2112.55 (13)C5—C9—H92109.6
C23—C27—H271109.6N1—C9—H92109.1
N2—C27—H271108.5H91—C9—H92109.1
C23—C27—H272109.9C5—C14—C15116.59 (15)
N2—C27—H272107.7C5—C14—H141107.2
H271—C27—H272108.5C15—C14—H141108.6
C27—N2—C26109.33 (12)C5—C14—H142108.8
C27—N2—C20109.62 (13)C15—C14—H142108.6
C26—N2—C20109.22 (13)H141—C14—H142106.6
C25—C26—N2112.30 (13)C14—C15—C16111.66 (17)
C25—C26—H261108.8C14—C15—H151109.6
N2—C26—H261108.5C16—C15—H151109.5
C25—C26—H262109.2C14—C15—H152108.9
N2—C26—H262108.3C16—C15—H152108.7
H261—C26—H262109.8H151—C15—H152108.4
C21—C20—N2112.41 (13)C15—C16—H161110.9
C21—C20—H201109.5C15—C16—H163110.6
N2—C20—H201108.2H161—C16—H163107.3
C21—C20—H202110.3C15—C16—H162112.2
N2—C20—H202107.7H161—C16—H162106.9
H201—C20—H202108.5H163—C16—H162108.7
C24—O5—H5110.4C4—O1—H1105.5
C25—C35—C36117.98 (14)C3—C11—C12117.40 (15)
C25—C35—H351106.7C3—C11—H112107.4
C36—C35—H351107.3C12—C11—H112108.8
C25—C35—H352107.5C3—C11—H111107.8
C36—C35—H352109.1C12—C11—H111107.0
H351—C35—H352108.0H112—C11—H111108.1
C35—C36—C37110.91 (17)C11—C12—C13111.20 (16)
C35—C36—H361109.9C11—C12—H122109.4
C37—C36—H361108.6C13—C12—H122109.3
C35—C36—H362109.7C11—C12—H121110.5
C37—C36—H362109.3C13—C12—H121108.5
H361—C36—H362108.4H122—C12—H121107.9
C36—C37—H372109.6C12—C13—H132111.9
C36—C37—H373109.0C12—C13—H131111.1
H372—C37—H373110.0H132—C13—H131108.5
C36—C37—H371111.0C12—C13—H133110.4
H372—C37—H371107.7H132—C13—H133107.5
H373—C37—H371109.6H131—C13—H133107.2
C21—C29—C30117.32 (14)C7—C17—C18116.01 (15)
C21—C29—H292107.9C7—C17—H171107.6
C30—C29—H292107.2C18—C17—H171108.2
C21—C29—H291107.4C7—C17—H172108.8
C30—C29—H291107.9C18—C17—H172109.3
H292—C29—H291108.9H171—C17—H172106.7
C29—C30—C31111.38 (15)C17—C18—C19114.05 (19)
C29—C30—H302110.4C17—C18—H181109.4
C31—C30—H302109.9C19—C18—H181109.8
C29—C30—H301109.5C17—C18—H182108.6
C31—C30—H301108.3C19—C18—H182108.2
H302—C30—H301107.3H181—C18—H182106.5
C30—C31—H312110.0C18—C19—H192111.1
C30—C31—H311109.5C18—C19—H193109.1
H312—C31—H311109.2H192—C19—H193108.8
C30—C31—H313109.5C18—C19—H191110.5
H312—C31—H313108.9H192—C19—H191109.8
H311—C31—H313109.7H193—C19—H191107.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H261···O4i0.972.383.261 (3)151
C35—H351···O4i0.972.543.344 (3)140
C31—H312···O1ii0.972.543.355 (3)142
O3—H3···N2iii0.841.872.696 (3)168
O2—H2···O30.822.082.788 (3)143
O4—H4···O50.841.962.696 (3)147
O5—H5···N1iv0.831.902.713 (3)167
O1—H1···O30.792.072.777 (3)149
O6—H6···O50.832.072.810 (3)148
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H33NO3
Mr311.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)13.1922 (2), 22.6174 (5), 13.1144 (3)
β (°) 114.447 (1)
V3)3562.17 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.43 × 0.35 × 0.14
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16642, 8498, 5272
Rint0.027
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.054, 1.06
No. of reflections5272
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.18

Computer programs: COLLECT (Nonius, 2001)., DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003), DIAMOND (Brandenburg & Putz, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H261···O4i0.972.383.261 (3)151
C35—H351···O4i0.972.543.344 (3)140
C31—H312···O1ii0.972.543.355 (3)142
O3—H3···N2iii0.841.872.696 (3)168
O2—H2···O30.822.082.788 (3)143
O4—H4···O50.841.962.696 (3)147
O5—H5···N1iv0.831.902.713 (3)167
O1—H1···O30.792.072.777 (3)149
O6—H6···O50.832.072.810 (3)148
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (1996). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.  Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuarise, C., Prins, L. J. & Scrimin, P. (2006). Tetrahedron, 62, 11670–11674.  Web of Science CrossRef CAS Google Scholar
First citationHaberhauer, G., Oeser, T. & Rominger, F. (2005). Chem. Eur. J. 11, 6718–6726.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLampkins, A. J., Li, Y., Al Abbas, A., Abboud, K. A., Ghiviriga, I. & Castellano, R. K. (2008). Chem. Eur. J. 14, 1452–1463.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, H. F., Homan, E. A., Lampkins, A. J., Ghiviriga, I. & Castellano, R. K. (2005). Org. Lett. 7, 443–446.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationRisch, N. (1985). Chem. Ber. 118, 4849–4856.  CrossRef CAS Web of Science Google Scholar
First citationSteiner, T. (2000). Acta Cryst. B56, 673–676.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o803-o804
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds