metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m948-m949

catena-Poly[[[aqua­bis­(1H-imidazole-κN3)copper(II)]-μ-naphthalene-1,4-di­carboxyl­ato-κ2O1:O4] dihydrate]

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 17 June 2008; accepted 18 June 2008; online 21 June 2008)

In the title compound, {[Cu(C12H6O4)(C3H4N2)2(H2O)]·2H2O}n, the CuII cation is coordinated by two naphthalene-1,4-dicarboxyl­ate (naph) dianions, two imidazole mol­ecules and one water mol­ecule in a distorted square-pyramidal geometry. The Cu—O bond distance in the apical direction is 0.509 (3) Å longer than the mean Cu—O bond distance in the basal plane. The naph dianion bridges two CuII cations, forming a one-dimensional polymeric chain. The coordinated water mol­ecule is hydrogen-bonded to the carboxylate groups and imidazole ligands of adjacent polymeric chains, forming a three-dimensional supra­molecular structure. No ππ stacking is observed in the crystal structure. One solvent water molecule is disordered equally over two positions.

Related literature

For general background, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]). For related structures, see: Derissen et al. (1979[Derissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun. 8, 533-536.]); Li et al. (2008[Li, J.-H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m729.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H6O4)(C3H4N2)2(H2O)]·2H2O

  • Mr = 467.92

  • Monoclinic, P 21 /n

  • a = 12.571 (2) Å

  • b = 14.698 (3) Å

  • c = 12.636 (2) Å

  • β = 119.011 (6)°

  • V = 2041.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 295 (2) K

  • 0.33 × 0.30 × 0.24 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.660, Tmax = 0.765

  • 23205 measured reflections

  • 3989 independent reflections

  • 3251 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.06

  • 3989 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Cu—N1 1.992 (2)
Cu—N3 1.990 (2)
Cu—O1 1.9819 (17)
Cu—O3i 2.0116 (17)
Cu—O5 2.506 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O3 0.87 1.99 2.846 (3) 170
O1W—H1B⋯O4ii 0.89 1.93 2.789 (3) 162
O2WA—H2A⋯O1W 0.91 1.97 2.828 (13) 155
O2WB—H2C⋯O2WA 0.85 1.55 2.156 (16) 126
N2—H2N⋯O1Wiii 0.86 1.96 2.798 (4) 165
N4—H4N⋯O5iv 0.86 2.02 2.866 (3) 166
O5—H5A⋯O2ii 0.85 1.90 2.716 (3) 162
O5—H5B⋯O4v 0.85 1.95 2.791 (3) 172
C17—H17⋯O2vi 0.93 2.50 3.389 (4) 160
Symmetry codes: (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) x, y, z-1; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our investigation on the nature of π-π stacking between aromatic rings (Li et al., 2005), the title polymeric complex of CuII incorporating imidazole and naphthalenedicarboxylate (naph) ligands has been prepared and its crystal structure is reported here.

The CuII cation is coordinated by two naph dianions, two imidazole molecules and one water molecule in a distorted square pyramidal geometry. The Cu—O(water) bond distance in the apical direction is longer than mean Cu—O(carboxyl) bond distance in the basal plane by 0.509 (3) Å. The naph dianion bridges two CuII cations by two carboxyl groups to form the one dimensional polymeric chain (Fig. 1). Two carboxyl groups of the naph dianion are twisted with respect to the C1-benzene ring with the dihedral angles of 32.0 (2)° and 38.2 (2)°, which are close to that found in the free naphthalenedicarboxylic acid (ca 40°; Derissen et al., 1979) but are much smaller than those [52.5 (3)° and 48.7 (3)°] found in a MnII complex with the uncoordinated naph dianion (Li et al., 2008). The coordinated water molecule (O5) is hydrogen bonded to carboxyl groups and imidazole ligand of adjacent polymeric chains (Table 2) to form the three dimensional supra-molecular structure.

The parallel C8-benzene and C8iii-benzene rings from the adjacent polymeric chains overlap as shown in Fig. 2 [symmetry code: (iii) 1 - x, 1 - y, 2 - z] with a face-to-face separation of 3.67 (2) Å indicating no π-π stacking existing between benzene rings, a similar situation to that found in the MnII complex with uncoordinated naph dianion (Li et al., 2008). The face-to-face distances between parallel N1-imidazole and N1iv-imidazole rings and between parallel N3-imidazole and N3v-imidazole rings are 3.310 (4) and 3.050 (17) Å, respectively [symmetry codes: (iv) 1 - x, -y, 1 - z; (v) 1 - x, 1 - y, 1 - z]. However the imidazole rings are not overlapping each other in the crystal structure (Fig. 3), therefore no π-p\ stacking exists between parallel imidazole rings too.

Related literature top

For general background, see: Su & Xu (2004); Li et al. (2005). For related structures, see: Derissen et al. (1979); Li et al. (2008).

Experimental top

A water-ethanol solution (12 ml, 1:1) containing naphthalene-1,4-dicarboxyllic acid (0.162 g, 0.75 mmol), sodium hydroxide (0.053 g, 1.3 mmol), sodium acetate trihydrate (0.204 g, 1.5 mmol), cupric chloride dihydrate (0.085 g, 0.5 mmol) and imidazole (0.034 g, 0.5 mmol) was refluxed for 3 h. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after 8 d.

Refinement top

The lattice water O2WB is close to an inversion center, while the lattice O2WA is ca 1.5 Å apart from O2WBvi [symmetry code: (vi) -x, 1 - y, 1 - z]. The site occupancy factors of the O2WA and O2WB atoms were initially refined and converged to 0.48 and 0.45, and fixed as 0.50 for each at final cycles of refinemens. Water H atoms were placed in a difference Fourier map and refined in riding mode with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A segment of the polymeric chain of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms); dashed lines indicate hydrogen bonding [symmetry codes: (i) x + 1/2, -y + 1/2, z - 1/2; (ii) x - 1/2, -y + 1/2, z + 1/2].
[Figure 2] Fig. 2. A digram showing the ovelapped arrangement of adjacent naphthaline ligands [symmetry code: (iii) 1 - x, 1 - y, 2 - z].
[Figure 3] Fig. 3. A diagram showing the contacts between imidazole rings [symmetry codes: (iv) 1 - x, -y, 1 - z; (v) 1 - x, 1 - y, 1 - z].
catena-Poly[[[aquabis(1H-imidazole-κN3)copper(II)]- µ-naphthalene-1,4-dicarboxylato-κ2O1:O4] dihydrate] top
Crystal data top
[Cu(C12H6O4)(C3H4N2)2(H2O)]·2H2OF(000) = 964
Mr = 467.92Dx = 1.522 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5466 reflections
a = 12.571 (2) Åθ = 2.0–24.5°
b = 14.698 (3) ŵ = 1.12 mm1
c = 12.636 (2) ÅT = 295 K
β = 119.011 (6)°Prism, blue
V = 2041.8 (6) Å30.33 × 0.30 × 0.24 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3989 independent reflections
Radiation source: fine-focus sealed tube3251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scansh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1817
Tmin = 0.660, Tmax = 0.765l = 1515
23205 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0469P)2 + 1.2324P]
where P = (Fo2 + 2Fc2)/3
3989 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C12H6O4)(C3H4N2)2(H2O)]·2H2OV = 2041.8 (6) Å3
Mr = 467.92Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.571 (2) ŵ = 1.12 mm1
b = 14.698 (3) ÅT = 295 K
c = 12.636 (2) Å0.33 × 0.30 × 0.24 mm
β = 119.011 (6)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3989 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3251 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.765Rint = 0.043
23205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
3989 reflectionsΔρmin = 0.39 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.61473 (3)0.26395 (2)0.57692 (3)0.02692 (12)
N10.60619 (19)0.13328 (15)0.6141 (2)0.0324 (5)
N20.5581 (2)0.00805 (16)0.6757 (2)0.0408 (6)
H2N0.52520.02760.70560.049*
N30.64575 (19)0.39456 (14)0.56052 (19)0.0310 (5)
N40.6481 (2)0.54324 (16)0.5765 (2)0.0423 (6)
H4N0.64010.59660.59970.051*
O10.52250 (17)0.29662 (13)0.66172 (17)0.0356 (4)
O20.69612 (18)0.29561 (17)0.8353 (2)0.0515 (6)
O30.19639 (16)0.27227 (12)0.98022 (16)0.0311 (4)
O40.37130 (19)0.25600 (14)1.14909 (18)0.0436 (5)
O50.41477 (17)0.27662 (13)0.38636 (17)0.0387 (5)
H5A0.35100.25800.38610.058*
H5B0.40820.27210.31660.058*
O1W0.0571 (2)0.37164 (15)0.7624 (2)0.0548 (6)
H1A0.10720.34260.82740.082*
H1B0.00110.33280.71290.082*
O2WA0.1105 (11)0.4187 (8)0.5762 (10)0.181 (5)0.50
H2A0.07100.40020.61690.271*0.50
H2B0.17940.38680.61440.271*0.50
O2WB0.0010 (9)0.5394 (6)0.5243 (9)0.127 (3)0.50
H2C0.06930.51880.57110.190*0.50
H2D0.03810.55790.56500.190*0.50
C10.5111 (2)0.30793 (18)0.8430 (2)0.0294 (6)
C20.3978 (2)0.26894 (18)0.7913 (2)0.0325 (6)
H20.36380.24660.71270.039*
C30.3324 (2)0.26212 (18)0.8547 (2)0.0327 (6)
H30.25640.23430.81810.039*
C40.3787 (2)0.29591 (18)0.9699 (2)0.0283 (5)
C50.5331 (3)0.3954 (2)1.1323 (2)0.0376 (6)
H50.49030.39231.17500.045*
C60.6357 (3)0.4476 (2)1.1762 (3)0.0441 (7)
H60.66050.48101.24680.053*
C70.7035 (3)0.4508 (2)1.1152 (3)0.0452 (7)
H70.77400.48561.14630.054*
C80.6671 (3)0.4035 (2)1.0115 (3)0.0399 (7)
H80.71440.40530.97330.048*
C90.5581 (2)0.35118 (17)0.9593 (2)0.0287 (5)
C100.4903 (2)0.34582 (17)1.0226 (2)0.0284 (5)
C110.5842 (3)0.30043 (18)0.7771 (3)0.0329 (6)
C120.3125 (2)0.27394 (17)1.0399 (2)0.0289 (6)
C130.6235 (2)0.46473 (19)0.6125 (2)0.0352 (6)
H130.59450.45980.66740.042*
C140.6877 (3)0.5244 (2)0.4974 (3)0.0585 (9)
H140.71120.56610.45720.070*
C150.6865 (3)0.4329 (2)0.4878 (3)0.0561 (9)
H150.70990.40060.43910.067*
C160.5431 (3)0.0979 (2)0.6621 (3)0.0418 (7)
H160.49400.13150.68380.050*
C170.6345 (3)0.0168 (2)0.6339 (3)0.0405 (7)
H170.66120.07540.63160.049*
C180.6642 (3)0.05965 (19)0.5964 (3)0.0389 (6)
H180.71610.06270.56350.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03055 (19)0.02963 (19)0.03180 (19)0.00027 (12)0.02397 (15)0.00133 (13)
N10.0350 (12)0.0336 (13)0.0378 (12)0.0004 (10)0.0250 (10)0.0019 (10)
N20.0484 (14)0.0342 (14)0.0467 (14)0.0069 (11)0.0287 (12)0.0010 (11)
N30.0341 (12)0.0315 (12)0.0365 (12)0.0011 (9)0.0241 (10)0.0009 (9)
N40.0448 (14)0.0314 (13)0.0511 (15)0.0005 (10)0.0234 (12)0.0021 (11)
O10.0446 (11)0.0381 (11)0.0412 (11)0.0005 (8)0.0344 (10)0.0015 (8)
O20.0333 (12)0.0736 (15)0.0599 (14)0.0010 (10)0.0323 (11)0.0102 (11)
O30.0295 (10)0.0387 (10)0.0359 (10)0.0006 (8)0.0243 (9)0.0022 (8)
O40.0398 (11)0.0662 (14)0.0322 (11)0.0016 (10)0.0233 (9)0.0083 (9)
O50.0379 (11)0.0476 (12)0.0360 (10)0.0086 (9)0.0222 (9)0.0074 (9)
O1W0.0509 (13)0.0544 (14)0.0585 (14)0.0047 (11)0.0261 (11)0.0028 (11)
O2WA0.216 (12)0.203 (12)0.214 (12)0.016 (9)0.175 (11)0.029 (9)
O2WB0.117 (6)0.131 (8)0.126 (7)0.021 (6)0.054 (6)0.012 (6)
C10.0315 (14)0.0311 (14)0.0351 (14)0.0024 (11)0.0236 (12)0.0008 (11)
C20.0341 (15)0.0403 (16)0.0315 (14)0.0037 (11)0.0225 (12)0.0070 (11)
C30.0287 (14)0.0423 (16)0.0350 (14)0.0053 (11)0.0218 (12)0.0046 (12)
C40.0290 (13)0.0336 (14)0.0311 (13)0.0035 (10)0.0215 (11)0.0028 (11)
C50.0421 (16)0.0464 (17)0.0325 (14)0.0013 (13)0.0245 (13)0.0036 (12)
C60.0501 (18)0.0453 (18)0.0374 (16)0.0077 (14)0.0217 (14)0.0098 (13)
C70.0369 (16)0.0500 (19)0.0490 (18)0.0146 (13)0.0211 (14)0.0088 (14)
C80.0360 (15)0.0437 (17)0.0478 (17)0.0077 (13)0.0265 (14)0.0009 (13)
C90.0290 (13)0.0304 (14)0.0329 (13)0.0021 (10)0.0200 (11)0.0016 (10)
C100.0309 (13)0.0295 (14)0.0304 (13)0.0027 (10)0.0192 (11)0.0016 (10)
C110.0417 (17)0.0273 (14)0.0469 (17)0.0020 (11)0.0351 (14)0.0013 (11)
C120.0332 (14)0.0292 (14)0.0345 (14)0.0018 (11)0.0245 (12)0.0001 (11)
C130.0354 (15)0.0381 (16)0.0348 (14)0.0012 (12)0.0192 (12)0.0017 (12)
C140.080 (2)0.0393 (19)0.087 (3)0.0010 (16)0.065 (2)0.0105 (17)
C150.087 (3)0.0380 (18)0.081 (2)0.0069 (16)0.070 (2)0.0094 (16)
C160.0528 (18)0.0339 (16)0.0551 (18)0.0020 (13)0.0390 (16)0.0023 (13)
C170.0414 (16)0.0339 (16)0.0454 (16)0.0028 (12)0.0206 (14)0.0011 (13)
C180.0403 (16)0.0370 (16)0.0467 (17)0.0057 (12)0.0268 (14)0.0023 (13)
Geometric parameters (Å, º) top
Cu—N11.992 (2)C1—C21.371 (4)
Cu—N31.990 (2)C1—C91.439 (4)
Cu—O11.9819 (17)C1—C111.515 (3)
Cu—O3i2.0116 (17)C2—C31.404 (4)
Cu—O52.506 (2)C2—H20.9300
N1—C161.317 (3)C3—C41.372 (4)
N1—C181.382 (3)C3—H30.9300
N2—C161.333 (4)C4—C101.430 (4)
N2—C171.351 (4)C4—C121.514 (3)
N2—H2N0.8600C5—C61.365 (4)
N3—C131.323 (3)C5—C101.421 (4)
N3—C151.372 (4)C5—H50.9300
N4—C131.331 (4)C6—C71.400 (4)
N4—C141.344 (4)C6—H60.9300
N4—H4N0.8600C7—C81.352 (4)
O1—C111.278 (3)C7—H70.9300
O2—C111.234 (3)C8—C91.424 (4)
O3—C121.277 (3)C8—H80.9300
O3—Cuii2.0116 (17)C9—C101.426 (3)
O4—C121.237 (3)C13—H130.9300
O5—H5A0.8450C14—C151.351 (5)
O5—H5B0.8478C14—H140.9300
O1W—H1A0.8670C15—H150.9300
O1W—H1B0.8864C16—H160.9300
O2WA—H2A0.9128C17—C181.340 (4)
O2WA—H2B0.8933C17—H170.9300
O2WB—H2C0.8461C18—H180.9300
O2WB—H2D0.8876
O1—Cu—N391.04 (8)C6—C5—H5119.3
O1—Cu—N189.64 (8)C10—C5—H5119.3
N3—Cu—N1172.02 (9)C5—C6—C7120.2 (3)
O1—Cu—O3i175.67 (8)C5—C6—H6119.9
N3—Cu—O3i90.49 (8)C7—C6—H6119.9
N1—Cu—O3i89.41 (8)C8—C7—C6120.4 (3)
O5—Cu—N198.89 (8)C8—C7—H7119.8
O5—Cu—N389.09 (8)C6—C7—H7119.8
O5—Cu—O185.66 (7)C7—C8—C9121.6 (3)
O5—Cu—O3i90.32 (7)C7—C8—H8119.2
C16—N1—C18104.3 (2)C9—C8—H8119.2
C16—N1—Cu127.07 (19)C8—C9—C10118.2 (2)
C18—N1—Cu128.61 (18)C8—C9—C1122.6 (2)
C16—N2—C17107.4 (2)C10—C9—C1119.1 (2)
C16—N2—H2N126.3C5—C10—C9118.2 (2)
C17—N2—H2N126.3C5—C10—C4122.6 (2)
C13—N3—C15104.5 (2)C9—C10—C4119.1 (2)
C13—N3—Cu126.94 (18)O2—C11—O1124.2 (2)
C15—N3—Cu128.44 (19)O2—C11—C1119.8 (2)
C13—N4—C14107.9 (3)O1—C11—C1115.9 (2)
C13—N4—H4N126.0O4—C12—O3123.3 (2)
C14—N4—H4N126.0O4—C12—C4119.7 (2)
C11—O1—Cu115.93 (16)O3—C12—C4117.0 (2)
C12—O3—Cuii114.83 (16)N3—C13—N4111.5 (2)
H5A—O5—H5B110.9N3—C13—H13124.3
H1A—O1W—H1B108.4N4—C13—H13124.3
H2A—O2WA—H2B100.9N4—C14—C15106.2 (3)
H2C—O2WB—H2D111.6N4—C14—H14126.9
C2—C1—C9119.3 (2)C15—C14—H14126.9
C2—C1—C11118.3 (2)C14—C15—N3109.9 (3)
C9—C1—C11122.4 (2)C14—C15—H15125.0
C1—C2—C3121.2 (2)N3—C15—H15125.0
C1—C2—H2119.4N1—C16—N2111.8 (3)
C3—C2—H2119.4N1—C16—H16124.1
C4—C3—C2121.0 (2)N2—C16—H16124.1
C4—C3—H3119.5C18—C17—N2106.5 (3)
C2—C3—H3119.5C18—C17—H17126.7
C3—C4—C10119.7 (2)N2—C17—H17126.7
C3—C4—C12118.1 (2)C17—C18—N1109.9 (2)
C10—C4—C12122.1 (2)C17—C18—H18125.1
C6—C5—C10121.4 (2)N1—C18—H18125.1
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O30.871.992.846 (3)170
O1W—H1B···O4iii0.891.932.789 (3)162
O2WA—H2A···O1W0.911.972.828 (13)155
O2WB—H2C···O2WA0.851.552.156 (16)126
N2—H2N···O1Wiv0.861.962.798 (4)165
N4—H4N···O5v0.862.022.866 (3)166
O5—H5A···O2iii0.851.902.716 (3)162
O5—H5B···O4vi0.851.952.791 (3)172
C17—H17···O2vii0.932.503.389 (4)160
Symmetry codes: (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x, y, z1; (vii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C12H6O4)(C3H4N2)2(H2O)]·2H2O
Mr467.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)12.571 (2), 14.698 (3), 12.636 (2)
β (°) 119.011 (6)
V3)2041.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.33 × 0.30 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.660, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
23205, 3989, 3251
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.06
No. of reflections3989
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.39

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu—N11.992 (2)Cu—O3i2.0116 (17)
Cu—N31.990 (2)Cu—O52.506 (2)
Cu—O11.9819 (17)
Symmetry code: (i) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O30.871.992.846 (3)170
O1W—H1B···O4ii0.891.932.789 (3)162
O2WA—H2A···O1W0.911.972.828 (13)155
O2WB—H2C···O2WA0.851.552.156 (16)126
N2—H2N···O1Wiii0.861.962.798 (4)165
N4—H4N···O5iv0.862.022.866 (3)166
O5—H5A···O2ii0.851.902.716 (3)162
O5—H5B···O4v0.851.952.791 (3)172
C17—H17···O2vi0.932.503.389 (4)160
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x, y, z1; (vi) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDerissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun. 8, 533–536.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, J.-H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m729.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m948-m949
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds