organic compounds
2-Iodo-N-(2-nitrophenylsulfanyl)aniline
aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and cInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com
In title compound, C12H9IN2O2S, the nitro group is rotated slightly, by 8.91 (3)°, out of the plane of the aromatic ring to which it is bonded. Between the two aromatic rings the CSN plane is at a dihedral angle of 84.0 (7)° to the HNC plane. Molecules are linked by C—H⋯O interactions into a double helical supramolecular architecture. There are no iodo–nitro, π–π or C—H⋯π(arene) interactions.
Related literature
For related literature, see: Bernstein et al. (1995); Brito et al. (2004, 2005, 2006); Glidewell et al. (2003); Kuhle (1973); Pauling (1960).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808019491/fl2204sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808019491/fl2204Isup2.hkl
A sample of compound (I) was prepared by reaction of equimolar quantities of 2-nitrophenylsulfenyl chloride (0.01 mol,1.895 g) and 4-iodoaniline (0.01 mol, 2.190 g) in dichloromethane solution, in the presence of an excess of triethylamine. Purification was by ν (w, N—H amine) 3091, ν (w, S—N) 1039, ν (w, C—S) 731, ν (s, C—H disubstitution) 855, ν (versus, NO2) 1567.
and crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol [m.p. 472 K]. FT—IR (KBr pellet, cm-1):All H atoms were initially located in a difference Fourier map and were subsequently refined using a riding model, with C—H distances of 0.93 Å and Uiso(H)= 1.2 Ueq(C) for benzene H atoms and N—H = 0.86 Å for amino H atom and Uiso(H) = 1.2Ueq(N).
Data collection: COLLECT (Nonius, 2000); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).C12H9IN2O2S | Dx = 1.865 Mg m−3 |
Mr = 372.17 | Melting point: 472 K |
Trigonal, R3 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -R 3 | Cell parameters from 909 reflections |
a = 28.6221 (12) Å | θ = 1.4–28.5° |
c = 8.4062 (17) Å | µ = 2.57 mm−1 |
V = 5963.9 (13) Å3 | T = 298 K |
Z = 18 | Prism, yellow |
F(000) = 3240 | 0.47 × 0.32 × 0.20 mm |
Nonius KappaCCD area-detector diffractometer | 3251 independent reflections |
Radiation source: fine-focus sealed tube | 2801 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
ϕ scans, and ω scans with κ offsets | θmax = 28.5°, θmin = 1.4° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −31→37 |
Tmin = 0.380, Tmax = 0.600 | k = −36→35 |
11358 measured reflections | l = −7→11 |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.087P)2 + 39.1076P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.072 | (Δ/σ)max = 0.001 |
wR(F2) = 0.205 | Δρmax = 1.04 e Å−3 |
S = 1.21 | Δρmin = −1.05 e Å−3 |
3251 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
166 parameters | Extinction coefficient: 0.0064 (7) |
0 restraints |
C12H9IN2O2S | Z = 18 |
Mr = 372.17 | Mo Kα radiation |
Trigonal, R3 | µ = 2.57 mm−1 |
a = 28.6221 (12) Å | T = 298 K |
c = 8.4062 (17) Å | 0.47 × 0.32 × 0.20 mm |
V = 5963.9 (13) Å3 |
Nonius KappaCCD area-detector diffractometer | 3251 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 2801 reflections with I > 2σ(I) |
Tmin = 0.380, Tmax = 0.600 | Rint = 0.059 |
11358 measured reflections |
R[F2 > 2σ(F2)] = 0.072 | 0 restraints |
wR(F2) = 0.205 | H-atom parameters constrained |
S = 1.21 | w = 1/[σ2(Fo2) + (0.087P)2 + 39.1076P] where P = (Fo2 + 2Fc2)/3 |
3251 reflections | Δρmax = 1.04 e Å−3 |
166 parameters | Δρmin = −1.05 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 1.003222 (18) | 0.07997 (2) | 0.27240 (7) | 0.0680 (3) | |
S1 | 0.81458 (6) | −0.00495 (6) | 0.12352 (17) | 0.0458 (4) | |
N1 | 0.8810 (2) | 0.0367 (2) | 0.1625 (7) | 0.0565 (13) | |
H1 | 0.9042 | 0.0289 | 0.1244 | 0.068* | |
N2 | 0.70588 (19) | −0.0418 (2) | −0.0484 (7) | 0.0529 (12) | |
O1 | 0.7146 (2) | −0.0679 (2) | 0.0488 (7) | 0.0679 (13) | |
O2 | 0.6610 (2) | −0.0547 (3) | −0.0985 (9) | 0.0865 (19) | |
C1 | 0.9522 (2) | 0.1110 (2) | 0.3204 (7) | 0.0450 (12) | |
C2 | 0.8998 (2) | 0.0847 (2) | 0.2574 (6) | 0.0427 (11) | |
C3 | 0.8677 (3) | 0.1073 (3) | 0.2903 (7) | 0.0498 (13) | |
H3 | 0.8328 | 0.0909 | 0.25 | 0.06* | |
C4 | 0.8862 (3) | 0.1532 (3) | 0.3809 (8) | 0.0559 (15) | |
H4 | 0.8642 | 0.1679 | 0.3997 | 0.067* | |
C5 | 0.9383 (3) | 0.1777 (3) | 0.4448 (8) | 0.0596 (17) | |
H5 | 0.9507 | 0.2083 | 0.5081 | 0.072* | |
C6 | 0.9706 (3) | 0.1569 (2) | 0.4143 (7) | 0.0518 (14) | |
H6 | 1.0053 | 0.1733 | 0.4562 | 0.062* | |
C7 | 0.80300 (19) | 0.02629 (18) | −0.0433 (6) | 0.0340 (9) | |
C8 | 0.75198 (19) | 0.00701 (19) | −0.1113 (6) | 0.0365 (10) | |
C9 | 0.7438 (2) | 0.0326 (3) | −0.2401 (7) | 0.0482 (13) | |
H9 | 0.7093 | 0.0191 | −0.2816 | 0.058* | |
C10 | 0.7861 (3) | 0.0775 (3) | −0.3060 (7) | 0.0549 (15) | |
H10 | 0.7809 | 0.0938 | −0.3946 | 0.066* | |
C11 | 0.8368 (3) | 0.0982 (2) | −0.2383 (7) | 0.0495 (13) | |
H11 | 0.8656 | 0.1294 | −0.2798 | 0.059* | |
C12 | 0.8450 (2) | 0.0729 (2) | −0.1094 (6) | 0.0391 (10) | |
H12 | 0.8795 | 0.0875 | −0.0663 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0502 (3) | 0.0627 (4) | 0.0973 (5) | 0.0329 (2) | −0.0026 (2) | 0.0077 (2) |
S1 | 0.0515 (8) | 0.0395 (7) | 0.0445 (7) | 0.0213 (6) | −0.0044 (6) | 0.0046 (5) |
N1 | 0.060 (3) | 0.049 (3) | 0.057 (3) | 0.025 (2) | −0.028 (3) | −0.012 (2) |
N2 | 0.033 (2) | 0.045 (3) | 0.067 (3) | 0.009 (2) | 0.004 (2) | −0.008 (2) |
O1 | 0.055 (3) | 0.052 (3) | 0.076 (3) | 0.011 (2) | 0.014 (2) | 0.021 (2) |
O2 | 0.036 (2) | 0.075 (4) | 0.124 (5) | 0.009 (2) | −0.009 (3) | −0.004 (3) |
C1 | 0.052 (3) | 0.046 (3) | 0.038 (3) | 0.025 (2) | 0.004 (2) | 0.011 (2) |
C2 | 0.057 (3) | 0.046 (3) | 0.031 (2) | 0.030 (2) | −0.004 (2) | −0.001 (2) |
C3 | 0.059 (3) | 0.054 (3) | 0.044 (3) | 0.034 (3) | −0.001 (2) | −0.002 (2) |
C4 | 0.066 (4) | 0.060 (4) | 0.050 (3) | 0.037 (3) | 0.014 (3) | −0.003 (3) |
C5 | 0.073 (4) | 0.048 (3) | 0.044 (3) | 0.020 (3) | 0.015 (3) | −0.003 (2) |
C6 | 0.052 (3) | 0.045 (3) | 0.044 (3) | 0.013 (2) | 0.006 (2) | 0.006 (2) |
C7 | 0.036 (2) | 0.030 (2) | 0.034 (2) | 0.0157 (18) | 0.0034 (18) | −0.0011 (17) |
C8 | 0.032 (2) | 0.033 (2) | 0.041 (2) | 0.0138 (18) | 0.0014 (18) | −0.0049 (18) |
C9 | 0.048 (3) | 0.054 (3) | 0.050 (3) | 0.032 (3) | −0.008 (2) | −0.007 (2) |
C10 | 0.076 (4) | 0.056 (3) | 0.044 (3) | 0.041 (3) | −0.005 (3) | 0.001 (3) |
C11 | 0.060 (3) | 0.042 (3) | 0.040 (3) | 0.020 (3) | 0.009 (2) | 0.009 (2) |
C12 | 0.039 (2) | 0.036 (2) | 0.037 (2) | 0.014 (2) | 0.0032 (19) | −0.0011 (18) |
I1—C1 | 2.092 (6) | C4—H4 | 0.93 |
S1—N1 | 1.696 (6) | C5—C6 | 1.352 (10) |
S1—C7 | 1.781 (5) | C5—H5 | 0.93 |
N1—C2 | 1.441 (7) | C6—H6 | 0.93 |
N1—H1 | 0.86 | C7—C12 | 1.390 (7) |
N2—O1 | 1.216 (8) | C7—C8 | 1.399 (7) |
N2—O2 | 1.219 (7) | C8—C9 | 1.392 (8) |
N2—C8 | 1.458 (7) | C9—C10 | 1.365 (10) |
C1—C6 | 1.391 (9) | C9—H9 | 0.93 |
C1—C2 | 1.402 (8) | C10—C11 | 1.386 (10) |
C2—C3 | 1.392 (8) | C10—H10 | 0.93 |
C3—C4 | 1.375 (9) | C11—C12 | 1.387 (8) |
C3—H3 | 0.93 | C11—H11 | 0.93 |
C4—C5 | 1.400 (11) | C12—H12 | 0.93 |
N1—S1—C7 | 102.9 (3) | C5—C6—C1 | 120.3 (6) |
C2—N1—S1 | 122.0 (5) | C5—C6—H6 | 119.8 |
C2—N1—H1 | 119 | C1—C6—H6 | 119.8 |
S1—N1—H1 | 119 | C12—C7—C8 | 116.5 (5) |
O1—N2—O2 | 123.7 (6) | C12—C7—S1 | 120.5 (4) |
O1—N2—C8 | 117.8 (5) | C8—C7—S1 | 122.9 (4) |
O2—N2—C8 | 118.5 (6) | C9—C8—C7 | 121.8 (5) |
C6—C1—C2 | 121.3 (6) | C9—C8—N2 | 118.4 (5) |
C6—C1—I1 | 119.6 (5) | C7—C8—N2 | 119.7 (5) |
C2—C1—I1 | 119.1 (4) | C10—C9—C8 | 120.5 (5) |
C3—C2—C1 | 117.1 (5) | C10—C9—H9 | 119.8 |
C3—C2—N1 | 122.3 (5) | C8—C9—H9 | 119.8 |
C1—C2—N1 | 120.6 (5) | C9—C10—C11 | 118.8 (6) |
C4—C3—C2 | 121.6 (6) | C9—C10—H10 | 120.6 |
C4—C3—H3 | 119.2 | C11—C10—H10 | 120.6 |
C2—C3—H3 | 119.2 | C10—C11—C12 | 120.8 (5) |
C3—C4—C5 | 119.9 (6) | C10—C11—H11 | 119.6 |
C3—C4—H4 | 120.1 | C12—C11—H11 | 119.6 |
C5—C4—H4 | 120.1 | C11—C12—C7 | 121.5 (5) |
C6—C5—C4 | 119.8 (6) | C11—C12—H12 | 119.3 |
C6—C5—H5 | 120.1 | C7—C12—H12 | 119.3 |
C4—C5—H5 | 120.1 | ||
C7—S1—N1—C2 | 83.9 (5) | C12—C7—C8—C9 | 1.0 (7) |
C6—C1—C2—C3 | 1.3 (8) | S1—C7—C8—C9 | 178.9 (4) |
I1—C1—C2—C3 | −179.0 (4) | C12—C7—C8—N2 | 180.0 (5) |
C6—C1—C2—N1 | −179.0 (5) | S1—C7—C8—N2 | −2.1 (7) |
I1—C1—C2—N1 | 0.8 (7) | O1—N2—C8—C9 | 170.0 (6) |
S1—N1—C2—C3 | −16.1 (8) | O2—N2—C8—C9 | −8.4 (8) |
S1—N1—C2—C1 | 164.2 (4) | O1—N2—C8—C7 | −9.0 (8) |
C1—C2—C3—C4 | −0.2 (9) | O2—N2—C8—C7 | 172.6 (6) |
N1—C2—C3—C4 | −179.9 (6) | C7—C8—C9—C10 | 1.0 (9) |
C2—C3—C4—C5 | −1.2 (10) | N2—C8—C9—C10 | −178.0 (5) |
C3—C4—C5—C6 | 1.4 (10) | C8—C9—C10—C11 | −2.5 (9) |
C4—C5—C6—C1 | −0.3 (9) | C9—C10—C11—C12 | 2.2 (9) |
C2—C1—C6—C5 | −1.0 (9) | C10—C11—C12—C7 | −0.3 (9) |
I1—C1—C6—C5 | 179.2 (5) | C8—C7—C12—C11 | −1.3 (7) |
N1—S1—C7—C12 | 1.6 (5) | S1—C7—C12—C11 | −179.3 (4) |
N1—S1—C7—C8 | −176.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O1i | 0.93 | 2.55 | 3.445 (10) | 161 |
Symmetry code: (i) −y+2/3, x−y−2/3, z−2/3. |
Experimental details
Crystal data | |
Chemical formula | C12H9IN2O2S |
Mr | 372.17 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 298 |
a, c (Å) | 28.6221 (12), 8.4062 (17) |
V (Å3) | 5963.9 (13) |
Z | 18 |
Radiation type | Mo Kα |
µ (mm−1) | 2.57 |
Crystal size (mm) | 0.47 × 0.32 × 0.20 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.380, 0.600 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11358, 3251, 2801 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.672 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.072, 0.205, 1.21 |
No. of reflections | 3251 |
No. of parameters | 166 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.087P)2 + 39.1076P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.04, −1.05 |
Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O1i | 0.93 | 2.55 | 3.445 (10) | 161 |
Symmetry code: (i) −y+2/3, x−y−2/3, z−2/3. |
Acknowledgements
This work was supported by a grant from the Universidad de Antofagasta (DI-1324–06). We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. AM and AR thank the Universidad de Antofagasta for PhD fellowships.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brito, I., López-Rodríguez, M., Vargas, D. & León, Y. (2006). Acta Cryst. E62, o914–o916. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brito, I., Vargas, D., León, Y., Cárdenas, A., López-Rodríguez, M. & Wittke, O. (2004). Acta Cryst. E60, o1668–o1670. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brito, I., Vargas, D., Reyes, A., Cárdenas, A. & López-Rodríguez, M. (2005). Acta Cryst. C61, o234–o236. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o95–o97. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kuhle, E. (1973). The Chemistry of the Sulfenic Acids, pp. 60–74. Stuttgart: G. Thieme. Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York; Academic Press. Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 257–264. Ithaca: Cornell University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sulfenamides are important compounds with versatile industrial applications (Kuhle, 1973). Bond polarization in sulfenamide derivatives, resulting from the difference in electronegativity between sulfur and nitrogen, activates the S—N bond for attack by both nucleophiles and electrophiles, and appears to be the factor primarily responsible for the chemistry of these compounds. The title compound, (I), is a positional isomer of 4-Iodo -N-(2-nitrophenylsulfanyl)-aniline (Glidewell et al.,2003) and shows excellent agreement with its bonding geometries. The title compound is the result of the condensation reaction of 2-nitrophenylsulfenyl choride and 1-iodoaniline. Its structure is described here as part of our work involving the study of the synthesis and structural characterization of divalent-sulfur compounds (Brito et al., 2004, 2005, 2006). A view of the molecular structure of (I) is given in Fig.1. In (I) the 1-Iodo-benzene fragment is connected by an –NH—S– linker unit to the 2-nitrophenyl fragment. It contains an N atom as a chiral center, though the material is a racemic mixture. The nitro group is rotated by 8.91 (3)°. The S—N distance of 1.696 (6)Å is shorter than a normal S—N single-bond length (1.74 Å, Pauling, 1960), but is normal for this type of structure, many of which have S—N single bonds in the range 1.63–1.68 Å as a result of the π character of the S—N bond. The C7/S1/N1 plane makes a dihedral angle of 84.0 (7) ° with the H1/N1/C2 plane, in good agreement with the values of ~90.0 ° for the torsional ground state of this type species. The molecules are linked into a double helical supramolecular architecture with only hydrogen bonding contributing to the double helical arrangement (Bernstein et al., 1995). Atom C10 and nitro atom O1 in the molecule at (x, y, z) act as hydrogen-bond donor and acceptor respectively, Fig.2, Table 1. There are no iodo-nitro, π-π and C—H··· π (arene) interactions.