organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iodo-N-(2-nitro­phenyl­sulfan­yl)aniline

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and cInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 19 June 2008; accepted 27 June 2008; online 5 July 2008)

In title compound, C12H9IN2O2S, the nitro group is rotated slightly, by 8.91 (3)°, out of the plane of the aromatic ring to which it is bonded. Between the two aromatic rings the CSN plane is at a dihedral angle of 84.0 (7)° to the HNC plane. Mol­ecules are linked by C—H⋯O inter­actions into a double helical supra­molecular architecture. There are no iodo–nitro, ππ or C—H⋯π(arene) inter­actions.

Related literature

For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Brito et al. (2004[Brito, I., Vargas, D., León, Y., Cárdenas, A., López-Rodríguez, M. & Wittke, O. (2004). Acta Cryst. E60, o1668-o1670.], 2005[Brito, I., Vargas, D., Reyes, A., Cárdenas, A. & López-Rodríguez, M. (2005). Acta Cryst. C61, o234-o236.], 2006[Brito, I., López-Rodríguez, M., Vargas, D. & León, Y. (2006). Acta Cryst. E62, o914-o916.]); Glidewell et al. (2003[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o95-o97.]); Kuhle (1973[Kuhle, E. (1973). The Chemistry of the Sulfenic Acids, pp. 60-74. Stuttgart: G. Thieme.]); Pauling (1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 257-264. Ithaca: Cornell University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9IN2O2S

  • Mr = 372.17

  • Trigonal, [R \overline 3]

  • a = 28.6221 (12) Å

  • c = 8.4062 (17) Å

  • V = 5963.9 (13) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 2.57 mm−1

  • T = 298 (2) K

  • 0.47 × 0.32 × 0.20 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.380, Tmax = 0.600

  • 11358 measured reflections

  • 3251 independent reflections

  • 2801 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.205

  • S = 1.21

  • 3251 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.93 2.55 3.445 (10) 161
Symmetry code: (i) [-y+{\script{2\over 3}}, x-y-{\script{2\over 3}}, z-{\script{2\over 3}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York; Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sulfenamides are important compounds with versatile industrial applications (Kuhle, 1973). Bond polarization in sulfenamide derivatives, resulting from the difference in electronegativity between sulfur and nitrogen, activates the S—N bond for attack by both nucleophiles and electrophiles, and appears to be the factor primarily responsible for the chemistry of these compounds. The title compound, (I), is a positional isomer of 4-Iodo -N-(2-nitrophenylsulfanyl)-aniline (Glidewell et al.,2003) and shows excellent agreement with its bonding geometries. The title compound is the result of the condensation reaction of 2-nitrophenylsulfenyl choride and 1-iodoaniline. Its structure is described here as part of our work involving the study of the synthesis and structural characterization of divalent-sulfur compounds (Brito et al., 2004, 2005, 2006). A view of the molecular structure of (I) is given in Fig.1. In (I) the 1-Iodo-benzene fragment is connected by an –NH—S– linker unit to the 2-nitrophenyl fragment. It contains an N atom as a chiral center, though the material is a racemic mixture. The nitro group is rotated by 8.91 (3)°. The S—N distance of 1.696 (6)Å is shorter than a normal S—N single-bond length (1.74 Å, Pauling, 1960), but is normal for this type of structure, many of which have S—N single bonds in the range 1.63–1.68 Å as a result of the π character of the S—N bond. The C7/S1/N1 plane makes a dihedral angle of 84.0 (7) ° with the H1/N1/C2 plane, in good agreement with the values of ~90.0 ° for the torsional ground state of this type species. The molecules are linked into a double helical supramolecular architecture with only hydrogen bonding contributing to the double helical arrangement (Bernstein et al., 1995). Atom C10 and nitro atom O1 in the molecule at (x, y, z) act as hydrogen-bond donor and acceptor respectively, Fig.2, Table 1. There are no iodo-nitro, π-π and C—H··· π (arene) interactions.

Related literature top

For related literature, see: Bernstein et al. (1995); Brito et al. (2004, 2005, 2006); Glidewell et al. (2003); Kuhle (1973); Pauling (1960).

Experimental top

A sample of compound (I) was prepared by reaction of equimolar quantities of 2-nitrophenylsulfenyl chloride (0.01 mol,1.895 g) and 4-iodoaniline (0.01 mol, 2.190 g) in dichloromethane solution, in the presence of an excess of triethylamine. Purification was by thin-layer chromatography and crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol [m.p. 472 K]. FT—IR (KBr pellet, cm-1): ν (w, N—H amine) 3091, ν (w, S—N) 1039, ν (w, C—S) 731, ν (s, C—H disubstitution) 855, ν (versus, NO2) 1567.

Refinement top

All H atoms were initially located in a difference Fourier map and were subsequently refined using a riding model, with C—H distances of 0.93 Å and Uiso(H)= 1.2 Ueq(C) for benzene H atoms and N—H = 0.86 Å for amino H atom and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A portio nof the packing diagram for (I), showing the double helical arrangement of molecules along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. [Symmetry code: (i) 2/3 - y, -2/3 + x-y, -2/3 + z]
2-Iodo-N-(2-nitrophenylsulfanyl)aniline top
Crystal data top
C12H9IN2O2SDx = 1.865 Mg m3
Mr = 372.17Melting point: 472 K
Trigonal, R3Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -R 3Cell parameters from 909 reflections
a = 28.6221 (12) Åθ = 1.4–28.5°
c = 8.4062 (17) ŵ = 2.57 mm1
V = 5963.9 (13) Å3T = 298 K
Z = 18Prism, yellow
F(000) = 32400.47 × 0.32 × 0.20 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3251 independent reflections
Radiation source: fine-focus sealed tube2801 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ scans, and ω scans with κ offsetsθmax = 28.5°, θmin = 1.4°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 3137
Tmin = 0.380, Tmax = 0.600k = 3635
11358 measured reflectionsl = 711
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.087P)2 + 39.1076P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.072(Δ/σ)max = 0.001
wR(F2) = 0.205Δρmax = 1.04 e Å3
S = 1.21Δρmin = 1.05 e Å3
3251 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
166 parametersExtinction coefficient: 0.0064 (7)
0 restraints
Crystal data top
C12H9IN2O2SZ = 18
Mr = 372.17Mo Kα radiation
Trigonal, R3µ = 2.57 mm1
a = 28.6221 (12) ÅT = 298 K
c = 8.4062 (17) Å0.47 × 0.32 × 0.20 mm
V = 5963.9 (13) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
3251 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2801 reflections with I > 2σ(I)
Tmin = 0.380, Tmax = 0.600Rint = 0.059
11358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.205H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.087P)2 + 39.1076P]
where P = (Fo2 + 2Fc2)/3
3251 reflectionsΔρmax = 1.04 e Å3
166 parametersΔρmin = 1.05 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.003222 (18)0.07997 (2)0.27240 (7)0.0680 (3)
S10.81458 (6)0.00495 (6)0.12352 (17)0.0458 (4)
N10.8810 (2)0.0367 (2)0.1625 (7)0.0565 (13)
H10.90420.02890.12440.068*
N20.70588 (19)0.0418 (2)0.0484 (7)0.0529 (12)
O10.7146 (2)0.0679 (2)0.0488 (7)0.0679 (13)
O20.6610 (2)0.0547 (3)0.0985 (9)0.0865 (19)
C10.9522 (2)0.1110 (2)0.3204 (7)0.0450 (12)
C20.8998 (2)0.0847 (2)0.2574 (6)0.0427 (11)
C30.8677 (3)0.1073 (3)0.2903 (7)0.0498 (13)
H30.83280.09090.250.06*
C40.8862 (3)0.1532 (3)0.3809 (8)0.0559 (15)
H40.86420.16790.39970.067*
C50.9383 (3)0.1777 (3)0.4448 (8)0.0596 (17)
H50.95070.20830.50810.072*
C60.9706 (3)0.1569 (2)0.4143 (7)0.0518 (14)
H61.00530.17330.45620.062*
C70.80300 (19)0.02629 (18)0.0433 (6)0.0340 (9)
C80.75198 (19)0.00701 (19)0.1113 (6)0.0365 (10)
C90.7438 (2)0.0326 (3)0.2401 (7)0.0482 (13)
H90.70930.01910.28160.058*
C100.7861 (3)0.0775 (3)0.3060 (7)0.0549 (15)
H100.78090.09380.39460.066*
C110.8368 (3)0.0982 (2)0.2383 (7)0.0495 (13)
H110.86560.12940.27980.059*
C120.8450 (2)0.0729 (2)0.1094 (6)0.0391 (10)
H120.87950.08750.06630.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0502 (3)0.0627 (4)0.0973 (5)0.0329 (2)0.0026 (2)0.0077 (2)
S10.0515 (8)0.0395 (7)0.0445 (7)0.0213 (6)0.0044 (6)0.0046 (5)
N10.060 (3)0.049 (3)0.057 (3)0.025 (2)0.028 (3)0.012 (2)
N20.033 (2)0.045 (3)0.067 (3)0.009 (2)0.004 (2)0.008 (2)
O10.055 (3)0.052 (3)0.076 (3)0.011 (2)0.014 (2)0.021 (2)
O20.036 (2)0.075 (4)0.124 (5)0.009 (2)0.009 (3)0.004 (3)
C10.052 (3)0.046 (3)0.038 (3)0.025 (2)0.004 (2)0.011 (2)
C20.057 (3)0.046 (3)0.031 (2)0.030 (2)0.004 (2)0.001 (2)
C30.059 (3)0.054 (3)0.044 (3)0.034 (3)0.001 (2)0.002 (2)
C40.066 (4)0.060 (4)0.050 (3)0.037 (3)0.014 (3)0.003 (3)
C50.073 (4)0.048 (3)0.044 (3)0.020 (3)0.015 (3)0.003 (2)
C60.052 (3)0.045 (3)0.044 (3)0.013 (2)0.006 (2)0.006 (2)
C70.036 (2)0.030 (2)0.034 (2)0.0157 (18)0.0034 (18)0.0011 (17)
C80.032 (2)0.033 (2)0.041 (2)0.0138 (18)0.0014 (18)0.0049 (18)
C90.048 (3)0.054 (3)0.050 (3)0.032 (3)0.008 (2)0.007 (2)
C100.076 (4)0.056 (3)0.044 (3)0.041 (3)0.005 (3)0.001 (3)
C110.060 (3)0.042 (3)0.040 (3)0.020 (3)0.009 (2)0.009 (2)
C120.039 (2)0.036 (2)0.037 (2)0.014 (2)0.0032 (19)0.0011 (18)
Geometric parameters (Å, º) top
I1—C12.092 (6)C4—H40.93
S1—N11.696 (6)C5—C61.352 (10)
S1—C71.781 (5)C5—H50.93
N1—C21.441 (7)C6—H60.93
N1—H10.86C7—C121.390 (7)
N2—O11.216 (8)C7—C81.399 (7)
N2—O21.219 (7)C8—C91.392 (8)
N2—C81.458 (7)C9—C101.365 (10)
C1—C61.391 (9)C9—H90.93
C1—C21.402 (8)C10—C111.386 (10)
C2—C31.392 (8)C10—H100.93
C3—C41.375 (9)C11—C121.387 (8)
C3—H30.93C11—H110.93
C4—C51.400 (11)C12—H120.93
N1—S1—C7102.9 (3)C5—C6—C1120.3 (6)
C2—N1—S1122.0 (5)C5—C6—H6119.8
C2—N1—H1119C1—C6—H6119.8
S1—N1—H1119C12—C7—C8116.5 (5)
O1—N2—O2123.7 (6)C12—C7—S1120.5 (4)
O1—N2—C8117.8 (5)C8—C7—S1122.9 (4)
O2—N2—C8118.5 (6)C9—C8—C7121.8 (5)
C6—C1—C2121.3 (6)C9—C8—N2118.4 (5)
C6—C1—I1119.6 (5)C7—C8—N2119.7 (5)
C2—C1—I1119.1 (4)C10—C9—C8120.5 (5)
C3—C2—C1117.1 (5)C10—C9—H9119.8
C3—C2—N1122.3 (5)C8—C9—H9119.8
C1—C2—N1120.6 (5)C9—C10—C11118.8 (6)
C4—C3—C2121.6 (6)C9—C10—H10120.6
C4—C3—H3119.2C11—C10—H10120.6
C2—C3—H3119.2C10—C11—C12120.8 (5)
C3—C4—C5119.9 (6)C10—C11—H11119.6
C3—C4—H4120.1C12—C11—H11119.6
C5—C4—H4120.1C11—C12—C7121.5 (5)
C6—C5—C4119.8 (6)C11—C12—H12119.3
C6—C5—H5120.1C7—C12—H12119.3
C4—C5—H5120.1
C7—S1—N1—C283.9 (5)C12—C7—C8—C91.0 (7)
C6—C1—C2—C31.3 (8)S1—C7—C8—C9178.9 (4)
I1—C1—C2—C3179.0 (4)C12—C7—C8—N2180.0 (5)
C6—C1—C2—N1179.0 (5)S1—C7—C8—N22.1 (7)
I1—C1—C2—N10.8 (7)O1—N2—C8—C9170.0 (6)
S1—N1—C2—C316.1 (8)O2—N2—C8—C98.4 (8)
S1—N1—C2—C1164.2 (4)O1—N2—C8—C79.0 (8)
C1—C2—C3—C40.2 (9)O2—N2—C8—C7172.6 (6)
N1—C2—C3—C4179.9 (6)C7—C8—C9—C101.0 (9)
C2—C3—C4—C51.2 (10)N2—C8—C9—C10178.0 (5)
C3—C4—C5—C61.4 (10)C8—C9—C10—C112.5 (9)
C4—C5—C6—C10.3 (9)C9—C10—C11—C122.2 (9)
C2—C1—C6—C51.0 (9)C10—C11—C12—C70.3 (9)
I1—C1—C6—C5179.2 (5)C8—C7—C12—C111.3 (7)
N1—S1—C7—C121.6 (5)S1—C7—C12—C11179.3 (4)
N1—S1—C7—C8176.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.553.445 (10)161
Symmetry code: (i) y+2/3, xy2/3, z2/3.

Experimental details

Crystal data
Chemical formulaC12H9IN2O2S
Mr372.17
Crystal system, space groupTrigonal, R3
Temperature (K)298
a, c (Å)28.6221 (12), 8.4062 (17)
V3)5963.9 (13)
Z18
Radiation typeMo Kα
µ (mm1)2.57
Crystal size (mm)0.47 × 0.32 × 0.20
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.380, 0.600
No. of measured, independent and
observed [I > 2σ(I)] reflections
11358, 3251, 2801
Rint0.059
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.205, 1.21
No. of reflections3251
No. of parameters166
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.087P)2 + 39.1076P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.04, 1.05

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.553.445 (10)161
Symmetry code: (i) y+2/3, xy2/3, z2/3.
 

Acknowledgements

This work was supported by a grant from the Universidad de Antofagasta (DI-1324–06). We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. AM and AR thank the Universidad de Antofagasta for PhD fellowships.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrito, I., López-Rodríguez, M., Vargas, D. & León, Y. (2006). Acta Cryst. E62, o914–o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrito, I., Vargas, D., León, Y., Cárdenas, A., López-Rodríguez, M. & Wittke, O. (2004). Acta Cryst. E60, o1668–o1670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrito, I., Vargas, D., Reyes, A., Cárdenas, A. & López-Rodríguez, M. (2005). Acta Cryst. C61, o234–o236.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o95–o97.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKuhle, E. (1973). The Chemistry of the Sulfenic Acids, pp. 60–74. Stuttgart: G. Thieme.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York; Academic Press.  Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 257–264. Ithaca: Cornell University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds