metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1300-m1301

2,6-Di­amino­pyridinium bis­­(4-hy­droxy­pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)ferrate(III) dihydrate

aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran
*Correspondence e-mail: m_rafizadeh6@yahoo.com

(Received 20 August 2008; accepted 12 September 2008; online 20 September 2008)

The reaction of iron(II) sulfate hepta­hydrate with the proton-transfer compound (pydaH)(hypydcH) (pyda = pyridine-2,6-diamine; hypydcH2 = 4-hydroxy­pyridine-2,6-dicarboxylic acid) in an aqueous solution led to the formation of the title compound, (C5H8N3)[Fe(C7H3NO5)2]·2H2O. The anion is a six-coordinated complex with a distorted octa­hedral geometry around the FeIII atom. Extensive inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, involving the complex anion, (pydaH)+ counter-ion and two uncoordinated water mol­ecules, and ππ [centroid-to-centroid distance 3.323 (11) Å] and C—O⋯π [O–centroid distance 3.150 (15) Å] inter­actions connect the various components into a supra­molecular structure.

Related literature

For other complexes with pyridine­dicarboxylic acids, see: Rafizadeh et al. (2004[Rafizadeh, M., Ranjbar, M. & Amani, V. (2004). Acta Cryst. E60, m479-m481.], 2006[Rafizadeh, M., Mehrabi, B. & Amani, V. (2006). Acta Cryst. E62, m1332-m1334.], 2007a[Rafizadeh, M., Amani, V., Dehghan, L., Azadbakht, F. & Sahlolbei, E. (2007a). Acta Cryst. E63, m1841-m1842.],b[Rafizadeh, M., Amani, V. & Zahiri, S. (2007b). Acta Cryst. E63, m1938-m1939.]); Rafizadeh & Amani (2006[Rafizadeh, M. & Amani, V. (2006). Acta Cryst. E62, m90-m91.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H8N3)[Fe(C7H3NO5)2]·2H2O

  • Mr = 564.23

  • Monoclinic, P 21 /n

  • a = 6.9389 (4) Å

  • b = 20.8845 (12) Å

  • c = 14.9908 (8) Å

  • β = 96.371 (1)°

  • V = 2159.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 100 (2) K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.746, Tmax = 0.860

  • 33555 measured reflections

  • 8157 independent reflections

  • 5648 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.110

  • S = 1.02

  • 8157 reflections

  • 342 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—O3 2.0101 (13)
Fe1—O8 2.0135 (14)
Fe1—N2 2.0392 (15)
Fe1—O6 2.0413 (13)
Fe1—N1 2.0478 (14)
Fe1—O1 2.0544 (13)
O3—Fe1—O8 95.80 (6)
O3—Fe1—N2 107.52 (6)
O8—Fe1—N2 76.88 (6)
O3—Fe1—O6 91.49 (5)
O8—Fe1—O6 152.40 (5)
N2—Fe1—O6 75.54 (6)
O3—Fe1—N1 76.40 (5)
O8—Fe1—N1 105.50 (6)
N2—Fe1—N1 175.34 (6)
O6—Fe1—N1 102.08 (5)
O3—Fe1—O1 151.34 (5)
O8—Fe1—O1 94.61 (5)
N2—Fe1—O1 100.83 (5)
O6—Fe1—O1 91.53 (5)
N1—Fe1—O1 75.10 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2i 0.92 2.00 2.8431 (19) 152
N4—H4NA⋯O2Wii 0.92 2.04 2.957 (2) 173
N4—H4NB⋯O3 0.92 2.33 3.139 (2) 147
O5—H5⋯O1W 0.85 1.74 2.566 (2) 164
O10—H10⋯O2W 0.85 1.80 2.614 (2) 159
N5—H5NA⋯O2i 0.92 1.98 2.800 (2) 148
N5—H5NB⋯O6iii 0.92 1.96 2.832 (2) 157
O1W—H1WA⋯O7iv 0.85 1.98 2.826 (2) 173
O1W—H1WB⋯O4ii 0.85 2.05 2.877 (2) 166
O2W—H2WA⋯O1v 0.85 1.88 2.716 (2) 168
O2W—H2WB⋯O9vi 0.85 1.87 2.709 (2) 168
C16—H16A⋯O3 0.95 2.55 3.323 (2) 139
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x, -y, -z; (vi) -x-1, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Noncovalent interactions including hydrogen bonding, ion pairing, hydrophobic or hydrophilic and donor–acceptor interactions play a key role in chemical, catalytic and biochemical processes, as well as supramolecular chemistry and crystal engineering. Our research group has recently focused on synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes. We have reported some complexes with pyridinedicarboxylic acids (Rafizadeh et al., 2004, 2006, 2007a,b; Rafizadeh & Amani, 2006).

In the title compound (Fig. 1), the FeIII atom has a distorted octahedral geometry. The bond angles (Table 1) and the torsion angles O6—Fe1—O1—C1 [100.80 (13)°], O1—Fe1—O6—C8 [103.59 (13)°], O8—Fe1—O3—C7 [104.38 (13)°] and O3—Fe1—O8—C14 [106.46 (14)°] indicate that two dianionic hypydc ligands are almost perpendicular to each other. In this work we used FeII ions as starting material. Most probably during the synthesis process, FeII was oxidized into FeIII. There are a large number of O—H···O, N—H···O and C—H···O hydrogen bonds between the cations, anions and water molecules (Table 2). Considerable ππ interaction [centroid–centroid distance = 3.323 (11) Å] between the cation and anion, and C—O···π interaction [O–centroid distance = 3.150 (15) Å] between two anions are observed (Fig. 2). Hydrogen bonds, ππ and C—O···π interactions result in the formation of a supramolecular structure (Fig. 3).

Related literature top

For other complexes with

pyridinedicarboxylic acids, see: Rafizadeh et al. (2004, 2006, 2007a,b); Rafizadeh & Amani (2006).

Experimental top

The reaction of FeSO4.7H2O (0.139 g, 0.5 mmol) in water (20 ml) with (pydaH)(hypydcH) (0.264 g, 1.0 mmol) in water (20 ml) gave colorless crystal of the title compound. Crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent at room temperature.

Refinement top

H atoms attached to O and N atoms and water molecules are located from difference Fourier maps and refined isotropically with their coordinates fixed. H atoms on C atoms were positioned geometrically and refined in riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ Stacking interaction (Cg5···Cg7i) and and C—O···π interaction (C1—O2···Cg5ii) in the title compound. [Cg5: N1/C2–C6, Cg7: N3/C15–C19. Symmetry codes: (i) 1/2 + x, 1/2 - y, 1/2 + z; (ii) -x, -y, 1 - z.]
[Figure 3] Fig. 3. Crystal packing of the title compound. Hydrogen bonds are shown by dashed lines.
2,6-Diaminopyridinium bis(4-hydroxypyridine-2,6-dicarboxylato- κ3O2,N,O6)ferrate(III) dihydrate top
Crystal data top
(C5H8N3)[Fe(C7H3NO5)2]·2H2OF(000) = 1156
Mr = 564.23Dx = 1.736 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4719 reflections
a = 6.9389 (4) Åθ = 2.4–31.9°
b = 20.8845 (12) ŵ = 0.78 mm1
c = 14.9908 (8) ÅT = 100 K
β = 96.371 (1)°Prism, colourless
V = 2159.0 (2) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8157 independent reflections
Radiation source: fine-focus sealed tube5648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 33.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.746, Tmax = 0.860k = 3132
33555 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.6357P]
where P = (Fo2 + 2Fc2)/3
8157 reflections(Δ/σ)max = 0.001
342 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
(C5H8N3)[Fe(C7H3NO5)2]·2H2OV = 2159.0 (2) Å3
Mr = 564.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9389 (4) ŵ = 0.78 mm1
b = 20.8845 (12) ÅT = 100 K
c = 14.9908 (8) Å0.40 × 0.40 × 0.20 mm
β = 96.371 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8157 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5648 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.860Rint = 0.073
33555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
8157 reflectionsΔρmin = 0.61 e Å3
342 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.03345 (4)0.098201 (12)0.291874 (16)0.01147 (7)
O10.18095 (19)0.01628 (6)0.33338 (8)0.0138 (3)
O20.31460 (19)0.04217 (6)0.44867 (9)0.0154 (3)
O30.08559 (19)0.18304 (6)0.31759 (8)0.0147 (3)
O40.1601 (2)0.25261 (6)0.42183 (9)0.0164 (3)
O50.1267 (2)0.11113 (7)0.70162 (8)0.0179 (3)
H50.09290.14860.71560.041 (8)*
N10.0599 (2)0.10213 (7)0.42918 (9)0.0104 (3)
C10.2245 (3)0.00489 (8)0.41778 (12)0.0119 (3)
C20.1537 (3)0.05567 (8)0.47787 (11)0.0105 (3)
C30.1796 (3)0.05772 (8)0.56992 (11)0.0120 (3)
H3A0.24700.02460.60370.014*
C40.1027 (3)0.11076 (8)0.61299 (12)0.0120 (3)
C50.0084 (3)0.15997 (8)0.56065 (12)0.0119 (3)
H5A0.04220.19650.58790.014*
C60.0080 (3)0.15336 (8)0.46877 (11)0.0110 (3)
C70.0940 (3)0.20139 (9)0.39982 (12)0.0128 (3)
O60.28312 (19)0.14151 (6)0.26334 (8)0.0149 (3)
O70.4605 (2)0.17585 (7)0.15648 (9)0.0187 (3)
O80.2194 (2)0.05293 (6)0.25578 (8)0.0158 (3)
O90.4188 (2)0.01213 (7)0.14115 (9)0.0205 (3)
O100.0042 (2)0.09000 (7)0.11598 (9)0.0201 (3)
H100.11920.07950.13610.039 (8)*
N20.0277 (2)0.09017 (7)0.15604 (10)0.0117 (3)
C80.3215 (3)0.14715 (9)0.18084 (12)0.0133 (3)
C90.1707 (3)0.11574 (8)0.11447 (12)0.0120 (3)
C100.1645 (3)0.11537 (9)0.02270 (12)0.0142 (3)
H10A0.26770.13280.00630.017*
C110.0007 (3)0.08840 (9)0.02725 (12)0.0146 (4)
C120.1484 (3)0.06195 (9)0.01761 (12)0.0140 (3)
H12A0.25960.04320.01480.017*
C130.1279 (3)0.06408 (9)0.11011 (12)0.0129 (3)
C140.2708 (3)0.04000 (9)0.17213 (12)0.0144 (3)
N30.0302 (2)0.33319 (7)0.07019 (10)0.0133 (3)
H3N0.09210.37140.08440.028 (7)*
N40.0433 (3)0.30671 (8)0.22110 (11)0.0195 (3)
H4NA0.09140.34650.23800.045 (8)*
H4NB0.00550.28360.26580.051 (9)*
N50.0395 (2)0.36729 (8)0.07645 (10)0.0154 (3)
H5NA0.09370.40510.05430.029 (7)*
H5NB0.01260.36600.13560.050 (9)*
C150.0200 (3)0.29254 (9)0.13517 (12)0.0140 (3)
C160.1329 (3)0.23951 (9)0.10904 (13)0.0160 (4)
H16A0.17340.21090.15260.019*
C170.1855 (3)0.22903 (9)0.01850 (13)0.0164 (4)
H17A0.26380.19290.00060.020*
C180.1282 (3)0.26914 (9)0.04682 (13)0.0151 (4)
H18A0.16150.26010.10870.018*
C190.01989 (16)0.32341 (5)0.01954 (7)0.0129 (3)
O1W0.05579 (16)0.21932 (5)0.77225 (7)0.0176 (3)
H1WA0.03590.25250.73960.042 (8)*
H1WB0.14580.22090.81550.057 (10)*
O2W0.3280 (2)0.06443 (7)0.21595 (9)0.0173 (3)
H2WA0.29770.03930.25670.045 (8)*
H2WB0.42030.04400.19610.066 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01484 (13)0.01232 (12)0.00737 (11)0.00036 (10)0.00172 (9)0.00067 (9)
O10.0191 (7)0.0131 (6)0.0095 (6)0.0017 (5)0.0023 (5)0.0006 (5)
O20.0174 (7)0.0130 (6)0.0155 (6)0.0031 (5)0.0001 (5)0.0004 (5)
O30.0197 (7)0.0144 (6)0.0101 (6)0.0022 (5)0.0022 (5)0.0020 (5)
O40.0204 (7)0.0131 (6)0.0153 (6)0.0033 (5)0.0006 (5)0.0005 (5)
O50.0292 (8)0.0171 (7)0.0073 (6)0.0023 (6)0.0018 (5)0.0009 (5)
N10.0120 (7)0.0103 (7)0.0089 (6)0.0010 (5)0.0013 (5)0.0004 (5)
C10.0124 (8)0.0108 (8)0.0129 (8)0.0026 (6)0.0026 (6)0.0005 (6)
C20.0115 (8)0.0097 (8)0.0103 (8)0.0015 (6)0.0016 (6)0.0010 (6)
C30.0135 (8)0.0110 (8)0.0113 (8)0.0023 (6)0.0010 (6)0.0026 (6)
C40.0130 (8)0.0130 (8)0.0099 (7)0.0021 (6)0.0006 (6)0.0007 (6)
C50.0137 (8)0.0106 (8)0.0119 (8)0.0021 (6)0.0032 (6)0.0004 (6)
C60.0111 (8)0.0113 (8)0.0107 (8)0.0006 (6)0.0016 (6)0.0010 (6)
C70.0131 (8)0.0130 (8)0.0124 (8)0.0009 (7)0.0023 (6)0.0000 (6)
O60.0163 (7)0.0183 (7)0.0099 (6)0.0033 (5)0.0011 (5)0.0001 (5)
O70.0185 (7)0.0222 (7)0.0157 (6)0.0068 (6)0.0034 (5)0.0009 (5)
O80.0178 (7)0.0201 (7)0.0099 (6)0.0022 (5)0.0024 (5)0.0018 (5)
O90.0177 (7)0.0250 (8)0.0184 (7)0.0080 (6)0.0001 (5)0.0000 (6)
O100.0235 (8)0.0282 (8)0.0083 (6)0.0037 (6)0.0009 (5)0.0014 (5)
N20.0138 (7)0.0113 (7)0.0101 (7)0.0003 (6)0.0013 (5)0.0008 (5)
C80.0163 (9)0.0120 (8)0.0114 (8)0.0002 (7)0.0006 (6)0.0005 (6)
C90.0140 (8)0.0109 (8)0.0116 (8)0.0003 (6)0.0035 (6)0.0005 (6)
C100.0181 (9)0.0140 (8)0.0110 (8)0.0009 (7)0.0041 (7)0.0008 (6)
C110.0208 (9)0.0130 (8)0.0102 (8)0.0013 (7)0.0024 (7)0.0011 (6)
C120.0172 (9)0.0127 (8)0.0117 (8)0.0010 (7)0.0011 (7)0.0008 (6)
C130.0158 (9)0.0107 (8)0.0124 (8)0.0005 (7)0.0022 (7)0.0001 (6)
C140.0156 (9)0.0138 (8)0.0137 (8)0.0003 (7)0.0010 (7)0.0020 (6)
N30.0132 (7)0.0133 (7)0.0132 (7)0.0000 (6)0.0012 (6)0.0014 (6)
N40.0245 (9)0.0203 (9)0.0135 (8)0.0020 (7)0.0012 (6)0.0044 (6)
N50.0178 (8)0.0167 (8)0.0114 (7)0.0017 (6)0.0010 (6)0.0002 (6)
C150.0133 (9)0.0142 (8)0.0147 (8)0.0019 (7)0.0025 (7)0.0027 (7)
C160.0158 (9)0.0126 (8)0.0201 (9)0.0023 (7)0.0034 (7)0.0036 (7)
C170.0144 (9)0.0114 (8)0.0234 (10)0.0019 (7)0.0020 (7)0.0021 (7)
C180.0153 (9)0.0146 (9)0.0155 (8)0.0020 (7)0.0023 (7)0.0023 (7)
C190.0108 (8)0.0153 (8)0.0128 (8)0.0037 (7)0.0021 (6)0.0002 (6)
O1W0.0221 (7)0.0167 (7)0.0134 (6)0.0014 (6)0.0011 (5)0.0008 (5)
O2W0.0201 (7)0.0194 (7)0.0129 (6)0.0013 (6)0.0041 (5)0.0039 (5)
Geometric parameters (Å, º) top
Fe1—O32.0101 (13)N2—C91.340 (2)
Fe1—O82.0135 (14)C8—C91.511 (3)
Fe1—N22.0392 (15)C9—C101.372 (2)
Fe1—O62.0413 (13)C10—C111.407 (3)
Fe1—N12.0478 (14)C10—H10A0.9500
Fe1—O12.0544 (13)C11—C121.408 (3)
O1—C11.290 (2)C12—C131.379 (2)
O2—C11.227 (2)C12—H12A0.9500
O3—C71.298 (2)C13—C141.518 (3)
O4—C71.224 (2)N3—C151.366 (2)
O5—C41.321 (2)N3—C191.3668 (18)
O5—H50.8501N3—H3N0.9200
N1—C61.335 (2)N4—C151.347 (2)
N1—C21.339 (2)N4—H4NA0.9200
C1—C21.509 (2)N4—H4NB0.9200
C2—C31.372 (2)N5—C191.3475 (19)
C3—C41.416 (2)N5—H5NA0.9200
C3—H3A0.9500N5—H5NB0.9199
C4—C51.409 (2)C15—C161.388 (3)
C5—C61.376 (2)C16—C171.383 (3)
C5—H5A0.9500C16—H16A0.9500
C6—C71.514 (2)C17—C181.380 (3)
O6—C81.299 (2)C17—H17A0.9500
O7—C81.225 (2)C18—C191.396 (2)
O8—C141.294 (2)C18—H18A0.9500
O9—C141.226 (2)O1W—H1WA0.8499
O10—C111.327 (2)O1W—H1WB0.8500
O10—H100.8500O2W—H2WA0.8500
N2—C131.331 (2)O2W—H2WB0.8499
O3—Fe1—O895.80 (6)O7—C8—O6125.40 (17)
O3—Fe1—N2107.52 (6)O7—C8—C9121.77 (16)
O8—Fe1—N276.88 (6)O6—C8—C9112.80 (15)
O3—Fe1—O691.49 (5)N2—C9—C10121.45 (17)
O8—Fe1—O6152.40 (5)N2—C9—C8111.18 (15)
N2—Fe1—O675.54 (6)C10—C9—C8127.24 (16)
O3—Fe1—N176.40 (5)C9—C10—C11117.99 (17)
O8—Fe1—N1105.50 (6)C9—C10—H10A121.0
N2—Fe1—N1175.34 (6)C11—C10—H10A121.0
O6—Fe1—N1102.08 (5)O10—C11—C10116.88 (17)
O3—Fe1—O1151.34 (5)O10—C11—C12123.40 (17)
O8—Fe1—O194.61 (5)C10—C11—C12119.72 (16)
N2—Fe1—O1100.83 (5)C13—C12—C11117.96 (17)
O6—Fe1—O191.53 (5)C13—C12—H12A121.0
N1—Fe1—O175.10 (5)C11—C12—H12A121.0
C1—O1—Fe1120.35 (11)N2—C13—C12121.36 (17)
C7—O3—Fe1120.33 (11)N2—C13—C14111.48 (15)
C4—O5—H5104.2C12—C13—C14127.15 (17)
C6—N1—C2120.86 (15)O9—C14—O8126.56 (17)
C6—N1—Fe1118.84 (12)O9—C14—C13120.12 (16)
C2—N1—Fe1120.19 (12)O8—C14—C13113.32 (16)
O2—C1—O1124.88 (16)C15—N3—C19123.48 (15)
O2—C1—C2121.58 (16)C15—N3—H3N121.5
O1—C1—C2113.54 (15)C19—N3—H3N114.8
N1—C2—C3121.80 (16)C15—N4—H4NA122.1
N1—C2—C1110.79 (14)C15—N4—H4NB118.2
C3—C2—C1127.40 (16)H4NA—N4—H4NB115.2
C2—C3—C4117.97 (16)C19—N5—H5NA119.7
C2—C3—H3A121.0C19—N5—H5NB118.4
C4—C3—H3A121.0H5NA—N5—H5NB118.3
O5—C4—C5123.70 (16)N4—C15—N3117.61 (17)
O5—C4—C3116.84 (16)N4—C15—C16124.00 (17)
C5—C4—C3119.46 (16)N3—C15—C16118.39 (17)
C6—C5—C4117.76 (16)C17—C16—C15118.84 (17)
C6—C5—H5A121.1C17—C16—H16A120.6
C4—C5—H5A121.1C15—C16—H16A120.6
N1—C6—C5122.10 (16)C18—C17—C16122.33 (18)
N1—C6—C7111.05 (14)C18—C17—H17A118.8
C5—C6—C7126.81 (16)C16—C17—H17A118.8
O4—C7—O3124.87 (17)C17—C18—C19118.23 (16)
O4—C7—C6121.74 (16)C17—C18—H18A120.9
O3—C7—C6113.38 (15)C19—C18—H18A120.9
C8—O6—Fe1120.52 (12)N5—C19—N3117.33 (12)
C14—O8—Fe1119.79 (12)N5—C19—C18124.01 (13)
C11—O10—H10105.5N3—C19—C18118.66 (13)
C13—N2—C9121.52 (15)H1WA—O1W—H1WB117.8
C13—N2—Fe1118.37 (12)H2WA—O2W—H2WB101.4
C9—N2—Fe1119.87 (12)
O3—Fe1—O1—C14.9 (2)O3—Fe1—O8—C14106.46 (14)
O8—Fe1—O1—C1106.13 (13)N2—Fe1—O8—C140.21 (13)
N2—Fe1—O1—C1176.37 (13)O6—Fe1—O8—C141.9 (2)
O6—Fe1—O1—C1100.80 (13)N1—Fe1—O8—C14176.08 (13)
N1—Fe1—O1—C11.29 (13)O1—Fe1—O8—C14100.28 (14)
O8—Fe1—O3—C7104.38 (13)O3—Fe1—N2—C1389.32 (14)
N2—Fe1—O3—C7177.58 (13)O8—Fe1—N2—C132.70 (13)
O6—Fe1—O3—C7102.28 (13)O6—Fe1—N2—C13176.26 (14)
N1—Fe1—O3—C70.21 (13)O1—Fe1—N2—C1394.96 (14)
O1—Fe1—O3—C76.4 (2)O3—Fe1—N2—C985.10 (14)
O3—Fe1—N1—C60.52 (13)O8—Fe1—N2—C9177.12 (15)
O8—Fe1—N1—C691.82 (14)O6—Fe1—N2—C91.85 (13)
O6—Fe1—N1—C689.12 (14)O1—Fe1—N2—C990.63 (14)
O1—Fe1—N1—C6177.47 (14)Fe1—O6—C8—O7175.02 (15)
O3—Fe1—N1—C2175.72 (14)Fe1—O6—C8—C93.1 (2)
O8—Fe1—N1—C291.94 (14)C13—N2—C9—C100.9 (3)
O6—Fe1—N1—C287.13 (14)Fe1—N2—C9—C10175.18 (13)
O1—Fe1—N1—C21.22 (13)C13—N2—C9—C8175.08 (16)
Fe1—O1—C1—O2178.87 (14)Fe1—N2—C9—C80.8 (2)
Fe1—O1—C1—C21.16 (19)O7—C8—C9—N2176.81 (17)
C6—N1—C2—C31.7 (3)O6—C8—C9—N21.4 (2)
Fe1—N1—C2—C3177.91 (13)O7—C8—C9—C101.1 (3)
C6—N1—C2—C1177.17 (15)O6—C8—C9—C10177.16 (17)
Fe1—N1—C2—C11.00 (19)N2—C9—C10—C111.3 (3)
O2—C1—C2—N1179.93 (16)C8—C9—C10—C11174.01 (17)
O1—C1—C2—N10.1 (2)C9—C10—C11—C121.1 (3)
O2—C1—C2—C31.1 (3)O10—C11—C12—C13178.96 (17)
O1—C1—C2—C3178.93 (17)C10—C11—C12—C130.5 (3)
N1—C2—C3—C40.3 (3)C9—N2—C13—C120.3 (3)
C1—C2—C3—C4179.06 (17)Fe1—N2—C13—C12174.63 (13)
C2—C3—C4—O5178.92 (16)C9—N2—C13—C14178.61 (16)
C2—C3—C4—C51.8 (3)Fe1—N2—C13—C144.3 (2)
O5—C4—C5—C6179.53 (17)C11—C12—C13—N20.1 (3)
C3—C4—C5—C61.3 (3)C11—C12—C13—C14178.62 (17)
C2—N1—C6—C52.4 (3)Fe1—O8—C14—O9179.03 (15)
Fe1—N1—C6—C5178.57 (13)Fe1—O8—C14—C131.9 (2)
C2—N1—C6—C7175.52 (15)N2—C13—C14—O9176.93 (17)
Fe1—N1—C6—C70.69 (19)C12—C13—C14—O94.2 (3)
C4—C5—C6—N10.8 (3)N2—C13—C14—O83.9 (2)
C4—C5—C6—C7176.72 (17)C12—C13—C14—O8174.90 (18)
Fe1—O3—C7—O4178.48 (14)C19—N3—C15—N4178.12 (15)
Fe1—O3—C7—C60.1 (2)C19—N3—C15—C162.1 (3)
N1—C6—C7—O4178.12 (17)N4—C15—C16—C17178.46 (18)
C5—C6—C7—O40.4 (3)N3—C15—C16—C171.7 (3)
N1—C6—C7—O30.5 (2)C15—C16—C17—C180.6 (3)
C5—C6—C7—O3178.25 (17)C16—C17—C18—C192.6 (3)
O3—Fe1—O6—C8104.91 (13)C15—N3—C19—N5179.87 (16)
O8—Fe1—O6—C80.6 (2)C15—N3—C19—C180.0 (2)
N2—Fe1—O6—C82.80 (13)C17—C18—C19—N5177.84 (16)
N1—Fe1—O6—C8178.68 (13)C17—C18—C19—N32.3 (2)
O1—Fe1—O6—C8103.59 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.922.002.8431 (19)152
N4—H4NA···O2Wii0.922.042.957 (2)173
N4—H4NB···O30.922.333.139 (2)147
O5—H5···O1W0.851.742.566 (2)164
O10—H10···O2W0.851.802.614 (2)159
N5—H5NA···O2i0.921.982.800 (2)148
N5—H5NB···O6iii0.921.962.832 (2)157
O1W—H1WA···O7iv0.851.982.826 (2)173
O1W—H1WB···O4ii0.852.052.877 (2)166
O2W—H2WA···O1v0.851.882.716 (2)168
O2W—H2WB···O9vi0.851.872.709 (2)168
C16—H16A···O30.952.553.323 (2)139
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1/2; (v) x, y, z; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula(C5H8N3)[Fe(C7H3NO5)2]·2H2O
Mr564.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.9389 (4), 20.8845 (12), 14.9908 (8)
β (°) 96.371 (1)
V3)2159.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.746, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
33555, 8157, 5648
Rint0.073
(sin θ/λ)max1)0.768
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.110, 1.02
No. of reflections8157
No. of parameters342
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.61

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Fe1—O32.0101 (13)Fe1—O62.0413 (13)
Fe1—O82.0135 (14)Fe1—N12.0478 (14)
Fe1—N22.0392 (15)Fe1—O12.0544 (13)
O3—Fe1—O895.80 (6)N2—Fe1—N1175.34 (6)
O3—Fe1—N2107.52 (6)O6—Fe1—N1102.08 (5)
O8—Fe1—N276.88 (6)O3—Fe1—O1151.34 (5)
O3—Fe1—O691.49 (5)O8—Fe1—O194.61 (5)
O8—Fe1—O6152.40 (5)N2—Fe1—O1100.83 (5)
N2—Fe1—O675.54 (6)O6—Fe1—O191.53 (5)
O3—Fe1—N176.40 (5)N1—Fe1—O175.10 (5)
O8—Fe1—N1105.50 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.922.002.8431 (19)152
N4—H4NA···O2Wii0.922.042.957 (2)173
N4—H4NB···O30.922.333.139 (2)147
O5—H5···O1W0.851.742.566 (2)164
O10—H10···O2W0.851.802.614 (2)159
N5—H5NA···O2i0.921.982.800 (2)148
N5—H5NB···O6iii0.921.962.832 (2)157
O1W—H1WA···O7iv0.851.982.826 (2)173
O1W—H1WB···O4ii0.852.052.877 (2)166
O2W—H2WA···O1v0.851.882.716 (2)168
O2W—H2WB···O9vi0.851.872.709 (2)168
C16—H16A···O30.952.553.323 (2)139
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1/2; (v) x, y, z; (vi) x1, y, z.
 

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRafizadeh, M. & Amani, V. (2006). Acta Cryst. E62, m90–m91.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRafizadeh, M., Amani, V., Dehghan, L., Azadbakht, F. & Sahlolbei, E. (2007a). Acta Cryst. E63, m1841–m1842.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRafizadeh, M., Amani, V. & Zahiri, S. (2007b). Acta Cryst. E63, m1938–m1939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRafizadeh, M., Mehrabi, B. & Amani, V. (2006). Acta Cryst. E62, m1332–m1334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRafizadeh, M., Ranjbar, M. & Amani, V. (2004). Acta Cryst. E60, m479–m481.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1300-m1301
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds