metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m722-m723

Cyclo­pentyl­diphen­yl(4-thio­semi­carbazono­penta­noato-κO)tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 March 2008; accepted 20 April 2008; online 26 April 2008)

The Sn atom in the title compound, [Sn(C5H9)(C6H5)2(C6H10N3O2S)], exists within a tetra­hedral geometry. The –NH2 group forms a weak hydrogen bond across a center of inversion to the S atom of an adjacent mol­ecule, as well as another weaker hydrogen (across another center of inversion) to the Sn-bound O atom of another mol­ecule. The hydrogen-bonded layer structure is consolidated by a strong hydrogen bond between the –NH– group and the uncoordinated O atom of a third mol­ecule.

Related literature

For the antibacterial and antifungal applications of cyclo­pentyl­diphenyl­tin carboxyl­ates, see: Koshy et al. (2001[Koshy, J., Ansary, A., Lo, K. M. & Kumar Das, V. G. (2001). Met.-Based Drugs, 8, 107-111.]). For the crystal structures of cyclo­pentyl­diphenyl­tin derivatives, see: Lo & Ng (2004[Lo, K. M. & Ng, S. W. (2004). Acta Cryst. E60, m715-m716.]); Lo et al. (1999[Lo, K. M., Kumar Das, V. G. & Ng, S. W. (1999). Acta Cryst. C55, 889-894.]); Teo et al. (2004[Teo, Y. Y., Lo, K. M. & Ng, S. W. (2004). Acta Cryst. E60, m1478-m1480.]). For the synthesis of levulinic acid thio­semicarbazone, see: Ng (1992[Ng, S. W. (1992). Acta Cryst. C48, 2057-2058.]). For a review of the structural chemistry of organotin carboxyl­ates, see: Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.], 1994[Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C5H9)(C6H5)2(C6H10N3O2S)]

  • Mr = 530.24

  • Triclinic, [P \overline 1]

  • a = 9.5780 (1) Å

  • b = 10.2375 (1) Å

  • c = 13.4205 (1) Å

  • α = 86.901 (1)°

  • β = 83.370 (1)°

  • γ = 63.667 (1)°

  • V = 1171.50 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 100 (2) K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.779, Tmax = 0.889

  • 15020 measured reflections

  • 5350 independent reflections

  • 5186 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.078

  • S = 1.03

  • 5350 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 1.99 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—O1 2.063 (2)
Sn1—C1 2.131 (3)
Sn1—C6 2.125 (2)
Sn1—C12 2.134 (2)
O1—Sn1—C1 112.7 (1)
O1—Sn1—C6 108.6 (1)
O1—Sn1—C12 95.9 (1)
C1—Sn1—C6 116.5 (1)
C1—Sn1—C12 112.1 (1)
C6—Sn1—C12 109.2 (1)
Sn1—O1—C18 109.3 (1)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O2i 0.88 2.12 2.975 (3) 163
N3—H3n1⋯O1ii 0.88 2.43 3.121 (3) 136
N3—H3n2⋯S1iii 0.88 2.54 3.389 (2) 161
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Triorganotin carboxylates having two different organyl substituents possess ehanced anti-bacterial and anti-fungal properties compared with the symmetrical compounds (Koshy et al., 2001). The synthesis of cyclopentyldiphenyltin hydroxide, which is the principal reagent that condenses readily with carboxylic acids, is a multi-step synthesis. Previous studies have characterized a few cyclopentyldiphenyltin derivatives (Lo & Ng, 2004; Lo et al., 1999; Teo et al., 2004). In the reaction with levulinic acid thiosemicarbazone (Ng, 1992), the organotin hydroxide yields a four-coordinate compound (I) (Fig. 1 & Table 1). The tin atom exists in a tetrahedral geometry; adjacent molecules are linked by hydrogen bonds into a layer structure, Table 2.

Related literature top

For the anti-bacterial and anti-fungal applications of cyclopentyldiphenyltin carboxylates, see: Koshy et al. (2001). For the crystal structures of cyclopentyldiphenyltin derivatives, see: Lo & Ng (2004); Lo et al. (1999); Teo et al. (2004). For the synthesis of levulinic acid thiosemicarbazone, see: Ng (1992). For a review of the structural chemistry of organotin carboxylates, see: Tiekink (1991, 1994).

Experimental top

Levulinic acid thiosemicarbazone was synthesized from the reaction of levulinic acid and thiosemicarbazide (Ng, 1992). Cyclopentyldiphenyltin hydroxide was sythesized by using a multistep reaction, starting from the Grignard reaction of cyclopentylmagnesium bromide on triphenyltin chloride. One phenyl radical was then cleaved by iodine in DMF; the resulting iodide was then hydrolyzed with sodium hydroxide in acetone to give the mixed triorganotin hydroxide (Lo et al., 1999). The thiosemicarbazone (1.1 g, 5 mmol) and triorganotin hydroxide (2 g, 5 mmol) were dissolved in hot ethanol (50 ml). The clear solution was filtered and colorless crystals separated from the cool solution after a day (yield: 75%).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The nitrogen-bound H-atom were similarly generated (N–H 0.88±0.01 Å) and their temperature factors similarly tied.

The final difference Fourier map had a large peak at 1.4 Å from C1 but was otherwise diffuse.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. 70% Probability thermal ellipsoid plot of Sn(C5H9)(C6H5)2(C12H15N3O2S), (I), show atom-numbering scheme. Hydrogen atoms are drawn as spheres of arbitrary radius.
Cyclopentyldiphenyl(4-thiosemicarbazonopentanoato-κO)tin(IV) top
Crystal data top
[Sn(C5H9)(C6H5)2(C6H10N3O2S)]Z = 2
Mr = 530.24F(000) = 540
Triclinic, P1Dx = 1.503 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5780 (1) ÅCell parameters from 9905 reflections
b = 10.2375 (1) Åθ = 2.4–28.3°
c = 13.4205 (1) ŵ = 1.20 mm1
α = 86.901 (1)°T = 100 K
β = 83.370 (1)°Irregular block, colorless
γ = 63.667 (1)°0.30 × 0.15 × 0.10 mm
V = 1171.50 (2) Å3
Data collection top
Bruker SMART APEXII
diffractometer
5350 independent reflections
Radiation source: fine-focus sealed tube5186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 912
Tmin = 0.779, Tmax = 0.889k = 1313
15020 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0431P)2 + 2.3757P]
where P = (Fo2 + 2Fc2)/3
5350 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 1.99 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Sn(C5H9)(C6H5)2(C6H10N3O2S)]γ = 63.667 (1)°
Mr = 530.24V = 1171.50 (2) Å3
Triclinic, P1Z = 2
a = 9.5780 (1) ÅMo Kα radiation
b = 10.2375 (1) ŵ = 1.20 mm1
c = 13.4205 (1) ÅT = 100 K
α = 86.901 (1)°0.30 × 0.15 × 0.10 mm
β = 83.370 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
5350 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5186 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.889Rint = 0.014
15020 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.03Δρmax = 1.99 e Å3
5350 reflectionsΔρmin = 0.91 e Å3
272 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.400900 (17)0.628156 (16)0.232609 (11)0.01648 (6)
S10.24404 (7)0.05406 (6)0.56139 (5)0.02291 (13)
O10.4075 (2)0.63541 (19)0.38521 (13)0.0191 (3)
O20.1648 (2)0.66366 (19)0.38475 (13)0.0188 (3)
N10.1747 (2)0.4584 (2)0.57946 (15)0.0161 (4)
N20.1483 (2)0.3354 (2)0.58783 (15)0.0160 (4)
H2N0.05520.34100.60870.019*
N30.4100 (2)0.2066 (2)0.54086 (17)0.0215 (4)
H3N10.41870.28830.54330.026*
H3N20.49330.12480.52400.026*
C10.2123 (3)0.8151 (3)0.1783 (2)0.0269 (5)
H10.11890.79440.18630.032*
C20.2415 (5)0.8439 (5)0.0673 (3)0.0712 (16)
H2A0.19320.80010.02670.085*
H2B0.35530.80100.04600.085*
C30.1675 (4)1.0097 (4)0.0531 (2)0.0359 (7)
H3A0.24911.04420.03760.043*
H3B0.09871.03970.00190.043*
C40.0732 (5)1.0696 (4)0.1530 (3)0.0495 (9)
H4A0.03431.07880.15420.059*
H4B0.06721.16630.16630.059*
C50.1651 (4)0.9556 (3)0.2307 (3)0.0398 (7)
H5A0.25770.96740.24560.048*
H5B0.09780.96250.29400.048*
C60.4168 (3)0.4221 (3)0.19650 (18)0.0199 (5)
C70.4926 (3)0.2975 (3)0.2541 (2)0.0245 (5)
H70.53610.30440.31260.029*
C80.5049 (3)0.1635 (3)0.2263 (2)0.0285 (6)
H80.55600.07940.26610.034*
C90.4429 (3)0.1523 (3)0.1411 (2)0.0271 (5)
H90.45160.06070.12230.032*
C100.3684 (3)0.2743 (3)0.08321 (19)0.0238 (5)
H100.32440.26680.02510.029*
C110.3575 (3)0.4079 (3)0.10956 (19)0.0225 (5)
H110.30930.49060.06800.027*
C120.6217 (3)0.6303 (3)0.19063 (17)0.0176 (4)
C130.7494 (3)0.5069 (3)0.14887 (18)0.0201 (5)
H130.73820.42060.14030.024*
C140.8925 (3)0.5089 (3)0.11974 (19)0.0236 (5)
H140.97840.42450.09130.028*
C150.9095 (3)0.6343 (3)0.13229 (19)0.0243 (5)
H151.00700.63590.11180.029*
C160.7847 (3)0.7577 (3)0.17470 (19)0.0231 (5)
H160.79700.84320.18410.028*
C170.6419 (3)0.7553 (3)0.20323 (18)0.0198 (5)
H170.55650.84000.23180.024*
C180.2692 (3)0.6595 (2)0.43182 (18)0.0163 (4)
C190.2537 (3)0.6844 (3)0.54288 (18)0.0184 (4)
H19A0.27390.76920.55360.022*
H19B0.33540.59820.57330.022*
C200.0950 (3)0.7117 (3)0.59732 (18)0.0194 (5)
H20A0.08660.75150.66450.023*
H20B0.01260.78720.56000.023*
C210.0628 (3)0.5805 (2)0.61014 (17)0.0162 (4)
C220.0961 (3)0.6051 (3)0.65817 (19)0.0211 (5)
H22A0.14930.70230.68840.032*
H22B0.08510.53130.71030.032*
H22C0.15790.59790.60730.032*
C230.2715 (3)0.2065 (2)0.56254 (17)0.0170 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01453 (9)0.01349 (9)0.02213 (10)0.00650 (6)0.00357 (6)0.00085 (6)
S10.0168 (3)0.0119 (3)0.0404 (4)0.0064 (2)0.0043 (2)0.0007 (2)
O10.0150 (8)0.0209 (8)0.0235 (8)0.0098 (7)0.0020 (6)0.0008 (6)
O20.0167 (8)0.0197 (8)0.0223 (8)0.0099 (7)0.0036 (6)0.0004 (6)
N10.0180 (9)0.0135 (9)0.0185 (9)0.0081 (8)0.0033 (7)0.0001 (7)
N20.0139 (9)0.0128 (9)0.0219 (9)0.0065 (7)0.0021 (7)0.0007 (7)
N30.0148 (9)0.0140 (9)0.0349 (11)0.0058 (8)0.0000 (8)0.0047 (8)
C10.0213 (12)0.0260 (13)0.0251 (12)0.0028 (10)0.0042 (10)0.0019 (10)
C20.046 (2)0.068 (3)0.040 (2)0.023 (2)0.0084 (16)0.0231 (19)
C30.0378 (16)0.0442 (18)0.0334 (15)0.0241 (14)0.0144 (12)0.0166 (13)
C40.049 (2)0.0292 (16)0.064 (2)0.0123 (15)0.0080 (18)0.0046 (15)
C50.0435 (18)0.0289 (15)0.0423 (17)0.0111 (14)0.0067 (14)0.0004 (13)
C60.0214 (11)0.0190 (11)0.0228 (11)0.0120 (10)0.0032 (9)0.0000 (9)
C70.0274 (13)0.0209 (12)0.0287 (13)0.0120 (10)0.0120 (10)0.0026 (10)
C80.0327 (14)0.0183 (12)0.0366 (14)0.0120 (11)0.0105 (11)0.0048 (10)
C90.0285 (14)0.0221 (12)0.0323 (14)0.0124 (11)0.0035 (11)0.0021 (10)
C100.0257 (13)0.0257 (13)0.0224 (12)0.0133 (11)0.0020 (10)0.0032 (9)
C110.0236 (12)0.0205 (12)0.0230 (12)0.0091 (10)0.0052 (9)0.0021 (9)
C120.0163 (11)0.0177 (11)0.0186 (10)0.0072 (9)0.0035 (8)0.0027 (8)
C130.0215 (12)0.0169 (11)0.0209 (11)0.0075 (9)0.0030 (9)0.0021 (9)
C140.0188 (12)0.0238 (12)0.0227 (12)0.0050 (10)0.0008 (9)0.0009 (9)
C150.0200 (12)0.0322 (14)0.0232 (12)0.0144 (11)0.0020 (9)0.0040 (10)
C160.0265 (13)0.0260 (12)0.0233 (12)0.0171 (11)0.0041 (10)0.0015 (9)
C170.0194 (11)0.0185 (11)0.0211 (11)0.0079 (9)0.0026 (9)0.0003 (9)
C180.0165 (11)0.0098 (9)0.0234 (11)0.0063 (8)0.0023 (8)0.0002 (8)
C190.0206 (11)0.0142 (10)0.0228 (11)0.0095 (9)0.0038 (9)0.0014 (8)
C200.0202 (11)0.0143 (10)0.0226 (11)0.0064 (9)0.0013 (9)0.0029 (8)
C210.0163 (11)0.0157 (10)0.0162 (10)0.0063 (9)0.0033 (8)0.0009 (8)
C220.0172 (11)0.0209 (11)0.0234 (11)0.0070 (9)0.0006 (9)0.0032 (9)
C230.0173 (11)0.0139 (10)0.0203 (11)0.0068 (9)0.0050 (8)0.0006 (8)
Geometric parameters (Å, º) top
Sn1—O12.063 (2)C7—H70.9500
Sn1—C12.131 (3)C8—C91.379 (4)
Sn1—C62.125 (2)C8—H80.9500
Sn1—C122.134 (2)C9—C101.380 (4)
S1—C231.695 (2)C9—H90.9500
O1—C181.320 (3)C10—C111.387 (4)
O2—C181.227 (3)C10—H100.9500
N1—C211.283 (3)C11—H110.9500
N1—N21.387 (3)C12—C131.398 (3)
N2—C231.350 (3)C12—C171.399 (3)
N2—H2N0.8800C13—C141.391 (4)
N3—C231.325 (3)C13—H130.9500
N3—H3N10.8800C14—C151.384 (4)
N3—H3N20.8800C14—H140.9500
C1—C51.492 (4)C15—C161.389 (4)
C1—C21.522 (4)C15—H150.9500
C1—H11.0000C16—C171.388 (4)
C2—C31.532 (5)C16—H160.9500
C2—H2A0.9900C17—H170.9500
C2—H2B0.9900C18—C191.505 (3)
C3—C41.519 (5)C19—C201.520 (3)
C3—H3A0.9900C19—H19A0.9900
C3—H3B0.9900C19—H19B0.9900
C4—C51.547 (5)C20—C211.503 (3)
C4—H4A0.9900C20—H20A0.9900
C4—H4B0.9900C20—H20B0.9900
C5—H5A0.9900C21—C221.499 (3)
C5—H5B0.9900C22—H22A0.9800
C6—C111.396 (3)C22—H22B0.9800
C6—C71.398 (3)C22—H22C0.9800
C7—C81.393 (4)
O1—Sn1—C1112.7 (1)C8—C9—H9120.0
O1—Sn1—C6108.6 (1)C10—C9—H9120.0
O1—Sn1—C1295.9 (1)C9—C10—C11120.2 (2)
C1—Sn1—C6116.5 (1)C9—C10—H10119.9
C1—Sn1—C12112.1 (1)C11—C10—H10119.9
C6—Sn1—C12109.2 (1)C10—C11—C6120.7 (2)
Sn1—O1—C18109.3 (1)C10—C11—H11119.7
C21—N1—N2118.3 (2)C6—C11—H11119.7
C23—N2—N1117.11 (19)C13—C12—C17118.4 (2)
C23—N2—H2N121.4C13—C12—Sn1120.71 (18)
N1—N2—H2N121.4C17—C12—Sn1120.94 (18)
C23—N3—H3N1120.0C14—C13—C12120.8 (2)
C23—N3—H3N2120.0C14—C13—H13119.6
H3N1—N3—H3N2120.0C12—C13—H13119.6
C5—C1—C2106.2 (3)C15—C14—C13119.9 (2)
C5—C1—Sn1116.7 (2)C15—C14—H14120.1
C2—C1—Sn1113.0 (2)C13—C14—H14120.1
C5—C1—H1106.8C14—C15—C16120.4 (2)
C2—C1—H1106.8C14—C15—H15119.8
Sn1—C1—H1106.8C16—C15—H15119.8
C1—C2—C3106.9 (3)C17—C16—C15119.5 (2)
C1—C2—H2A110.3C17—C16—H16120.2
C3—C2—H2A110.3C15—C16—H16120.2
C1—C2—H2B110.3C16—C17—C12121.1 (2)
C3—C2—H2B110.3C16—C17—H17119.5
H2A—C2—H2B108.6C12—C17—H17119.5
C4—C3—C2104.5 (3)O2—C18—O1120.5 (2)
C4—C3—H3A110.9O2—C18—C19125.2 (2)
C2—C3—H3A110.9O1—C18—C19114.2 (2)
C4—C3—H3B110.9C18—C19—C20114.6 (2)
C2—C3—H3B110.9C18—C19—H19A108.6
H3A—C3—H3B108.9C20—C19—H19A108.6
C3—C4—C5104.1 (3)C18—C19—H19B108.6
C3—C4—H4A110.9C20—C19—H19B108.6
C5—C4—H4A110.9H19A—C19—H19B107.6
C3—C4—H4B110.9C21—C20—C19115.40 (19)
C5—C4—H4B110.9C21—C20—H20A108.4
H4A—C4—H4B109.0C19—C20—H20A108.4
C1—C5—C4102.4 (3)C21—C20—H20B108.4
C1—C5—H5A111.3C19—C20—H20B108.4
C4—C5—H5A111.3H20A—C20—H20B107.5
C1—C5—H5B111.3N1—C21—C22126.5 (2)
C4—C5—H5B111.3N1—C21—C20116.6 (2)
H5A—C5—H5B109.2C22—C21—C20116.8 (2)
C11—C6—C7118.4 (2)C21—C22—H22A109.5
C11—C6—Sn1119.38 (18)C21—C22—H22B109.5
C7—C6—Sn1122.09 (18)H22A—C22—H22B109.5
C8—C7—C6120.4 (2)C21—C22—H22C109.5
C8—C7—H7119.8H22A—C22—H22C109.5
C6—C7—H7119.8H22B—C22—H22C109.5
C9—C8—C7120.2 (3)N3—C23—N2117.2 (2)
C9—C8—H8119.9N3—C23—S1123.29 (18)
C7—C8—H8119.9N2—C23—S1119.54 (18)
C8—C9—C10120.0 (2)
C6—Sn1—O1—C1877.70 (16)C9—C10—C11—C62.2 (4)
C1—Sn1—O1—C1852.80 (17)C7—C6—C11—C102.5 (4)
C12—Sn1—O1—C18169.72 (15)Sn1—C6—C11—C10179.0 (2)
C21—N1—N2—C23174.8 (2)O1—Sn1—C12—C13110.54 (19)
O1—Sn1—C1—C532.7 (3)C6—Sn1—C12—C131.5 (2)
C6—Sn1—C1—C5159.1 (2)C1—Sn1—C12—C13132.09 (19)
C12—Sn1—C1—C574.2 (2)O1—Sn1—C12—C1770.09 (19)
O1—Sn1—C1—C2156.3 (3)C6—Sn1—C12—C17177.87 (18)
C6—Sn1—C1—C277.3 (3)C1—Sn1—C12—C1747.3 (2)
C12—Sn1—C1—C249.4 (3)C17—C12—C13—C140.6 (4)
C5—C1—C2—C315.5 (4)Sn1—C12—C13—C14178.79 (18)
Sn1—C1—C2—C3144.7 (3)C12—C13—C14—C150.2 (4)
C1—C2—C3—C49.9 (5)C13—C14—C15—C160.6 (4)
C2—C3—C4—C530.7 (4)C14—C15—C16—C170.9 (4)
C2—C1—C5—C434.0 (4)C15—C16—C17—C120.4 (4)
Sn1—C1—C5—C4161.0 (2)C13—C12—C17—C160.3 (4)
C3—C4—C5—C140.3 (4)Sn1—C12—C17—C16179.07 (18)
O1—Sn1—C6—C11155.98 (19)Sn1—O1—C18—O25.1 (3)
C1—Sn1—C6—C1127.6 (2)Sn1—O1—C18—C19173.25 (14)
C12—Sn1—C6—C11100.6 (2)O2—C18—C19—C202.0 (3)
O1—Sn1—C6—C727.7 (2)O1—C18—C19—C20179.78 (19)
C1—Sn1—C6—C7156.1 (2)C18—C19—C20—C2172.7 (3)
C12—Sn1—C6—C775.7 (2)N2—N1—C21—C222.0 (3)
C11—C6—C7—C81.6 (4)N2—N1—C21—C20178.51 (19)
Sn1—C6—C7—C8178.0 (2)C19—C20—C21—N13.9 (3)
C6—C7—C8—C90.4 (4)C19—C20—C21—C22176.6 (2)
C7—C8—C9—C100.1 (4)N1—N2—C23—N36.1 (3)
C8—C9—C10—C111.0 (4)N1—N2—C23—S1174.76 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O2i0.882.122.975 (3)163
N3—H3n1···O1ii0.882.433.121 (3)136
N3—H3n2···S1iii0.882.543.389 (2)161
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Sn(C5H9)(C6H5)2(C6H10N3O2S)]
Mr530.24
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5780 (1), 10.2375 (1), 13.4205 (1)
α, β, γ (°)86.901 (1), 83.370 (1), 63.667 (1)
V3)1171.50 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.779, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
15020, 5350, 5186
Rint0.014
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.03
No. of reflections5350
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.99, 0.91

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Sn1—O12.063 (2)Sn1—C62.125 (2)
Sn1—C12.131 (3)Sn1—C122.134 (2)
O1—Sn1—C1112.7 (1)C1—Sn1—C12112.1 (1)
O1—Sn1—C6108.6 (1)C6—Sn1—C12109.2 (1)
O1—Sn1—C1295.9 (1)Sn1—O1—C18109.3 (1)
C1—Sn1—C6116.5 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O2i0.882.122.975 (3)163
N3—H3n1···O1ii0.882.433.121 (3)136
N3—H3n2···S1iii0.882.543.389 (2)161
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

We thank the University of Malaya for funding this study (FR155/2007 A) and also for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoshy, J., Ansary, A., Lo, K. M. & Kumar Das, V. G. (2001). Met.-Based Drugs, 8, 107–111.  CrossRef CAS Google Scholar
First citationLo, K. M., Kumar Das, V. G. & Ng, S. W. (1999). Acta Cryst. C55, 889–894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2004). Acta Cryst. E60, m715–m716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S. W. (1992). Acta Cryst. C48, 2057–2058.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeo, Y. Y., Lo, K. M. & Ng, S. W. (2004). Acta Cryst. E60, m1478–m1480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationTiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71–116.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m722-m723
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds