metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ1,1-azido-bis­­[azido­(5,5′-di­methyl-2,2′-bi­pyridine)nickel(II)]

aDepartment of Chemistry and Chemical Engineering, South-East University, Nanjing 211189, and Nantong Entry–Exit Inspection and Quarantine Bureau, Nantong 226005, People's Republic of China
*Correspondence e-mail: jinhou_jinhou@yahoo.com.cn

(Received 7 November 2008; accepted 14 November 2008; online 20 November 2008)

In the title azide-bridged dinuclear centrosymmetric nickel(II) complex, [Ni2(N3)4(C12H12N2)2], the NiII atom is five-coordinated by two N atoms of the 5,5′-dimethyl-2,2′-bipyridine ligand and three N atoms from three azide ligands in a distorted trigonal–bipyramidal geometry. The Ni⋯Ni distance is 3.2398 (12) Å.

Related literature

For general background, see: Abramo et al. (2002[Abramo, G. P., Li, L. & Marks, T. J. (2002). J. Am. Chem. Soc. 124, 13966-13967.]); Dey et al. (2007[Dey, S. K., Abedin, T. S. M., Dawe, L. N., Tandon, S. S., Collins, J. L., Thompson, L. K., Postnikov, A. V., Alam, M. S. & Muller, P. (2007). Inorg. Chem. 46, 7767-7781.]); Jiang et al. (2005[Jiang, Y.-B., Kou, H.-Z., Wang, R.-J., Cui, A.-L. & Ribas, J. (2005). Inorg. Chem. 44, 709-715.]). For related structures, see: Fu et al. (2005[Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1897-m1899.]); Song et al. (2007[Song, W.-C., Zhang, M.-J., Tao, Y. & Li, J.-R. (2007). Acta Cryst. E63, m3062.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(N3)4(C12H12N2)2]

  • Mr = 654.01

  • Monoclinic, P 21 /n

  • a = 7.938 (2) Å

  • b = 15.067 (3) Å

  • c = 11.755 (2) Å

  • β = 91.650 (2)°

  • V = 1405.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 298 (2) K

  • 0.13 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.840, Tmax = 0.897

  • 11588 measured reflections

  • 3060 independent reflections

  • 2165 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.149

  • S = 1.03

  • 3060 reflections

  • 192 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.145 (4)
Ni1—N2 2.081 (4)
Ni1—N3 2.064 (5)
Ni1—N6 2.041 (4)
Ni1—N6i 2.175 (4)
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polynuclear complexes play an important role in many fields, such as catalysis and magnetism (Dey et al., 2007; Jiang et al., 2005; Abramo et al., 2002). The main strategy for the design of the polynuclear complexes is to use suitable bridging ligands. In this paper, we report the synthesis and molecular structure of the title azide-bridged dinuclear nickel(II) complex derived from 5,5'-dimethyl-[2,2']bipyridine.

The molecule of the title complex is located on a crystallographic centre of inversion (Fig. 1). The complex contains two NiL (L is 5,5'-dimethyl-[2,2']bipyridine) units connected to each other by two bridging azide ligands. The NiII atom in the complex is five-coordinated by two N atoms of 5,5'-dimethyl-[2,2']bipyridine ligand and by three N atoms from three azide ligands in a trigonal-bipyramidal geometry. The bond lengths subtended at the metal center are within normal ranges (Song et al., 2007; Fu et al., 2005). The Ni···Ni distance is 3.2398 (12) Å.

Related literature top

For general background, see: Abramo et al. (2002); Dey et al. (2007); Jiang et al. (2005). For related structures, see: Fu et al. (2005); Song et al. (2007).

Experimental top

5,5'-Dimethyl-[2,2']bipyridine (2 mmol, 368.3 mg), sodium azide (4 mmol, 261.2 mg) and nickel acetate tetrahydrate (2 mmol, 497.8 mg) were dissolved in methanol (100 ml). The mixture was stirred for 30 min at room temperature to give a green solution. The solution was kept still in air for a week, green block-shaped crystals of the title complex were formed.

Refinement top

H atoms were positioned geometrically (C–H = 0.93-0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). The displacement ellipsoids of atoms N4 and N5 are extremely elongated and hence the Uij parameters of these atoms were restrained to an approximate isotropic behaviour. The distance between atoms N3 and N4 was restrained to 1.23 (1) Å and that between atoms N4 and N5 was restrained to 1.13 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Di-µ1,1-azido-bis[azido(5,5'-dimethyl-2,2'-bipyridine)nickel(II)] top
Crystal data top
[Ni2(N3)4(C12H12N2)2]F(000) = 672
Mr = 654.01Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1576 reflections
a = 7.938 (2) Åθ = 2.3–25.1°
b = 15.067 (3) ŵ = 1.39 mm1
c = 11.755 (2) ÅT = 298 K
β = 91.650 (2)°Block, green
V = 1405.3 (5) Å30.13 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3060 independent reflections
Radiation source: fine-focus sealed tube2165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scanθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.840, Tmax = 0.897k = 1919
11588 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0643P)2 + 1.1062P]
where P = (Fo2 + 2Fc2)/3
3060 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.67 e Å3
14 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Ni2(N3)4(C12H12N2)2]V = 1405.3 (5) Å3
Mr = 654.01Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.938 (2) ŵ = 1.39 mm1
b = 15.067 (3) ÅT = 298 K
c = 11.755 (2) Å0.13 × 0.10 × 0.08 mm
β = 91.650 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3060 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2165 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.897Rint = 0.063
11588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05614 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.03Δρmax = 0.67 e Å3
3060 reflectionsΔρmin = 0.77 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.03235 (7)0.44079 (4)0.11356 (5)0.0386 (2)
N10.2280 (5)0.3549 (3)0.1785 (4)0.0491 (10)
N20.0777 (5)0.3158 (3)0.0994 (3)0.0416 (9)
N30.0029 (5)0.5108 (3)0.2626 (4)0.0459 (11)
N40.0958 (8)0.5106 (4)0.3252 (5)0.0857 (18)
N50.1983 (12)0.5160 (6)0.4040 (7)0.144 (3)
N60.1668 (5)0.4913 (3)0.0170 (4)0.0583 (12)
N70.2901 (6)0.4579 (3)0.0571 (4)0.0594 (12)
N80.4096 (8)0.4282 (4)0.0950 (6)0.094 (2)
C10.1794 (6)0.2706 (3)0.1926 (4)0.0445 (11)
C20.2820 (7)0.2113 (4)0.2525 (5)0.0573 (14)
H20.24750.15290.26280.069*
C30.4356 (7)0.2398 (4)0.2967 (5)0.0632 (16)
H30.50570.20000.33570.076*
C40.4857 (6)0.3259 (4)0.2836 (5)0.0575 (14)
C50.3771 (6)0.3811 (4)0.2219 (5)0.0570 (14)
H50.41000.43960.21020.068*
C60.6485 (7)0.3623 (5)0.3348 (5)0.085 (2)
H6A0.62890.38470.40970.128*
H6B0.68860.40950.28780.128*
H6C0.73120.31590.33930.128*
C70.0139 (6)0.2474 (3)0.1428 (4)0.0442 (12)
C80.0506 (7)0.1625 (4)0.1383 (5)0.0626 (15)
H80.01270.11550.16800.075*
C90.2070 (8)0.1468 (4)0.0904 (5)0.0652 (16)
H90.25010.08940.08930.078*
C100.3023 (6)0.2160 (4)0.0433 (5)0.0530 (13)
C110.2308 (6)0.2993 (3)0.0520 (4)0.0477 (12)
H110.29250.34720.02330.057*
C120.4711 (7)0.2026 (4)0.0126 (5)0.0657 (16)
H12A0.54900.18240.04270.098*
H12B0.46290.15910.07190.098*
H12C0.51030.25770.04480.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0339 (3)0.0328 (3)0.0487 (4)0.0009 (3)0.0026 (2)0.0057 (3)
N10.039 (2)0.048 (3)0.060 (3)0.0018 (19)0.003 (2)0.004 (2)
N20.039 (2)0.040 (2)0.046 (2)0.0000 (17)0.0016 (18)0.0013 (17)
N30.035 (2)0.036 (2)0.067 (3)0.0025 (18)0.006 (2)0.012 (2)
N40.119 (5)0.043 (3)0.097 (5)0.001 (4)0.045 (4)0.006 (3)
N50.165 (7)0.149 (6)0.115 (6)0.004 (6)0.029 (5)0.002 (5)
N60.038 (2)0.066 (3)0.072 (3)0.010 (2)0.005 (2)0.021 (2)
N70.051 (3)0.056 (3)0.070 (3)0.005 (2)0.002 (2)0.016 (2)
N80.071 (4)0.105 (5)0.108 (5)0.037 (3)0.020 (3)0.011 (4)
C10.048 (3)0.043 (3)0.043 (3)0.009 (2)0.004 (2)0.001 (2)
C20.065 (4)0.048 (3)0.058 (3)0.010 (3)0.002 (3)0.002 (3)
C30.058 (4)0.084 (4)0.047 (3)0.025 (3)0.009 (3)0.004 (3)
C40.041 (3)0.080 (4)0.051 (3)0.008 (3)0.001 (2)0.001 (3)
C50.044 (3)0.064 (4)0.063 (4)0.003 (3)0.001 (3)0.002 (3)
C60.049 (3)0.131 (7)0.074 (4)0.001 (4)0.014 (3)0.003 (4)
C70.049 (3)0.038 (3)0.046 (3)0.003 (2)0.004 (2)0.001 (2)
C80.060 (4)0.047 (3)0.080 (4)0.003 (3)0.002 (3)0.013 (3)
C90.067 (4)0.047 (3)0.081 (4)0.016 (3)0.001 (3)0.004 (3)
C100.049 (3)0.056 (3)0.054 (3)0.008 (3)0.006 (2)0.004 (3)
C110.045 (3)0.047 (3)0.050 (3)0.001 (2)0.001 (2)0.002 (2)
C120.054 (3)0.075 (4)0.068 (4)0.020 (3)0.002 (3)0.009 (3)
Geometric parameters (Å, º) top
Ni1—N12.145 (4)C3—H30.93
Ni1—N22.081 (4)C4—C51.387 (7)
Ni1—N32.064 (5)C4—C61.512 (8)
Ni1—N62.041 (4)C5—H50.93
Ni1—N6i2.175 (4)C6—H6A0.96
N1—C51.336 (6)C6—H6B0.96
N1—C11.339 (6)C6—H6C0.96
N2—C111.345 (6)C7—C81.379 (7)
N2—C71.352 (6)C8—C91.369 (8)
N3—N41.027 (6)C8—H80.93
N4—N51.217 (7)C9—C101.394 (8)
N6—N71.209 (6)C9—H90.93
N6—Ni1i2.175 (4)C10—C111.380 (7)
N7—N81.149 (7)C10—C121.489 (7)
C1—C21.387 (7)C11—H110.93
C1—C71.465 (7)C12—H12A0.96
C2—C31.380 (8)C12—H12B0.96
C2—H20.93C12—H12C0.96
C3—C41.367 (8)
N6—Ni1—N3121.5 (2)C3—C4—C6123.2 (5)
N6—Ni1—N2120.32 (18)C5—C4—C6120.1 (6)
N3—Ni1—N2118.23 (17)N1—C5—C4123.5 (5)
N6—Ni1—N195.97 (17)N1—C5—H5118.2
N3—Ni1—N196.02 (17)C4—C5—H5118.2
N2—Ni1—N177.30 (15)C4—C6—H6A109.5
N6—Ni1—N6i79.63 (18)C4—C6—H6B109.5
N3—Ni1—N6i95.99 (18)H6A—C6—H6B109.5
N2—Ni1—N6i94.98 (16)C4—C6—H6C109.5
N1—Ni1—N6i167.78 (18)H6A—C6—H6C109.5
C5—N1—C1119.3 (5)H6B—C6—H6C109.5
C5—N1—Ni1125.6 (4)N2—C7—C8119.8 (5)
C1—N1—Ni1114.1 (3)N2—C7—C1115.8 (4)
C11—N2—C7119.0 (4)C8—C7—C1124.3 (5)
C11—N2—Ni1124.9 (3)C9—C8—C7120.5 (5)
C7—N2—Ni1116.1 (3)C9—C8—H8119.8
N4—N3—Ni1120.7 (5)C7—C8—H8119.8
N3—N4—N5174.4 (8)C8—C9—C10120.6 (5)
N7—N6—Ni1125.8 (4)C8—C9—H9119.7
N7—N6—Ni1i125.2 (4)C10—C9—H9119.7
Ni1—N6—Ni1i100.37 (18)C11—C10—C9115.7 (5)
N8—N7—N6178.1 (6)C11—C10—C12121.3 (5)
N1—C1—C2120.5 (5)C9—C10—C12123.0 (5)
N1—C1—C7115.8 (4)N2—C11—C10124.3 (5)
C2—C1—C7123.8 (5)N2—C11—H11117.8
C3—C2—C1119.3 (5)C10—C11—H11117.8
C3—C2—H2120.3C10—C12—H12A109.5
C1—C2—H2120.3C10—C12—H12B109.5
C4—C3—C2120.7 (5)H12A—C12—H12B109.5
C4—C3—H3119.7C10—C12—H12C109.5
C2—C3—H3119.7H12A—C12—H12C109.5
C3—C4—C5116.7 (5)H12B—C12—H12C109.5
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni2(N3)4(C12H12N2)2]
Mr654.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.938 (2), 15.067 (3), 11.755 (2)
β (°) 91.650 (2)
V3)1405.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.13 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.840, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
11588, 3060, 2165
Rint0.063
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.149, 1.03
No. of reflections3060
No. of parameters192
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.77

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N12.145 (4)Ni1—N62.041 (4)
Ni1—N22.081 (4)Ni1—N6i2.175 (4)
Ni1—N32.064 (5)
Symmetry code: (i) x, y+1, z.
 

References

First citationAbramo, G. P., Li, L. & Marks, T. J. (2002). J. Am. Chem. Soc. 124, 13966–13967.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDey, S. K., Abedin, T. S. M., Dawe, L. N., Tandon, S. S., Collins, J. L., Thompson, L. K., Postnikov, A. V., Alam, M. S. & Muller, P. (2007). Inorg. Chem. 46, 7767–7781.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1897–m1899.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, Y.-B., Kou, H.-Z., Wang, R.-J., Cui, A.-L. & Ribas, J. (2005). Inorg. Chem. 44, 709–715.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-C., Zhang, M.-J., Tao, Y. & Li, J.-R. (2007). Acta Cryst. E63, m3062.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds