metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­(pyridine-3-sulfonato-κN)nickel(II)

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 8 April 2008; accepted 13 April 2008; online 16 April 2008)

In the mol­ecule of the title compound, [Ni(C5H4NO3S)2(H2O)4], the NiII cation is located on an inversion center and is coordinated by four water mol­ecules and two pyridine-3-sulfonate anions with an NiN2O4 distorted octa­hedral geometry. The face-to-face separation of 3.561 (5) Å between parallel pyridine rings indicates the existence of weak ππ stacking between the pyridine rings. The structure also contains inter­molecular O—H⋯O hydrogen bonding and weak C—H⋯O hydrogen bonding.

Related literature

For general background, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]); Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Liu et al. (2004[Liu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183-m185.]); Li et al. (2005[Li, H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m761-m763.]). For a related structure, see: Walsh & Hathaway (1980[Walsh, B. & Hathaway, B. J. (1980). J. Chem. Soc. Dalton Trans. pp. 681-689.]). For related literature, see: Cotton & Wilkinson (1972[Cotton, F. A. & Wilkinson, G. (1972). Advances in Inorganic Chemistry, p. 120. New York: John Wiley & Sons.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5H4NO3S)2(H2O)4]

  • Mr = 447.08

  • Monoclinic, P 21 /n

  • a = 7.5399 (8) Å

  • b = 12.6939 (15) Å

  • c = 8.7810 (8) Å

  • β = 97.419 (12)°

  • V = 833.40 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 295 (2) K

  • 0.32 × 0.22 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.660, Tmax = 0.745

  • 8877 measured reflections

  • 1524 independent reflections

  • 1449 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.065

  • S = 1.06

  • 1524 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Ni—O1 2.0828 (14)
Ni—O2 2.0739 (14)
Ni—N1 2.1026 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.81 2.39 3.162 (3) 158
O1—H1A⋯O4i 0.81 2.44 3.119 (2) 142
O1—H1B⋯O4ii 0.89 1.83 2.722 (2) 177
O2—H2A⋯O3iii 0.84 1.97 2.787 (2) 163
O2—H2B⋯O5iv 0.86 1.89 2.748 (2) 174
C1—H1⋯O4i 0.93 2.34 3.212 (3) 155
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As π-π stacking between aromatic rings plays an important role in electron transfer process in some biological system (Deisenhofer & Michel, 1989), π-π stacking has attracted our much attention in past years (Su & Xu, 2004; Liu et al., 2004; Li et al., 2005). In order to investigate the influence of substituents on aromatic stacking, the title pyridine-sulfate complex has recently prepared and its crystal structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The NiII cation is located in an inversion center and coordinated by four water molecules and two pyridine-3-sulfonate anions with a NiN2O4 distorted octahedral geometry (Table 1), similar to the analogue of ZnII (Walsh & Hathaway, 1980). Partially overlapped arrangement is observed between parallel pyridine rings (Fig. 2). The face-to-face separation of 3.561 (5) Å between parallel pyridine rings is shorter than the van der Waals thickness of an aromatic ring (3.70 Å; Cotton & Wilkinson, 1972), and indicates the existence of weak ππ stacking between the pyridine rings.

The intermolecular O—H···O hydrogen bonding and weak C—H···O hydrogen bonding (Table 2) help to stabilize the crystal structure.

Related literature top

For general background, see: Deisenhofer & Michel (1989); Su & Xu (2004); Liu et al. (2004); Li et al. (2005). For a related structure, see: Walsh & Hathaway (1980). For related literature, see: Cotton & Wilkinson (1972).

Experimental top

Pyridine-3-sulfonic acid (0.159 g, 1 mmol), Na2CO3 (0.053 g, 0.5 mmol), NiCl2.6H2O (0.238 g, 1 mmol) were dissolved in a mixture solution of water (8 ml) and ethanol (2 ml). The solution was placed in a 15 ml Teflon-lined stainless steel autoclave under autogenous pressure at 398 K for 75 h and filtered after cooling to room temperature. The blue single crystals of the title compound were obtained from the filtrate after 3 months.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms) [symmetry codes: (i)1 - x,1 - y,1 - z].
[Figure 2] Fig. 2. A diagram showing π-π stacking between pyridine rings [symmetry code: (ii) 1 - x,1 - y,-z].
Tetraaquabis(pyridine-3-sulfonato-κN)nickel(II) top
Crystal data top
[Ni(C5H4NO3S)2(H2O)4]F(000) = 460
Mr = 447.08Dx = 1.782 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5256 reflections
a = 7.5399 (8) Åθ = 2.8–24.0°
b = 12.6939 (15) ŵ = 1.47 mm1
c = 8.7810 (8) ÅT = 295 K
β = 97.419 (12)°Prism, blue
V = 833.40 (15) Å30.32 × 0.22 × 0.20 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1524 independent reflections
Radiation source: fine-focus sealed tube1449 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.0 pixels mm-1θmax = 25.4°, θmin = 2.8°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.660, Tmax = 0.745l = 910
8877 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.5265P]
where P = (Fo2 + 2Fc2)/3
1524 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C5H4NO3S)2(H2O)4]V = 833.40 (15) Å3
Mr = 447.08Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.5399 (8) ŵ = 1.47 mm1
b = 12.6939 (15) ÅT = 295 K
c = 8.7810 (8) Å0.32 × 0.22 × 0.20 mm
β = 97.419 (12)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1524 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1449 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.745Rint = 0.019
8877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
1524 reflectionsΔρmin = 0.37 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.50000.50000.02883 (13)
S0.45204 (7)0.75905 (4)0.03581 (6)0.03407 (15)
N10.5850 (2)0.54221 (13)0.28948 (18)0.0307 (3)
O10.76142 (19)0.48676 (11)0.60868 (18)0.0388 (3)
H1B0.83260.53970.59000.058*
H1A0.81820.43330.59980.058*
O20.50231 (19)0.34035 (11)0.45010 (17)0.0411 (3)
H2A0.50760.31560.36150.062*
H2B0.41940.30210.48150.062*
O30.5370 (3)0.76975 (16)0.1732 (2)0.0687 (6)
O40.4828 (2)0.85025 (12)0.0624 (2)0.0554 (5)
O50.2658 (2)0.73019 (12)0.06337 (19)0.0481 (4)
C10.7217 (3)0.49242 (15)0.2368 (3)0.0370 (5)
H10.77680.43720.29430.044*
C20.7839 (3)0.51907 (18)0.1020 (3)0.0452 (5)
H20.87830.48190.06930.054*
C30.7053 (3)0.60162 (17)0.0150 (3)0.0405 (5)
H30.74610.62180.07620.049*
C40.5641 (2)0.65298 (14)0.0684 (2)0.0298 (4)
C50.5074 (3)0.62143 (15)0.2044 (2)0.0320 (4)
H50.41160.65650.23840.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0309 (2)0.0273 (2)0.0284 (2)0.00105 (13)0.00426 (14)0.00418 (13)
S0.0419 (3)0.0278 (3)0.0317 (3)0.0027 (2)0.0018 (2)0.00399 (19)
N10.0329 (8)0.0290 (8)0.0302 (8)0.0016 (7)0.0037 (6)0.0034 (7)
O10.0336 (7)0.0355 (8)0.0467 (9)0.0018 (6)0.0031 (6)0.0056 (6)
O20.0512 (9)0.0328 (8)0.0409 (8)0.0017 (6)0.0122 (7)0.0002 (6)
O30.0861 (14)0.0758 (13)0.0491 (11)0.0261 (11)0.0269 (10)0.0305 (9)
O40.0591 (10)0.0297 (8)0.0707 (11)0.0048 (7)0.0174 (8)0.0095 (8)
O50.0441 (9)0.0358 (8)0.0600 (10)0.0039 (7)0.0103 (7)0.0022 (7)
C10.0360 (11)0.0328 (11)0.0417 (12)0.0064 (8)0.0034 (9)0.0061 (8)
C20.0417 (12)0.0431 (12)0.0542 (14)0.0126 (10)0.0188 (10)0.0065 (10)
C30.0455 (12)0.0393 (11)0.0395 (12)0.0036 (9)0.0154 (9)0.0055 (9)
C40.0337 (9)0.0255 (9)0.0295 (10)0.0002 (7)0.0016 (8)0.0005 (7)
C50.0333 (9)0.0314 (10)0.0313 (10)0.0041 (8)0.0047 (8)0.0004 (8)
Geometric parameters (Å, º) top
Ni—O1i2.0828 (14)O1—H1B0.8886
Ni—O12.0828 (14)O1—H1A0.8115
Ni—O2i2.0739 (14)O2—H2A0.8450
Ni—O22.0739 (14)O2—H2B0.8642
Ni—N1i2.1026 (16)C1—C21.370 (3)
Ni—N12.1026 (16)C1—H10.9300
S—O51.4412 (16)C2—C31.384 (3)
S—O31.4438 (18)C2—H20.9300
S—O41.4445 (16)C3—C41.381 (3)
S—C41.7788 (19)C3—H30.9300
N1—C11.341 (3)C4—C51.379 (3)
N1—C51.341 (2)C5—H50.9300
O2i—Ni—O2180.0C5—N1—Ni121.36 (13)
O2i—Ni—O1i89.12 (6)Ni—O1—H1B114.4
O2—Ni—O1i90.88 (6)Ni—O1—H1A120.2
O2i—Ni—O190.88 (6)H1B—O1—H1A106.0
O2—Ni—O189.12 (6)Ni—O2—H2A124.1
O1i—Ni—O1180.0Ni—O2—H2B117.1
O2i—Ni—N1i92.95 (6)H2A—O2—H2B101.9
O2—Ni—N1i87.05 (6)N1—C1—C2123.07 (19)
O1i—Ni—N1i92.61 (6)N1—C1—H1118.5
O1—Ni—N1i87.39 (6)C2—C1—H1118.5
O2i—Ni—N187.05 (6)C1—C2—C3119.6 (2)
O2—Ni—N192.95 (6)C1—C2—H2120.2
O1i—Ni—N187.39 (6)C3—C2—H2120.2
O1—Ni—N192.61 (6)C4—C3—C2117.6 (2)
N1i—Ni—N1180.0C4—C3—H3121.2
O5—S—O3114.30 (12)C2—C3—H3121.2
O5—S—O4112.45 (10)C5—C4—C3119.71 (18)
O3—S—O4111.67 (12)C5—C4—S119.06 (14)
O5—S—C4106.36 (9)C3—C4—S121.23 (15)
O3—S—C4105.58 (10)N1—C5—C4122.60 (18)
O4—S—C4105.69 (9)N1—C5—H5118.7
C1—N1—C5117.40 (17)C4—C5—H5118.7
C1—N1—Ni121.22 (13)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3ii0.812.393.162 (3)158
O1—H1A···O4ii0.812.443.119 (2)142
O1—H1B···O4iii0.891.832.722 (2)177
O2—H2A···O3iv0.841.972.787 (2)163
O2—H2B···O5v0.861.892.748 (2)174
C1—H1···O4ii0.932.343.212 (3)155
Symmetry codes: (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y+1, z; (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C5H4NO3S)2(H2O)4]
Mr447.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.5399 (8), 12.6939 (15), 8.7810 (8)
β (°) 97.419 (12)
V3)833.40 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.32 × 0.22 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.660, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
8877, 1524, 1449
Rint0.019
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.06
No. of reflections1524
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.37

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ni—O12.0828 (14)Ni—N12.1026 (16)
Ni—O22.0739 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.812.393.162 (3)158
O1—H1A···O4i0.812.443.119 (2)142
O1—H1B···O4ii0.891.832.722 (2)177
O2—H2A···O3iii0.841.972.787 (2)163
O2—H2B···O5iv0.861.892.748 (2)174
C1—H1···O4i0.932.343.212 (3)155
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCotton, F. A. & Wilkinson, G. (1972). Advances in Inorganic Chemistry, p. 120. New York: John Wiley & Sons.  Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m761–m763.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183–m185.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationWalsh, B. & Hathaway, B. J. (1980). J. Chem. Soc. Dalton Trans. pp. 681–689.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds