metal-organic compounds
catena-Poly[[[aquabis(1H-imidazole-κN3)copper(II)]-μ-naphthalene-1,4-dicarboxylato-κ2O1:O4] dihydrate]
aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn
In the title compound, {[Cu(C12H6O4)(C3H4N2)2(H2O)]·2H2O}n, the CuII cation is coordinated by two naphthalene-1,4-dicarboxylate (naph) dianions, two imidazole molecules and one water molecule in a distorted square-pyramidal geometry. The Cu—O bond distance in the apical direction is 0.509 (3) Å longer than the mean Cu—O bond distance in the basal plane. The naph dianion bridges two CuII cations, forming a one-dimensional polymeric chain. The coordinated water molecule is hydrogen-bonded to the carboxylate groups and imidazole ligands of adjacent polymeric chains, forming a three-dimensional supramolecular structure. No π–π stacking is observed in the One solvent water molecule is disordered equally over two positions.
Related literature
For general background, see: Su & Xu (2004); Li et al. (2005). For related structures, see: Derissen et al. (1979); Li et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808018515/sg2252sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808018515/sg2252Isup2.hkl
A water-ethanol solution (12 ml, 1:1) containing naphthalene-1,4-dicarboxyllic acid (0.162 g, 0.75 mmol), sodium hydroxide (0.053 g, 1.3 mmol), sodium acetate trihydrate (0.204 g, 1.5 mmol), cupric chloride dihydrate (0.085 g, 0.5 mmol) and imidazole (0.034 g, 0.5 mmol) was refluxed for 3 h. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after 8 d.
The lattice water O2WB is close to an inversion center, while the lattice O2WA is ca 1.5 Å apart from O2WBvi [symmetry code: (vi) -x, 1 - y, 1 - z]. The site occupancy factors of the O2WA and O2WB atoms were initially refined and converged to 0.48 and 0.45, and fixed as 0.50 for each at final cycles of refinemens. Water H atoms were placed in a difference Fourier map and refined in riding mode with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. A segment of the polymeric chain of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms); dashed lines indicate hydrogen bonding [symmetry codes: (i) x + 1/2, -y + 1/2, z - 1/2; (ii) x - 1/2, -y + 1/2, z + 1/2]. | |
Fig. 2. A digram showing the ovelapped arrangement of adjacent naphthaline ligands [symmetry code: (iii) 1 - x, 1 - y, 2 - z]. | |
Fig. 3. A diagram showing the contacts between imidazole rings [symmetry codes: (iv) 1 - x, -y, 1 - z; (v) 1 - x, 1 - y, 1 - z]. |
[Cu(C12H6O4)(C3H4N2)2(H2O)]·2H2O | F(000) = 964 |
Mr = 467.92 | Dx = 1.522 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5466 reflections |
a = 12.571 (2) Å | θ = 2.0–24.5° |
b = 14.698 (3) Å | µ = 1.12 mm−1 |
c = 12.636 (2) Å | T = 295 K |
β = 119.011 (6)° | Prism, blue |
V = 2041.8 (6) Å3 | 0.33 × 0.30 × 0.24 mm |
Z = 4 |
Rigaku R-AXIS RAPID IP diffractometer | 3989 independent reflections |
Radiation source: fine-focus sealed tube | 3251 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
Detector resolution: 10.0 pixels mm-1 | θmax = 26.0°, θmin = 1.9° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −18→17 |
Tmin = 0.660, Tmax = 0.765 | l = −15→15 |
23205 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0469P)2 + 1.2324P] where P = (Fo2 + 2Fc2)/3 |
3989 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
[Cu(C12H6O4)(C3H4N2)2(H2O)]·2H2O | V = 2041.8 (6) Å3 |
Mr = 467.92 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.571 (2) Å | µ = 1.12 mm−1 |
b = 14.698 (3) Å | T = 295 K |
c = 12.636 (2) Å | 0.33 × 0.30 × 0.24 mm |
β = 119.011 (6)° |
Rigaku R-AXIS RAPID IP diffractometer | 3989 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3251 reflections with I > 2σ(I) |
Tmin = 0.660, Tmax = 0.765 | Rint = 0.043 |
23205 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.50 e Å−3 |
3989 reflections | Δρmin = −0.39 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu | 0.61473 (3) | 0.26395 (2) | 0.57692 (3) | 0.02692 (12) | |
N1 | 0.60619 (19) | 0.13328 (15) | 0.6141 (2) | 0.0324 (5) | |
N2 | 0.5581 (2) | 0.00805 (16) | 0.6757 (2) | 0.0408 (6) | |
H2N | 0.5252 | −0.0276 | 0.7056 | 0.049* | |
N3 | 0.64575 (19) | 0.39456 (14) | 0.56052 (19) | 0.0310 (5) | |
N4 | 0.6481 (2) | 0.54324 (16) | 0.5765 (2) | 0.0423 (6) | |
H4N | 0.6401 | 0.5966 | 0.5997 | 0.051* | |
O1 | 0.52250 (17) | 0.29662 (13) | 0.66172 (17) | 0.0356 (4) | |
O2 | 0.69612 (18) | 0.29561 (17) | 0.8353 (2) | 0.0515 (6) | |
O3 | 0.19639 (16) | 0.27227 (12) | 0.98022 (16) | 0.0311 (4) | |
O4 | 0.37130 (19) | 0.25600 (14) | 1.14909 (18) | 0.0436 (5) | |
O5 | 0.41477 (17) | 0.27662 (13) | 0.38636 (17) | 0.0387 (5) | |
H5A | 0.3510 | 0.2580 | 0.3861 | 0.058* | |
H5B | 0.4082 | 0.2721 | 0.3166 | 0.058* | |
O1W | 0.0571 (2) | 0.37164 (15) | 0.7624 (2) | 0.0548 (6) | |
H1A | 0.1072 | 0.3426 | 0.8274 | 0.082* | |
H1B | 0.0011 | 0.3328 | 0.7129 | 0.082* | |
O2WA | 0.1105 (11) | 0.4187 (8) | 0.5762 (10) | 0.181 (5) | 0.50 |
H2A | 0.0710 | 0.4002 | 0.6169 | 0.271* | 0.50 |
H2B | 0.1794 | 0.3868 | 0.6144 | 0.271* | 0.50 |
O2WB | −0.0010 (9) | 0.5394 (6) | 0.5243 (9) | 0.127 (3) | 0.50 |
H2C | 0.0693 | 0.5188 | 0.5711 | 0.190* | 0.50 |
H2D | −0.0381 | 0.5579 | 0.5650 | 0.190* | 0.50 |
C1 | 0.5111 (2) | 0.30793 (18) | 0.8430 (2) | 0.0294 (6) | |
C2 | 0.3978 (2) | 0.26894 (18) | 0.7913 (2) | 0.0325 (6) | |
H2 | 0.3638 | 0.2466 | 0.7127 | 0.039* | |
C3 | 0.3324 (2) | 0.26212 (18) | 0.8547 (2) | 0.0327 (6) | |
H3 | 0.2564 | 0.2343 | 0.8181 | 0.039* | |
C4 | 0.3787 (2) | 0.29591 (18) | 0.9699 (2) | 0.0283 (5) | |
C5 | 0.5331 (3) | 0.3954 (2) | 1.1323 (2) | 0.0376 (6) | |
H5 | 0.4903 | 0.3923 | 1.1750 | 0.045* | |
C6 | 0.6357 (3) | 0.4476 (2) | 1.1762 (3) | 0.0441 (7) | |
H6 | 0.6605 | 0.4810 | 1.2468 | 0.053* | |
C7 | 0.7035 (3) | 0.4508 (2) | 1.1152 (3) | 0.0452 (7) | |
H7 | 0.7740 | 0.4856 | 1.1463 | 0.054* | |
C8 | 0.6671 (3) | 0.4035 (2) | 1.0115 (3) | 0.0399 (7) | |
H8 | 0.7144 | 0.4053 | 0.9733 | 0.048* | |
C9 | 0.5581 (2) | 0.35118 (17) | 0.9593 (2) | 0.0287 (5) | |
C10 | 0.4903 (2) | 0.34582 (17) | 1.0226 (2) | 0.0284 (5) | |
C11 | 0.5842 (3) | 0.30043 (18) | 0.7771 (3) | 0.0329 (6) | |
C12 | 0.3125 (2) | 0.27394 (17) | 1.0399 (2) | 0.0289 (6) | |
C13 | 0.6235 (2) | 0.46473 (19) | 0.6125 (2) | 0.0352 (6) | |
H13 | 0.5945 | 0.4598 | 0.6674 | 0.042* | |
C14 | 0.6877 (3) | 0.5244 (2) | 0.4974 (3) | 0.0585 (9) | |
H14 | 0.7112 | 0.5661 | 0.4572 | 0.070* | |
C15 | 0.6865 (3) | 0.4329 (2) | 0.4878 (3) | 0.0561 (9) | |
H15 | 0.7099 | 0.4006 | 0.4391 | 0.067* | |
C16 | 0.5431 (3) | 0.0979 (2) | 0.6621 (3) | 0.0418 (7) | |
H16 | 0.4940 | 0.1315 | 0.6838 | 0.050* | |
C17 | 0.6345 (3) | −0.0168 (2) | 0.6339 (3) | 0.0405 (7) | |
H17 | 0.6612 | −0.0754 | 0.6316 | 0.049* | |
C18 | 0.6642 (3) | 0.05965 (19) | 0.5964 (3) | 0.0389 (6) | |
H18 | 0.7161 | 0.0627 | 0.5635 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.03055 (19) | 0.02963 (19) | 0.03180 (19) | 0.00027 (12) | 0.02397 (15) | −0.00133 (13) |
N1 | 0.0350 (12) | 0.0336 (13) | 0.0378 (12) | 0.0004 (10) | 0.0250 (10) | −0.0019 (10) |
N2 | 0.0484 (14) | 0.0342 (14) | 0.0467 (14) | −0.0069 (11) | 0.0287 (12) | 0.0010 (11) |
N3 | 0.0341 (12) | 0.0315 (12) | 0.0365 (12) | 0.0011 (9) | 0.0241 (10) | 0.0009 (9) |
N4 | 0.0448 (14) | 0.0314 (13) | 0.0511 (15) | −0.0005 (10) | 0.0234 (12) | −0.0021 (11) |
O1 | 0.0446 (11) | 0.0381 (11) | 0.0412 (11) | 0.0005 (8) | 0.0344 (10) | −0.0015 (8) |
O2 | 0.0333 (12) | 0.0736 (15) | 0.0599 (14) | 0.0010 (10) | 0.0323 (11) | −0.0102 (11) |
O3 | 0.0295 (10) | 0.0387 (10) | 0.0359 (10) | −0.0006 (8) | 0.0243 (9) | 0.0022 (8) |
O4 | 0.0398 (11) | 0.0662 (14) | 0.0322 (11) | 0.0016 (10) | 0.0233 (9) | 0.0083 (9) |
O5 | 0.0379 (11) | 0.0476 (12) | 0.0360 (10) | −0.0086 (9) | 0.0222 (9) | −0.0074 (9) |
O1W | 0.0509 (13) | 0.0544 (14) | 0.0585 (14) | 0.0047 (11) | 0.0261 (11) | −0.0028 (11) |
O2WA | 0.216 (12) | 0.203 (12) | 0.214 (12) | −0.016 (9) | 0.175 (11) | 0.029 (9) |
O2WB | 0.117 (6) | 0.131 (8) | 0.126 (7) | −0.021 (6) | 0.054 (6) | −0.012 (6) |
C1 | 0.0315 (14) | 0.0311 (14) | 0.0351 (14) | 0.0024 (11) | 0.0236 (12) | 0.0008 (11) |
C2 | 0.0341 (15) | 0.0403 (16) | 0.0315 (14) | −0.0037 (11) | 0.0225 (12) | −0.0070 (11) |
C3 | 0.0287 (14) | 0.0423 (16) | 0.0350 (14) | −0.0053 (11) | 0.0218 (12) | −0.0046 (12) |
C4 | 0.0290 (13) | 0.0336 (14) | 0.0311 (13) | 0.0035 (10) | 0.0215 (11) | 0.0028 (11) |
C5 | 0.0421 (16) | 0.0464 (17) | 0.0325 (14) | −0.0013 (13) | 0.0245 (13) | −0.0036 (12) |
C6 | 0.0501 (18) | 0.0453 (18) | 0.0374 (16) | −0.0077 (14) | 0.0217 (14) | −0.0098 (13) |
C7 | 0.0369 (16) | 0.0500 (19) | 0.0490 (18) | −0.0146 (13) | 0.0211 (14) | −0.0088 (14) |
C8 | 0.0360 (15) | 0.0437 (17) | 0.0478 (17) | −0.0077 (13) | 0.0265 (14) | −0.0009 (13) |
C9 | 0.0290 (13) | 0.0304 (14) | 0.0329 (13) | 0.0021 (10) | 0.0200 (11) | 0.0016 (10) |
C10 | 0.0309 (13) | 0.0295 (14) | 0.0304 (13) | 0.0027 (10) | 0.0192 (11) | 0.0016 (10) |
C11 | 0.0417 (17) | 0.0273 (14) | 0.0469 (17) | −0.0020 (11) | 0.0351 (14) | −0.0013 (11) |
C12 | 0.0332 (14) | 0.0292 (14) | 0.0345 (14) | 0.0018 (11) | 0.0245 (12) | −0.0001 (11) |
C13 | 0.0354 (15) | 0.0381 (16) | 0.0348 (14) | −0.0012 (12) | 0.0192 (12) | −0.0017 (12) |
C14 | 0.080 (2) | 0.0393 (19) | 0.087 (3) | 0.0010 (16) | 0.065 (2) | 0.0105 (17) |
C15 | 0.087 (3) | 0.0380 (18) | 0.081 (2) | 0.0069 (16) | 0.070 (2) | 0.0094 (16) |
C16 | 0.0528 (18) | 0.0339 (16) | 0.0551 (18) | −0.0020 (13) | 0.0390 (16) | −0.0023 (13) |
C17 | 0.0414 (16) | 0.0339 (16) | 0.0454 (16) | 0.0028 (12) | 0.0206 (14) | 0.0011 (13) |
C18 | 0.0403 (16) | 0.0370 (16) | 0.0467 (17) | 0.0057 (12) | 0.0268 (14) | 0.0023 (13) |
Cu—N1 | 1.992 (2) | C1—C2 | 1.371 (4) |
Cu—N3 | 1.990 (2) | C1—C9 | 1.439 (4) |
Cu—O1 | 1.9819 (17) | C1—C11 | 1.515 (3) |
Cu—O3i | 2.0116 (17) | C2—C3 | 1.404 (4) |
Cu—O5 | 2.506 (2) | C2—H2 | 0.9300 |
N1—C16 | 1.317 (3) | C3—C4 | 1.372 (4) |
N1—C18 | 1.382 (3) | C3—H3 | 0.9300 |
N2—C16 | 1.333 (4) | C4—C10 | 1.430 (4) |
N2—C17 | 1.351 (4) | C4—C12 | 1.514 (3) |
N2—H2N | 0.8600 | C5—C6 | 1.365 (4) |
N3—C13 | 1.323 (3) | C5—C10 | 1.421 (4) |
N3—C15 | 1.372 (4) | C5—H5 | 0.9300 |
N4—C13 | 1.331 (4) | C6—C7 | 1.400 (4) |
N4—C14 | 1.344 (4) | C6—H6 | 0.9300 |
N4—H4N | 0.8600 | C7—C8 | 1.352 (4) |
O1—C11 | 1.278 (3) | C7—H7 | 0.9300 |
O2—C11 | 1.234 (3) | C8—C9 | 1.424 (4) |
O3—C12 | 1.277 (3) | C8—H8 | 0.9300 |
O3—Cuii | 2.0116 (17) | C9—C10 | 1.426 (3) |
O4—C12 | 1.237 (3) | C13—H13 | 0.9300 |
O5—H5A | 0.8450 | C14—C15 | 1.351 (5) |
O5—H5B | 0.8478 | C14—H14 | 0.9300 |
O1W—H1A | 0.8670 | C15—H15 | 0.9300 |
O1W—H1B | 0.8864 | C16—H16 | 0.9300 |
O2WA—H2A | 0.9128 | C17—C18 | 1.340 (4) |
O2WA—H2B | 0.8933 | C17—H17 | 0.9300 |
O2WB—H2C | 0.8461 | C18—H18 | 0.9300 |
O2WB—H2D | 0.8876 | ||
O1—Cu—N3 | 91.04 (8) | C6—C5—H5 | 119.3 |
O1—Cu—N1 | 89.64 (8) | C10—C5—H5 | 119.3 |
N3—Cu—N1 | 172.02 (9) | C5—C6—C7 | 120.2 (3) |
O1—Cu—O3i | 175.67 (8) | C5—C6—H6 | 119.9 |
N3—Cu—O3i | 90.49 (8) | C7—C6—H6 | 119.9 |
N1—Cu—O3i | 89.41 (8) | C8—C7—C6 | 120.4 (3) |
O5—Cu—N1 | 98.89 (8) | C8—C7—H7 | 119.8 |
O5—Cu—N3 | 89.09 (8) | C6—C7—H7 | 119.8 |
O5—Cu—O1 | 85.66 (7) | C7—C8—C9 | 121.6 (3) |
O5—Cu—O3i | 90.32 (7) | C7—C8—H8 | 119.2 |
C16—N1—C18 | 104.3 (2) | C9—C8—H8 | 119.2 |
C16—N1—Cu | 127.07 (19) | C8—C9—C10 | 118.2 (2) |
C18—N1—Cu | 128.61 (18) | C8—C9—C1 | 122.6 (2) |
C16—N2—C17 | 107.4 (2) | C10—C9—C1 | 119.1 (2) |
C16—N2—H2N | 126.3 | C5—C10—C9 | 118.2 (2) |
C17—N2—H2N | 126.3 | C5—C10—C4 | 122.6 (2) |
C13—N3—C15 | 104.5 (2) | C9—C10—C4 | 119.1 (2) |
C13—N3—Cu | 126.94 (18) | O2—C11—O1 | 124.2 (2) |
C15—N3—Cu | 128.44 (19) | O2—C11—C1 | 119.8 (2) |
C13—N4—C14 | 107.9 (3) | O1—C11—C1 | 115.9 (2) |
C13—N4—H4N | 126.0 | O4—C12—O3 | 123.3 (2) |
C14—N4—H4N | 126.0 | O4—C12—C4 | 119.7 (2) |
C11—O1—Cu | 115.93 (16) | O3—C12—C4 | 117.0 (2) |
C12—O3—Cuii | 114.83 (16) | N3—C13—N4 | 111.5 (2) |
H5A—O5—H5B | 110.9 | N3—C13—H13 | 124.3 |
H1A—O1W—H1B | 108.4 | N4—C13—H13 | 124.3 |
H2A—O2WA—H2B | 100.9 | N4—C14—C15 | 106.2 (3) |
H2C—O2WB—H2D | 111.6 | N4—C14—H14 | 126.9 |
C2—C1—C9 | 119.3 (2) | C15—C14—H14 | 126.9 |
C2—C1—C11 | 118.3 (2) | C14—C15—N3 | 109.9 (3) |
C9—C1—C11 | 122.4 (2) | C14—C15—H15 | 125.0 |
C1—C2—C3 | 121.2 (2) | N3—C15—H15 | 125.0 |
C1—C2—H2 | 119.4 | N1—C16—N2 | 111.8 (3) |
C3—C2—H2 | 119.4 | N1—C16—H16 | 124.1 |
C4—C3—C2 | 121.0 (2) | N2—C16—H16 | 124.1 |
C4—C3—H3 | 119.5 | C18—C17—N2 | 106.5 (3) |
C2—C3—H3 | 119.5 | C18—C17—H17 | 126.7 |
C3—C4—C10 | 119.7 (2) | N2—C17—H17 | 126.7 |
C3—C4—C12 | 118.1 (2) | C17—C18—N1 | 109.9 (2) |
C10—C4—C12 | 122.1 (2) | C17—C18—H18 | 125.1 |
C6—C5—C10 | 121.4 (2) | N1—C18—H18 | 125.1 |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x−1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O3 | 0.87 | 1.99 | 2.846 (3) | 170 |
O1W—H1B···O4iii | 0.89 | 1.93 | 2.789 (3) | 162 |
O2WA—H2A···O1W | 0.91 | 1.97 | 2.828 (13) | 155 |
O2WB—H2C···O2WA | 0.85 | 1.55 | 2.156 (16) | 126 |
N2—H2N···O1Wiv | 0.86 | 1.96 | 2.798 (4) | 165 |
N4—H4N···O5v | 0.86 | 2.02 | 2.866 (3) | 166 |
O5—H5A···O2iii | 0.85 | 1.90 | 2.716 (3) | 162 |
O5—H5B···O4vi | 0.85 | 1.95 | 2.791 (3) | 172 |
C17—H17···O2vii | 0.93 | 2.50 | 3.389 (4) | 160 |
Symmetry codes: (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+1/2, y−1/2, −z+3/2; (v) −x+1, −y+1, −z+1; (vi) x, y, z−1; (vii) −x+3/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C12H6O4)(C3H4N2)2(H2O)]·2H2O |
Mr | 467.92 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 12.571 (2), 14.698 (3), 12.636 (2) |
β (°) | 119.011 (6) |
V (Å3) | 2041.8 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.12 |
Crystal size (mm) | 0.33 × 0.30 × 0.24 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.660, 0.765 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 23205, 3989, 3251 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.097, 1.06 |
No. of reflections | 3989 |
No. of parameters | 280 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.39 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cu—N1 | 1.992 (2) | Cu—O3i | 2.0116 (17) |
Cu—N3 | 1.990 (2) | Cu—O5 | 2.506 (2) |
Cu—O1 | 1.9819 (17) |
Symmetry code: (i) x+1/2, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O3 | 0.87 | 1.99 | 2.846 (3) | 170 |
O1W—H1B···O4ii | 0.89 | 1.93 | 2.789 (3) | 162 |
O2WA—H2A···O1W | 0.91 | 1.97 | 2.828 (13) | 155 |
O2WB—H2C···O2WA | 0.85 | 1.55 | 2.156 (16) | 126 |
N2—H2N···O1Wiii | 0.86 | 1.96 | 2.798 (4) | 165 |
N4—H4N···O5iv | 0.86 | 2.02 | 2.866 (3) | 166 |
O5—H5A···O2ii | 0.85 | 1.90 | 2.716 (3) | 162 |
O5—H5B···O4v | 0.85 | 1.95 | 2.791 (3) | 172 |
C17—H17···O2vi | 0.93 | 2.50 | 3.389 (4) | 160 |
Symmetry codes: (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1/2, y−1/2, −z+3/2; (iv) −x+1, −y+1, −z+1; (v) x, y, z−1; (vi) −x+3/2, y−1/2, −z+3/2. |
Acknowledgements
The work was supported by the ZIJIN project of Zhejiang University, China.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Derissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun. 8, 533–536. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, J.-H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m729. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our investigation on the nature of π-π stacking between aromatic rings (Li et al., 2005), the title polymeric complex of CuII incorporating imidazole and naphthalenedicarboxylate (naph) ligands has been prepared and its crystal structure is reported here.
The CuII cation is coordinated by two naph dianions, two imidazole molecules and one water molecule in a distorted square pyramidal geometry. The Cu—O(water) bond distance in the apical direction is longer than mean Cu—O(carboxyl) bond distance in the basal plane by 0.509 (3) Å. The naph dianion bridges two CuII cations by two carboxyl groups to form the one dimensional polymeric chain (Fig. 1). Two carboxyl groups of the naph dianion are twisted with respect to the C1-benzene ring with the dihedral angles of 32.0 (2)° and 38.2 (2)°, which are close to that found in the free naphthalenedicarboxylic acid (ca 40°; Derissen et al., 1979) but are much smaller than those [52.5 (3)° and 48.7 (3)°] found in a MnII complex with the uncoordinated naph dianion (Li et al., 2008). The coordinated water molecule (O5) is hydrogen bonded to carboxyl groups and imidazole ligand of adjacent polymeric chains (Table 2) to form the three dimensional supra-molecular structure.
The parallel C8-benzene and C8iii-benzene rings from the adjacent polymeric chains overlap as shown in Fig. 2 [symmetry code: (iii) 1 - x, 1 - y, 2 - z] with a face-to-face separation of 3.67 (2) Å indicating no π-π stacking existing between benzene rings, a similar situation to that found in the MnII complex with uncoordinated naph dianion (Li et al., 2008). The face-to-face distances between parallel N1-imidazole and N1iv-imidazole rings and between parallel N3-imidazole and N3v-imidazole rings are 3.310 (4) and 3.050 (17) Å, respectively [symmetry codes: (iv) 1 - x, -y, 1 - z; (v) 1 - x, 1 - y, 1 - z]. However the imidazole rings are not overlapping each other in the crystal structure (Fig. 3), therefore no π-p\ stacking exists between parallel imidazole rings too.