metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(1H-imidazole-κN3)mangan­ese(II) tri­aqua­tris­(1H-imidazole-κN3)manganese(II) bis­­(naphthalene-1,4-di­carboxyl­ate)

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 17 April 2008; accepted 23 April 2008; online 26 April 2008)

In the crystal structure of the title compound, [Mn(C3H4N2)6][Mn(C3H4N2)3(H2O)3](C12H6O4)2, there are uncoordinated naphthalene­dicarboxyl­ate dianions and two kinds of MnII complex cations, both assuming a distorted octa­hedral geometry. One MnII cation is located on an inversion center and is coordinated by six imidazole mol­ecules, while the other MnII cation is located on a twofold rotation axis and is coordinated by three water mol­ecules and three imidazole units. The naphthalene­dicarboxyl­ate dianions are linked to both MnII complex cations via O—H⋯O and N—H⋯O hydrogen bonding, but no ππ stacking is observed between aromatic rings in the crystal structure.

Related literature

For general background, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Liu et al. (2004[Liu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183-m185.]). For a related structure, see: Derissen et al. (1979[Derissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun. 8, 533-536.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C3H4N2)6][Mn(C3H4N2)3(H2O)3](C12H6O4)2

  • Mr = 1205.0

  • Orthorhombic, P c c n

  • a = 29.605 (4) Å

  • b = 9.4619 (12) Å

  • c = 20.534 (3) Å

  • V = 5752.0 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 295 (2) K

  • 0.33 × 0.30 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.790, Tmax = 0.912

  • 61105 measured reflections

  • 5131 independent reflections

  • 4174 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.07

  • 5131 reflections

  • 367 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N1 2.250 (3)
Mn1—N3 2.271 (2)
Mn1—N5 2.276 (2)
Mn2—N7 2.283 (3)
Mn2—N9 2.190 (4)
Mn2—O1W 2.265 (2)
Mn2—O2W 2.129 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O4 0.93 1.85 2.772 (3) 170
O1W—H1B⋯O1i 0.86 2.02 2.875 (3) 175
O2W—H2A⋯O3ii 0.85 1.78 2.624 (3) 172
N2—H2N⋯O4 0.86 1.87 2.730 (4) 176
N4—H4N⋯O2iii 0.86 1.91 2.765 (3) 177
N6—H6N⋯O2iv 0.86 1.95 2.810 (4) 178
N8—H8N⋯O1v 0.86 2.02 2.870 (4) 167
N10—H10A⋯O3vi 0.86 1.78 2.560 (7) 150
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Liu et al., 2004), the title compound incorporating naphthalenedicarboxylate has recently been prepared and its crystal structure is reported here.

The crystal consists of uncoordinated naphthalenedicarboxylate dianions and two kinds of MnII complex cations. Both MnII complex cations assume distorted octahedral geometry (Table 1). The Mn1 is located on an inversion center and coordinated by six imidazole molecules, while the Mn2 is located about a twofold rotation axis and is coordinated by three water and three imidazole molecules (Fig. 1). The O2 (water) and N9 atoms are also located about the twofold axis, but the disordered N9-imidazole ring does not lie on the twofold axis. The naphthalenedicarboxylate dianion is not coordinated to the MnII cation but is linked to both MnII complex cations via O—H···O and N—H···O hydrogen bonding (Fig. 1 and Table 2). No π-π stacking is observed between adjacent naphthalene rings. Two carboxyl groups are twisted with respect to the naphthalene ring system with dihedral angles of 52.5 (3)° and 48.7 (3)°, which are larger than those found in the structure of free naphthalenedicarboxylic acid (ca 40°; Derissen et al., 1979).

Related literature top

For general background, see: Su & Xu (2004); Liu et al. (2004). For a related structure, see: Derissen et al. (1979).

Experimental top

An aqueous solution (10 ml) containing naphthalene-1,4-dicarboxyllic acid (0.108 g, 0.5 mmol) and sodium carbonate (0.053 g, 0.5 mmol) was refluxed for 0.5 h, then tetraaqua-manganese dichloride (0.099 g, 0.5 mmol) and imidazole (0.136 g, 2 mmol) were added to the above solution. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after 1 d.

Refinement top

The N9-containing imidazole is disordered over two sites, both close to a twofold rotation axis, and was refined with half site occupancy, while the N9 atom is located on the twofold axis but not disordered. In the structure refinement, the coordinates of the N9 atom located on the twofold axis were refined by introducing an artificial bias of 0.02 (in fraction) to its x and y parameters, after several cycles of refinement the coordinates of the N9 atom shifted to the initial special position of (3/4, 3/4, 0.64847). Bond distances for the disordered imidazole were restrained. Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N). The highest peak in the final difference Fourier map is apart from the N9 atom by 0.03 Å.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms). One of the disordered imidazole components is omitted for clarify. Dashed lines indicate hydrogen bonding [symmetry codes: (i) -x + 3/2, -y + 3/2, z; (ii) -x + 3/2, -y + 1/2, z + 1].
Hexakis(1H-imidazole-κN3)manganese(II) triaquatris(1H-imidazole-κN3)manganese(II) bis(naphthalene-1,4-dicarboxylate) top
Crystal data top
[Mn(C3H4N2)6][Mn(C3H4N2)3(H2O)3](C12H6O4)2F(000) = 2496
Mr = 1205.0Dx = 1.391 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 6856 reflections
a = 29.605 (4) Åθ = 3.0–24.0°
b = 9.4619 (12) ŵ = 0.51 mm1
c = 20.534 (3) ÅT = 295 K
V = 5752.0 (14) Å3Prism, yellow
Z = 40.33 × 0.30 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5131 independent reflections
Radiation source: fine-focus sealed tube4174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 1.4°
ω scansh = 3535
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1110
Tmin = 0.790, Tmax = 0.912l = 2424
61105 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0611P)2 + 4.7866P]
where P = (Fo2 + 2Fc2)/3
5131 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 1.06 e Å3
5 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Mn(C3H4N2)6][Mn(C3H4N2)3(H2O)3](C12H6O4)2V = 5752.0 (14) Å3
Mr = 1205.0Z = 4
Orthorhombic, PccnMo Kα radiation
a = 29.605 (4) ŵ = 0.51 mm1
b = 9.4619 (12) ÅT = 295 K
c = 20.534 (3) Å0.33 × 0.30 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5131 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4174 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.912Rint = 0.047
61105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0495 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.07Δρmax = 1.06 e Å3
5131 reflectionsΔρmin = 0.66 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.00000.50000.04145 (18)
Mn20.75000.75000.54180 (3)0.04268 (18)
N10.53293 (9)0.2142 (3)0.50330 (12)0.0505 (6)
N20.58426 (10)0.3776 (3)0.48747 (15)0.0678 (8)
H2N0.60610.42340.46960.081*
N30.54774 (8)0.0725 (3)0.57988 (12)0.0485 (6)
N40.58594 (9)0.2212 (3)0.64106 (13)0.0560 (7)
H4N0.59430.29890.65910.067*
N50.44833 (8)0.0685 (3)0.57579 (12)0.0520 (6)
N60.41219 (10)0.0705 (3)0.66934 (14)0.0634 (8)
H6N0.40640.05740.70990.076*
N70.71986 (9)0.9721 (3)0.54032 (13)0.0562 (7)
N80.69433 (10)1.1818 (3)0.56814 (17)0.0687 (8)
H8N0.68601.25140.59230.082*
O10.65926 (8)0.0707 (2)0.13121 (11)0.0653 (6)
O20.60909 (8)0.0251 (2)0.19895 (10)0.0606 (6)
O30.69820 (10)0.6144 (3)0.35534 (12)0.0948 (10)
O40.65304 (8)0.5144 (3)0.42532 (10)0.0657 (7)
O1W0.68093 (7)0.6472 (2)0.53876 (9)0.0512 (5)
H1A0.67180.61260.49830.077*
H1B0.67570.58440.56790.077*
O2W0.75000.75000.43813 (13)0.0597 (8)
H2A0.76580.80110.41250.090*
C10.56746 (13)0.2553 (4)0.46893 (18)0.0675 (10)
H10.57920.20310.43450.081*
C20.56039 (16)0.4160 (5)0.5397 (3)0.0967 (15)
H20.56510.49580.56530.116*
C30.52808 (14)0.3172 (4)0.5483 (2)0.0817 (12)
H30.50590.31960.58040.098*
C40.55176 (11)0.2037 (3)0.60003 (16)0.0558 (8)
H40.53270.27650.58690.067*
C50.60497 (13)0.0920 (4)0.6489 (2)0.0779 (11)
H50.62950.06970.67530.094*
C60.58146 (12)0.0023 (4)0.6111 (2)0.0712 (10)
H60.58740.09380.60690.085*
C70.44988 (11)0.0350 (4)0.63811 (16)0.0580 (8)
H70.47450.00830.65790.070*
C80.38476 (13)0.1312 (5)0.6245 (2)0.0810 (12)
H80.35600.16750.63180.097*
C90.40725 (12)0.1289 (4)0.56727 (19)0.0736 (11)
H90.39620.16360.52800.088*
C100.71022 (13)1.0575 (4)0.58866 (18)0.0663 (9)
H100.71401.03410.63230.080*
C110.69375 (15)1.1776 (5)0.5028 (2)0.0842 (12)
H110.68441.24930.47490.101*
C120.70935 (15)1.0492 (4)0.4858 (2)0.0819 (12)
H120.71251.01740.44320.098*
C200.65821 (10)0.4142 (3)0.31930 (14)0.0459 (7)
C210.69273 (10)0.3442 (4)0.28942 (16)0.0609 (9)
H210.72240.36810.29950.073*
C220.68436 (10)0.2363 (4)0.24350 (16)0.0576 (9)
H220.70860.19160.22350.069*
C230.64154 (9)0.1962 (3)0.22789 (13)0.0438 (6)
C240.60419 (9)0.2703 (3)0.25621 (13)0.0406 (6)
C250.55847 (10)0.2406 (3)0.23935 (15)0.0506 (7)
H250.55230.16780.21030.061*
C260.52392 (10)0.3157 (4)0.26466 (16)0.0619 (9)
H260.49440.29290.25330.074*
C270.53196 (11)0.4280 (4)0.30797 (17)0.0636 (9)
H270.50790.48040.32430.076*
C280.57517 (11)0.4599 (3)0.32607 (16)0.0536 (8)
H280.58020.53390.35500.064*
C290.61259 (9)0.3822 (3)0.30145 (13)0.0408 (6)
C300.67030 (11)0.5228 (3)0.37099 (15)0.0523 (8)
C310.63602 (10)0.0715 (3)0.18193 (14)0.0482 (7)
N90.75000.75000.64847 (19)0.0789 (9)
N100.7681 (2)0.7068 (7)0.7487 (3)0.0789 (9)0.50
H10A0.78420.70410.78340.095*0.50
C130.78353 (16)0.7509 (9)0.6908 (2)0.0789 (9)0.50
H130.81310.77770.68190.095*0.50
C140.7240 (2)0.6669 (9)0.7465 (3)0.0789 (9)0.50
H140.70530.63310.77940.095*0.50
C150.71499 (17)0.6904 (9)0.6824 (3)0.0789 (9)0.50
H150.68740.66790.66330.095*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0469 (3)0.0377 (4)0.0398 (3)0.0007 (3)0.0026 (2)0.0047 (3)
Mn20.0572 (4)0.0383 (4)0.0326 (3)0.0074 (3)0.0000.000
N10.0579 (15)0.0432 (15)0.0503 (15)0.0055 (12)0.0004 (12)0.0041 (11)
N20.0686 (18)0.0568 (19)0.078 (2)0.0232 (15)0.0048 (16)0.0047 (16)
N30.0525 (14)0.0432 (15)0.0498 (14)0.0048 (11)0.0035 (11)0.0045 (12)
N40.0600 (15)0.0519 (17)0.0560 (16)0.0127 (13)0.0053 (13)0.0106 (13)
N50.0556 (15)0.0499 (15)0.0506 (15)0.0027 (12)0.0090 (12)0.0023 (12)
N60.0746 (18)0.0633 (19)0.0524 (16)0.0028 (15)0.0200 (14)0.0069 (14)
N70.0631 (16)0.0419 (15)0.0637 (17)0.0015 (13)0.0016 (13)0.0002 (13)
N80.0686 (18)0.0457 (17)0.092 (2)0.0059 (14)0.0175 (17)0.0035 (16)
O10.0891 (16)0.0559 (14)0.0509 (13)0.0123 (12)0.0252 (12)0.0153 (11)
O20.0784 (15)0.0518 (14)0.0516 (13)0.0218 (12)0.0107 (11)0.0151 (10)
O30.129 (2)0.102 (2)0.0540 (14)0.077 (2)0.0049 (14)0.0151 (14)
O40.0837 (16)0.0693 (16)0.0441 (13)0.0292 (13)0.0057 (11)0.0172 (11)
O1W0.0607 (12)0.0498 (13)0.0431 (11)0.0133 (10)0.0037 (9)0.0033 (9)
O2W0.082 (2)0.065 (2)0.0327 (14)0.0347 (17)0.0000.000
C10.080 (2)0.056 (2)0.066 (2)0.0206 (19)0.0131 (19)0.0044 (18)
C20.106 (3)0.059 (3)0.125 (4)0.019 (2)0.012 (3)0.031 (3)
C30.086 (3)0.062 (2)0.097 (3)0.013 (2)0.020 (2)0.025 (2)
C40.0620 (19)0.0449 (19)0.061 (2)0.0002 (15)0.0067 (16)0.0078 (15)
C50.076 (2)0.061 (2)0.097 (3)0.003 (2)0.040 (2)0.003 (2)
C60.073 (2)0.047 (2)0.093 (3)0.0006 (17)0.028 (2)0.0060 (19)
C70.0611 (19)0.065 (2)0.0476 (18)0.0006 (16)0.0089 (15)0.0035 (16)
C80.067 (2)0.091 (3)0.085 (3)0.021 (2)0.025 (2)0.000 (2)
C90.070 (2)0.083 (3)0.069 (2)0.025 (2)0.0110 (18)0.013 (2)
C100.087 (3)0.045 (2)0.067 (2)0.0017 (18)0.0127 (19)0.0015 (17)
C110.097 (3)0.065 (3)0.091 (3)0.026 (2)0.004 (2)0.012 (2)
C120.112 (3)0.067 (3)0.067 (2)0.024 (2)0.012 (2)0.003 (2)
C200.0513 (16)0.0452 (17)0.0412 (15)0.0115 (13)0.0016 (12)0.0077 (13)
C210.0435 (16)0.075 (2)0.064 (2)0.0141 (16)0.0012 (15)0.0213 (18)
C220.0449 (16)0.068 (2)0.0602 (19)0.0042 (15)0.0068 (14)0.0221 (17)
C230.0480 (15)0.0454 (16)0.0381 (14)0.0061 (13)0.0019 (12)0.0092 (13)
C240.0451 (14)0.0417 (16)0.0349 (14)0.0035 (12)0.0039 (11)0.0011 (12)
C250.0477 (16)0.0563 (19)0.0478 (16)0.0046 (14)0.0075 (13)0.0063 (15)
C260.0437 (17)0.081 (2)0.061 (2)0.0022 (16)0.0135 (15)0.0003 (19)
C270.0534 (18)0.073 (2)0.065 (2)0.0204 (17)0.0030 (16)0.0065 (18)
C280.0619 (19)0.0467 (18)0.0523 (18)0.0082 (15)0.0063 (15)0.0082 (14)
C290.0477 (15)0.0372 (15)0.0376 (14)0.0013 (12)0.0026 (11)0.0007 (12)
C300.0614 (18)0.0502 (19)0.0452 (18)0.0130 (15)0.0087 (14)0.0049 (14)
C310.0528 (16)0.0450 (18)0.0468 (17)0.0051 (14)0.0005 (13)0.0089 (13)
N90.101 (2)0.087 (2)0.0486 (13)0.0064 (19)0.0000.000
N100.101 (2)0.087 (2)0.0486 (13)0.0064 (19)0.0000.000
C130.101 (2)0.087 (2)0.0486 (13)0.0064 (19)0.0000.000
C140.101 (2)0.087 (2)0.0486 (13)0.0064 (19)0.0000.000
C150.101 (2)0.087 (2)0.0486 (13)0.0064 (19)0.0000.000
Geometric parameters (Å, º) top
Mn1—N1i2.250 (3)C4—H40.9300
Mn1—N12.250 (3)C5—C61.344 (5)
Mn1—N3i2.271 (2)C5—H50.9300
Mn1—N32.271 (2)C6—H60.9300
Mn1—N5i2.276 (2)C7—H70.9300
Mn1—N52.276 (2)C8—C91.351 (5)
Mn2—N7ii2.283 (3)C8—H80.9300
Mn2—N72.283 (3)C9—H90.9300
Mn2—N92.190 (4)C10—H100.9300
Mn2—O1Wii2.265 (2)C11—C121.346 (6)
Mn2—O1W2.265 (2)C11—H110.9300
Mn2—O2W2.129 (3)C12—H120.9300
N1—C11.302 (4)C20—C211.363 (4)
N1—C31.352 (4)C20—C291.432 (4)
N2—C11.316 (4)C20—C301.521 (4)
N2—C21.335 (5)C21—C221.412 (4)
N2—H2N0.8600C21—H210.9300
N3—C41.314 (4)C22—C231.362 (4)
N3—C61.360 (4)C22—H220.9300
N4—C41.327 (4)C23—C241.433 (4)
N4—C51.356 (5)C23—C311.520 (4)
N4—H4N0.8600C24—C251.425 (4)
N5—C71.319 (4)C24—C291.430 (4)
N5—C91.355 (4)C25—C261.350 (4)
N6—C71.330 (4)C25—H250.9300
N6—C81.355 (5)C26—C271.406 (5)
N6—H6N0.8600C26—H260.9300
N7—C101.312 (4)C27—C281.366 (5)
N7—C121.372 (5)C27—H270.9300
N8—C101.335 (5)C28—C291.423 (4)
N8—C111.342 (5)C28—H280.9300
N8—H8N0.8600N9—C131.3195 (10)
O1—C311.248 (3)N9—C13ii1.3195 (10)
O2—C311.262 (4)N9—C15ii1.3703 (10)
O3—C301.239 (4)N9—C151.3703 (10)
O4—C301.230 (4)N10—C131.3400 (10)
O1W—H1A0.9331N10—C141.3597 (11)
O1W—H1B0.8576N10—H10A0.8600
O2W—H2A0.8542C13—H130.9300
C1—H10.9300C14—C151.3603 (11)
C2—C31.349 (6)C14—H140.9300
C2—H20.9300C15—H150.9300
C3—H30.9300
N1i—Mn1—N1180.00 (12)C5—C6—N3110.1 (3)
N1i—Mn1—N3i88.89 (9)C5—C6—H6124.9
N1—Mn1—N3i91.11 (9)N3—C6—H6124.9
N1i—Mn1—N391.11 (9)N5—C7—N6112.2 (3)
N1—Mn1—N388.89 (9)N5—C7—H7123.9
N3i—Mn1—N3180.00 (8)N6—C7—H7123.9
N1i—Mn1—N5i90.80 (9)C9—C8—N6106.8 (3)
N1—Mn1—N5i89.20 (9)C9—C8—H8126.6
N3i—Mn1—N5i90.60 (9)N6—C8—H8126.6
N3—Mn1—N5i89.40 (9)C8—C9—N5109.7 (3)
N1i—Mn1—N589.20 (9)C8—C9—H9125.2
N1—Mn1—N590.80 (9)N5—C9—H9125.2
N3i—Mn1—N589.40 (9)N7—C10—N8112.4 (3)
N3—Mn1—N590.60 (9)N7—C10—H10123.8
N5i—Mn1—N5180.00 (9)N8—C10—H10123.8
O2W—Mn2—N9180.000 (1)N8—C11—C12106.4 (4)
O2W—Mn2—O1Wii88.42 (5)N8—C11—H11126.8
N9—Mn2—O1Wii91.58 (5)C12—C11—H11126.8
O2W—Mn2—O1W88.42 (5)C11—C12—N7110.2 (4)
N9—Mn2—O1W91.58 (5)C11—C12—H12124.9
O1Wii—Mn2—O1W176.85 (10)N7—C12—H12124.9
O2W—Mn2—N7ii89.24 (7)C21—C20—C29119.3 (3)
N9—Mn2—N7ii90.76 (7)C21—C20—C30117.8 (3)
O1Wii—Mn2—N7ii92.42 (9)C29—C20—C30122.9 (3)
O1W—Mn2—N7ii87.54 (9)C20—C21—C22121.3 (3)
O2W—Mn2—N789.24 (7)C20—C21—H21119.3
N9—Mn2—N790.76 (7)C22—C21—H21119.3
O1Wii—Mn2—N787.54 (9)C23—C22—C21121.5 (3)
O1W—Mn2—N792.42 (9)C23—C22—H22119.3
N7ii—Mn2—N7178.48 (14)C21—C22—H22119.3
C1—N1—C3103.8 (3)C22—C23—C24119.1 (3)
C1—N1—Mn1126.4 (2)C22—C23—C31117.6 (3)
C3—N1—Mn1128.6 (2)C24—C23—C31123.3 (2)
C1—N2—C2105.8 (3)C25—C24—C29118.0 (3)
C1—N2—H2N127.1C25—C24—C23122.5 (3)
C2—N2—H2N127.1C29—C24—C23119.4 (2)
C4—N3—C6104.3 (3)C26—C25—C24121.5 (3)
C4—N3—Mn1124.7 (2)C26—C25—H25119.3
C6—N3—Mn1130.6 (2)C24—C25—H25119.3
C4—N4—C5106.3 (3)C25—C26—C27120.9 (3)
C4—N4—H4N126.9C25—C26—H26119.6
C5—N4—H4N126.9C27—C26—H26119.6
C7—N5—C9104.9 (3)C28—C27—C26119.9 (3)
C7—N5—Mn1124.8 (2)C28—C27—H27120.1
C9—N5—Mn1129.4 (2)C26—C27—H27120.1
C7—N6—C8106.4 (3)C27—C28—C29121.2 (3)
C7—N6—H6N126.8C27—C28—H28119.4
C8—N6—H6N126.8C29—C28—H28119.4
C10—N7—C12103.9 (3)C28—C29—C24118.6 (3)
C10—N7—Mn2130.0 (2)C28—C29—C20122.3 (3)
C12—N7—Mn2126.1 (2)C24—C29—C20119.1 (2)
C10—N8—C11107.1 (3)O4—C30—O3123.9 (3)
C10—N8—H8N126.5O4—C30—C20119.4 (3)
C11—N8—H8N126.5O3—C30—C20116.7 (3)
Mn2—O1W—H1A116.0O1—C31—O2125.1 (3)
Mn2—O1W—H1B116.3O1—C31—C23117.6 (3)
H1A—O1W—H1B109.0O2—C31—C23117.3 (3)
Mn2—O2W—H2A128.0C13—N9—C15103.7 (4)
N1—C1—N2113.7 (3)C13—N9—Mn2131.2 (3)
N1—C1—H1123.1C15—N9—Mn2120.6 (3)
N2—C1—H1123.1C13—N10—C14112.6 (6)
N2—C2—C3107.0 (4)C13—N10—H10A123.7
N2—C2—H2126.5C14—N10—H10A123.7
C3—C2—H2126.5N9—C13—N10109.0 (5)
C2—C3—N1109.5 (4)N9—C13—H13125.5
C2—C3—H3125.2N10—C13—H13125.5
N1—C3—H3125.2N10—C14—C15100.0 (6)
N3—C4—N4112.7 (3)N10—C14—H14130.0
N3—C4—H4123.6C15—C14—H14130.0
N4—C4—H4123.6C14—C15—N9114.3 (5)
C6—C5—N4106.6 (3)C14—C15—H15122.9
C6—C5—H5126.7N9—C15—H15122.9
N4—C5—H5126.7
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O40.931.852.772 (3)170
O1W—H1B···O1iii0.862.022.875 (3)175
O2W—H2A···O3ii0.851.782.624 (3)172
N2—H2N···O40.861.872.730 (4)176
N4—H4N···O2iv0.861.912.765 (3)177
N6—H6N···O2i0.861.952.810 (4)178
N8—H8N···O1v0.862.022.870 (4)167
N10—H10A···O3vi0.861.782.560 (7)150
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+3/2, z; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C3H4N2)6][Mn(C3H4N2)3(H2O)3](C12H6O4)2
Mr1205.0
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)295
a, b, c (Å)29.605 (4), 9.4619 (12), 20.534 (3)
V3)5752.0 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.33 × 0.30 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.790, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
61105, 5131, 4174
Rint0.047
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.07
No. of reflections5131
No. of parameters367
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.06, 0.66

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Mn1—N12.250 (3)Mn2—N92.190 (4)
Mn1—N32.271 (2)Mn2—O1W2.265 (2)
Mn1—N52.276 (2)Mn2—O2W2.129 (3)
Mn2—N72.283 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O40.931.852.772 (3)170
O1W—H1B···O1i0.862.022.875 (3)175
O2W—H2A···O3ii0.851.782.624 (3)172
N2—H2N···O40.861.872.730 (4)176
N4—H4N···O2iii0.861.912.765 (3)177
N6—H6N···O2iv0.861.952.810 (4)178
N8—H8N···O1v0.862.022.870 (4)167
N10—H10A···O3vi0.861.782.560 (7)150
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+3/2, y+3/2, z; (iii) x, y1/2, z+1/2; (iv) x+1, y, z+1; (v) x, y+3/2, z+1/2; (vi) x+3/2, y, z+1/2.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDerissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun. 8, 533–536.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183–m185.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds