organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Fluoro-2-oxo-2,3-di­hydro-1H-indol-3-yl­­idene)benzene­sulfono­hydrazide

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 29 January 2008; accepted 20 April 2008; online 26 April 2008)

The mol­ecule of the title compound, C14H10FN3O3S, consists of an indole unit and a phenylsulfonyl unit that are disposed in an approximately trans orientation relative to the N—N single bond. Two mol­ecules are arranged about a center of inversion, forming a hydrazide–carbonyl N—H⋯O hydrogen-bonded dimer; the dimers are linked by an indole–sulfonyl N—H⋯O hydrogen bond into a ribbon.

Related literature

For the crystal structures of related 3-indole benzene­sulfonyl­hydrazones, see: Ali et al. (2007a[Ali, H. M., Nazzatush Shimar, J., Wan Jefrey, B. & Ng, S. W. (2007a). Acta Cryst. E63, o1807-o1808.],b[Ali, H. M., Yusnita, J., Wan Jefrey, B. & Ng, S. W. (2007b). Acta Cryst. E63, o1621-o1622.],c[Ali, H. M., Yusnita, J., Wan Jefrey, B. & Ng, S. W. (2007c). Acta Cryst. E63, o3513.]). For the crystal structure of 5-fluoro-1H-indole-2,3-dione, see: Naumov et al. (2000[Naumov, P., Anastasova, F., Drew, M. G. B. & Ng, S. W. (2000). Acta Cryst. C56, e406-e407.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10FN3O3S

  • Mr = 319.31

  • Monoclinic, P 21 /c

  • a = 8.2218 (2) Å

  • b = 16.4933 (3) Å

  • c = 10.8585 (2) Å

  • β = 110.249 (1)°

  • V = 1381.46 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 123 (2) K

  • 0.50 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.816, Tmax = 0.962

  • 10513 measured reflections

  • 3166 independent reflections

  • 2741 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.145

  • S = 1.20

  • 3166 reflections

  • 207 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O3i 0.88 (1) 2.10 (2) 2.896 (2) 151 (2)
N3—H3n⋯O1ii 0.88 (1) 2.22 (2) 2.986 (2) 145 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

We have reported the crystal structures of 3-indole benzenesulfonohydrazides (Ali et al., 2007a, 2007b, 2007c). The studies continue with the benzenesulfonohydrazide that is obtained by condensing benzenesulfonohydrazine with a substituted 1H-indol-2,3-dione, 5-fluroisatin. This compound exists as a hydrogen-bonded dimer (Naumov et al., 2000). The title compound (Scheme I) has the indolyl fused-ring portion and the phenylsulfonyl portion disposed in an approximately trans-alignment relative to the N–N single-bond (Fig. 1). Two molecules are arranged about a center-of-inversion to form an N–Hhydrazide···Ocarbonyl hydrogen-bonded dimer; the dimers are linked by another N–Hindole···Osulfonyl hydrogen bond into a ribbon structure (Fig. 2).

Related literature top

For the crystal structures of related 3-indole benzenesulfonylhydrazones, see: Ali et al. (2007a,b,c). For the crystal structure of 5-fluro-1H-indole-2,3-dione, see: Naumov et al. (2000).

Experimental top

Benzenesulfonyl hydrazide (0. 69 g, 4 mmol) and 5-fluoroisatin (0.66 g, 4 mmol) were heated in ethanol (50 ml) for an hour. The solution when cooled afforded yellow crystals.

Refinement top

The carbon-bound H atoms were placed at calculated positions (C–H 0.95 Å), and were included in the refinement in the riding model approximation with U(H) set to 1.2Ueq(C). The amino H atoms were located in a difference Fouier map, and were refined with a distance restraint of N–H 0.88±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of C14H10FN3O3S. Displacement ellipsoids are drawn at the 70% probability level, and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Ribbon structure of C10H10FN3O3S.
N'-(5-Fluoro-2-oxo-2,3-dihydro-1H-indol-3-ylidene)benzenesulfonohydrazide top
Crystal data top
C14H10FN3O3SF(000) = 656
Mr = 319.31Dx = 1.535 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6063 reflections
a = 8.2218 (2) Åθ = 3.0–31.3°
b = 16.4933 (3) ŵ = 0.26 mm1
c = 10.8585 (2) ÅT = 123 K
β = 110.249 (1)°Irregular block, yellow
V = 1381.46 (5) Å30.50 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3166 independent reflections
Radiation source: medium-focus sealed tube2741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.816, Tmax = 0.962k = 2121
10513 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0922P)2 + 0.2432P]
where P = (Fo2 + 2Fc2)/3
3166 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.54 e Å3
2 restraintsΔρmin = 0.60 e Å3
Crystal data top
C14H10FN3O3SV = 1381.46 (5) Å3
Mr = 319.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2218 (2) ŵ = 0.26 mm1
b = 16.4933 (3) ÅT = 123 K
c = 10.8585 (2) Å0.50 × 0.20 × 0.15 mm
β = 110.249 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3166 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2741 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.962Rint = 0.024
10513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.54 e Å3
3166 reflectionsΔρmin = 0.60 e Å3
207 parameters
Special details top

Experimental. A medium-focus collimator of 0.8 mm diameter was used on the diffractometer to measure the somewhat large crystal.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65386 (5)0.28692 (2)0.54366 (4)0.01609 (16)
O10.61921 (18)0.21966 (7)0.61409 (14)0.0248 (3)
O20.56524 (17)0.29375 (8)0.40497 (13)0.0255 (3)
O30.42474 (17)0.51614 (8)0.60498 (13)0.0240 (3)
N10.59808 (19)0.37034 (9)0.60384 (14)0.0183 (3)
H1N0.557 (3)0.4089 (11)0.546 (2)0.036 (7)*
N20.67998 (18)0.38149 (8)0.73560 (14)0.0172 (3)
N30.5337 (2)0.57008 (9)0.81558 (16)0.0232 (3)
H3N0.478 (3)0.6168 (9)0.799 (2)0.038 (7)*
C10.8794 (2)0.29132 (9)0.58025 (17)0.0165 (3)
C20.9467 (3)0.33843 (13)0.50285 (19)0.0277 (4)
H20.87300.36960.43180.033*
C31.1256 (3)0.33841 (16)0.5329 (2)0.0368 (5)
H31.17540.37030.48230.044*
C41.2315 (3)0.29211 (13)0.6361 (2)0.0349 (5)
H41.35300.29140.65410.042*
C51.1624 (2)0.24721 (12)0.7127 (2)0.0300 (4)
H51.23640.21640.78410.036*
C60.9846 (2)0.24692 (10)0.68578 (19)0.0227 (4)
H60.93600.21670.73900.027*
C70.6472 (2)0.44753 (10)0.78623 (17)0.0174 (3)
C80.7275 (2)0.47125 (10)0.92317 (17)0.0182 (4)
C90.8561 (2)0.43576 (10)1.02774 (17)0.0219 (4)
H90.90690.38531.01920.026*
C100.9065 (3)0.47769 (11)1.14518 (18)0.0252 (4)
C110.8372 (3)0.55171 (11)1.16168 (19)0.0285 (4)
H110.87650.57791.24470.034*
C120.7090 (3)0.58763 (11)1.05538 (19)0.0276 (4)
H120.65970.63851.06410.033*
C130.6564 (2)0.54660 (10)0.93715 (18)0.0204 (4)
C140.5206 (2)0.51454 (10)0.72023 (17)0.0187 (4)
F11.03509 (17)0.44573 (7)1.25055 (11)0.0374 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0133 (2)0.0151 (2)0.0192 (3)0.00149 (13)0.00483 (17)0.00402 (14)
O10.0232 (7)0.0164 (6)0.0388 (8)0.0042 (5)0.0157 (6)0.0018 (5)
O20.0199 (7)0.0309 (7)0.0207 (7)0.0001 (5)0.0006 (5)0.0086 (5)
O30.0257 (7)0.0238 (6)0.0195 (6)0.0050 (5)0.0039 (5)0.0003 (5)
N10.0202 (7)0.0158 (7)0.0180 (7)0.0032 (5)0.0053 (6)0.0009 (5)
N20.0179 (7)0.0163 (7)0.0179 (7)0.0007 (5)0.0069 (6)0.0010 (5)
N30.0250 (8)0.0194 (7)0.0219 (8)0.0074 (6)0.0039 (6)0.0024 (6)
C10.0132 (8)0.0191 (8)0.0172 (8)0.0017 (6)0.0053 (6)0.0053 (6)
C20.0251 (9)0.0409 (11)0.0185 (9)0.0057 (8)0.0093 (7)0.0000 (8)
C30.0284 (10)0.0596 (14)0.0287 (11)0.0140 (10)0.0178 (9)0.0058 (10)
C40.0153 (9)0.0477 (13)0.0424 (12)0.0030 (8)0.0108 (9)0.0180 (10)
C50.0196 (9)0.0262 (10)0.0370 (11)0.0035 (7)0.0005 (8)0.0062 (8)
C60.0202 (8)0.0180 (8)0.0269 (9)0.0000 (6)0.0042 (7)0.0001 (7)
C70.0182 (8)0.0154 (7)0.0191 (8)0.0007 (6)0.0072 (7)0.0000 (6)
C80.0223 (8)0.0144 (7)0.0183 (8)0.0007 (6)0.0076 (7)0.0013 (6)
C90.0266 (9)0.0166 (8)0.0207 (9)0.0012 (6)0.0059 (7)0.0019 (6)
C100.0287 (9)0.0225 (9)0.0197 (9)0.0010 (7)0.0023 (7)0.0037 (7)
C110.0364 (11)0.0251 (9)0.0202 (9)0.0022 (8)0.0052 (8)0.0058 (7)
C120.0327 (10)0.0217 (9)0.0251 (10)0.0039 (8)0.0059 (8)0.0073 (7)
C130.0216 (8)0.0180 (8)0.0206 (9)0.0019 (6)0.0060 (7)0.0008 (6)
C140.0184 (8)0.0172 (8)0.0206 (9)0.0016 (6)0.0069 (7)0.0005 (6)
F10.0471 (8)0.0298 (6)0.0211 (6)0.0055 (5)0.0061 (5)0.0026 (5)
Geometric parameters (Å, º) top
S1—O11.4309 (13)C4—C51.375 (3)
S1—O21.4325 (14)C4—H40.9500
S1—N11.6545 (14)C5—C61.388 (3)
S1—C11.7582 (17)C5—H50.9500
O3—C141.227 (2)C6—H60.9500
N1—N21.367 (2)C7—C81.456 (2)
N1—H1N0.876 (10)C7—C141.518 (2)
N2—C71.290 (2)C8—C91.385 (2)
N3—C141.358 (2)C8—C131.404 (2)
N3—C131.410 (2)C9—C101.382 (3)
N3—H3N0.884 (10)C9—H90.9500
C1—C61.383 (2)C10—F11.366 (2)
C1—C21.392 (3)C10—C111.385 (3)
C2—C31.392 (3)C11—C121.397 (3)
C2—H20.9500C11—H110.9500
C3—C41.386 (3)C12—C131.382 (3)
C3—H30.9500C12—H120.9500
O1—S1—O2119.99 (8)C1—C6—C5118.97 (18)
O1—S1—N1107.46 (8)C1—C6—H6120.5
O2—S1—N1103.90 (8)C5—C6—H6120.5
O1—S1—C1107.50 (8)N2—C7—C8125.06 (15)
O2—S1—C1110.32 (8)N2—C7—C14128.61 (16)
N1—S1—C1106.93 (7)C8—C7—C14106.32 (14)
N2—N1—S1114.96 (11)C9—C8—C13120.91 (16)
N2—N1—H1N125.5 (17)C9—C8—C7132.16 (16)
S1—N1—H1N114.2 (17)C13—C8—C7106.84 (15)
C7—N2—N1117.39 (14)C10—C9—C8116.43 (16)
C14—N3—C13111.76 (15)C10—C9—H9121.8
C14—N3—H3N122.4 (17)C8—C9—H9121.8
C13—N3—H3N125.6 (17)F1—C10—C9118.54 (17)
C6—C1—C2122.02 (17)F1—C10—C11117.74 (17)
C6—C1—S1118.29 (14)C9—C10—C11123.70 (17)
C2—C1—S1119.69 (14)C10—C11—C12119.57 (17)
C1—C2—C3117.85 (19)C10—C11—H11120.2
C1—C2—H2121.1C12—C11—H11120.2
C3—C2—H2121.1C13—C12—C11117.64 (17)
C4—C3—C2120.4 (2)C13—C12—H12121.2
C4—C3—H3119.8C11—C12—H12121.2
C2—C3—H3119.8C12—C13—C8121.74 (17)
C5—C4—C3120.72 (19)C12—C13—N3128.89 (16)
C5—C4—H4119.6C8—C13—N3109.37 (15)
C3—C4—H4119.6O3—C14—N3128.06 (16)
C4—C5—C6119.97 (19)O3—C14—C7126.22 (15)
C4—C5—H5120.0N3—C14—C7105.70 (15)
C6—C5—H5120.0
O1—S1—N1—N257.51 (14)C14—C7—C8—C130.74 (19)
O2—S1—N1—N2174.35 (12)C13—C8—C9—C101.2 (3)
C1—S1—N1—N257.66 (14)C7—C8—C9—C10177.29 (18)
S1—N1—N2—C7176.78 (12)C8—C9—C10—F1178.89 (16)
O1—S1—C1—C614.56 (16)C8—C9—C10—C110.6 (3)
O2—S1—C1—C6147.07 (13)F1—C10—C11—C12178.16 (18)
N1—S1—C1—C6100.57 (14)C9—C10—C11—C120.1 (3)
O1—S1—C1—C2165.08 (14)C10—C11—C12—C130.3 (3)
O2—S1—C1—C232.58 (16)C11—C12—C13—C80.3 (3)
N1—S1—C1—C279.78 (16)C11—C12—C13—N3178.45 (19)
C6—C1—C2—C31.4 (3)C9—C8—C13—C121.1 (3)
S1—C1—C2—C3178.20 (16)C7—C8—C13—C12178.09 (17)
C1—C2—C3—C40.5 (3)C9—C8—C13—N3177.87 (16)
C2—C3—C4—C51.8 (3)C7—C8—C13—N30.9 (2)
C3—C4—C5—C61.0 (3)C14—N3—C13—C12178.14 (19)
C2—C1—C6—C52.2 (3)C14—N3—C13—C80.8 (2)
S1—C1—C6—C5177.47 (14)C13—N3—C14—O3178.88 (18)
C4—C5—C6—C10.9 (3)C13—N3—C14—C70.3 (2)
N1—N2—C7—C8177.31 (15)N2—C7—C14—O30.9 (3)
N1—N2—C7—C143.5 (3)C8—C7—C14—O3178.35 (17)
N2—C7—C8—C93.5 (3)N2—C7—C14—N3179.59 (17)
C14—C7—C8—C9177.21 (18)C8—C7—C14—N30.29 (19)
N2—C7—C8—C13179.93 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O3i0.88 (1)2.10 (2)2.896 (2)151 (2)
N3—H3n···O1ii0.88 (1)2.22 (2)2.986 (2)145 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H10FN3O3S
Mr319.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)8.2218 (2), 16.4933 (3), 10.8585 (2)
β (°) 110.249 (1)
V3)1381.46 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.50 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.816, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
10513, 3166, 2741
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.145, 1.20
No. of reflections3166
No. of parameters207
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.60

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O3i0.88 (1)2.10 (2)2.896 (2)151 (2)
N3—H3n···O1ii0.88 (1)2.22 (2)2.986 (2)145 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the University of Canterbury, New Zealand, for the diffraction measurements, and the Science Fund (12–02-03–2031) for supporting this study.

References

First citationAli, H. M., Nazzatush Shimar, J., Wan Jefrey, B. & Ng, S. W. (2007a). Acta Cryst. E63, o1807–o1808.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, H. M., Yusnita, J., Wan Jefrey, B. & Ng, S. W. (2007b). Acta Cryst. E63, o1621–o1622.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, H. M., Yusnita, J., Wan Jefrey, B. & Ng, S. W. (2007c). Acta Cryst. E63, o3513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNaumov, P., Anastasova, F., Drew, M. G. B. & Ng, S. W. (2000). Acta Cryst. C56, e406–e407.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds