metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-3-nitro­pyridinium) dichromate(VI)

aLaboratoire de chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: samah.akriche@fsb.rnu.tn

(Received 12 December 2008; accepted 17 December 2008; online 20 December 2008)

The title compound, (C5H6N3O2)2[Cr2O7], consists of 2-amino-3-nitro­pyridinium cations and discrete dichromate anions linked together by N—H⋯O and C—H⋯O hydrogen bonds, forming thick layers parallel to (101). Layer cohesion is ensured by N—H⋯O hydrogen bonding in addition to electrostatic and van der Waals inter­actions, forming a three-dimensional framework. The dichromate anion is located on a twofold axis that passes through its bridging O atom.

Related literature

For related structures, see: Akriche & Rzaigui (2000[Akriche, S. & Rzaigui, M. (2000). Z. Kristallogr. New Cryst. Struct. 215, 617-618.]); Khadhrani et al. (2006[Khadhrani, H., Ben Smaïl, R., Driss, A. & Jouini, T. (2006). Acta Cryst. E62, m146-m148.]); Nicoud et al. (1997[Nicoud, J. F., Masse, R., Bourgogne, C. & Evans, C. (1997). J. Mater. Chem. 7, 35-39.]); Panunto et al. (1987[Panunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. & Etter, M. C. (1987). J. Am. Chem. Soc. 109, 7786-7797.]); Sieroń (2007[Sieroń, L. (2007). Acta Cryst. E63, m2068.]); Le Fur et al. (1998[Le Fur, Y., Masse, R. & Nicoud, J. F. (1998). New J. Chem. pp. 159-163.]). For a discussion of hydrogen bonding, see: Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, Vol 54. New York: Elsevier.], 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2321.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6N3O2)2[Cr2O7]

  • Mr = 496.26

  • Monoclinic, C 2/c

  • a = 14.799 (2) Å

  • b = 7.464 (3) Å

  • c = 17.870 (5) Å

  • β = 116.71 (4)°

  • V = 1763.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 298 K

  • 0.25 × 0.23 × 0.19 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 3444 measured reflections

  • 2123 independent reflections

  • 1562 reflections with I > 2σ(I)

  • Rint = 0.021

  • 2 standard reflections frequency: 120 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.04

  • 2123 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.87 2.707 (3) 165
N2—H2A⋯O4 0.86 2.17 2.974 (4) 155
N2—H2B⋯O6 0.86 2.06 2.654 (4) 125
N2—H2B⋯O6i 0.86 2.59 3.061 (4) 116
C3—H3⋯O4ii 0.93 2.58 3.494 (4) 167
C4—H4⋯O3iii 0.93 2.50 3.337 (4) 150
C5—H5⋯O2iv 0.93 2.34 3.232 (4) 160
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-32 for Windows (Farrugia, 1998[Farrugia, L. J. (1998). ORTEP-32 for Windows. University of Glasgow, Scotland.]); DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A new engineering strategy using organic-inorganic hybrid materials have appeared over the past years. The challenge was to combine the advantages of organic crystals and those of the inorganic materials. As a part of our study of crystal packing in amino-nitro "push-pull" system, a new organic-inorganic salt, bis (2-amino-3-nitropyridinium) dichromate (I) have been synthesized.

The dichromate anion has a binary internal symmetry since its bridging oxygen atom is located on a twofold axis, and so is built by only one independent (CrO4) group. This later with one independent (2-NH2-3-NO2C5H3NH)+ cation constitute the asymmetric unit of (I) (Fig. 1).

As expected, the main geometrical features of anion agree with those previously observed for this group in other coumpounds (Sieroń, 2007; Khadhrani et al.,2006). The bond lengths and the angles within the cation are comparable with those observed for 2-amino-3-nitropyridinium dihydrogenphosphate (Akriche et al.,2000), 2-amino-3-nitropyridinium hydrogensulfate(Le Fur et al., 1998) and 2-amino-3-nitropyridinium chloride (Nicoud et al.,1997).

The dichromate and organic entities manifest different interactions (electrostatic, H-bonds, Van Der Waals) to keep up the three-dimensionel network cohesion (Fig. 2). The main links are from the N—H···O bonds (Table 1) with H···O bond lengths falling in the range from 1.87–2.59 Å.

Long C—H···O contacts occur between cations and cation-anion moities with C···O bond lengths ranging from 3.494 (4)–3.232 (4)Å (Desiraju, 1989; Desiraju, 1995).

It's worth noticing the intracation contact N2—H2B···O6 (see Table 1 for symmetry code) which is always present in nitroaniline in which nitro and amino groups are ortho to one another, as clearly shown in a study of hydrogen patterns of nitroaniline derivatives (Panunto et al., 1987). This situation precludes the rotation of the nitro group with respect to pyridinium ring. The angle between the planes of the NO2 group and the heterocycle is 7.98° for cation, indicating a coplanar geometry.

Related literature top

For related structures, see: Akriche & Rzaigui (2000); Khadhrani et al. (2006); Nicoud et al. (1997); Panunto et al. (1987); Sieroń (2007); Le Fur, Masse & Nicoud (1998). For a discussion of hydrogen bonding, see: Desiraju (1989, 1995).

Experimental top

0.004 mol of 2-amino-3-nitropyridine was dissolved in 20 ml of pure acetic acid. 5 ml solution containing 0.004 mol of CrO3 was added drop by drop under stirring at 333 K. The obtained solution is slowly evaporated at the ambiant temperature. After some days, Brown single crystals of the title compound are formed in the reactionnel midle.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 for Windows (Farrugia, 1998); DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) -x+1, y, -z+1/2]
[Figure 2] Fig. 2. Projection of (I) along the b axis.
Bis(2-amino-3-nitropyridinium) dichromate(VI) top
Crystal data top
(C5H6N3O2)2[Cr2O7]F(000) = 1000
Mr = 496.26Dx = 1.869 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 14.799 (2) Åθ = 9–11°
b = 7.464 (3) ŵ = 1.31 mm1
c = 17.870 (5) ÅT = 298 K
β = 116.71 (4)°Diamond-shaped, brown
V = 1763.3 (11) Å30.25 × 0.23 × 0.19 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.021
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.6°
Graphite monochromatorh = 1919
non–profiled ω scansk = 09
3444 measured reflectionsl = 1023
2123 independent reflections2 standard reflections every 120 min
1562 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.8978P]
where P = (Fo2 + 2Fc2)/3
2123 reflections(Δ/σ)max = 0.002
132 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
(C5H6N3O2)2[Cr2O7]V = 1763.3 (11) Å3
Mr = 496.26Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.799 (2) ŵ = 1.31 mm1
b = 7.464 (3) ÅT = 298 K
c = 17.870 (5) Å0.25 × 0.23 × 0.19 mm
β = 116.71 (4)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.021
3444 measured reflections2 standard reflections every 120 min
2123 independent reflections intensity decay: 3%
1562 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
2123 reflectionsΔρmin = 0.37 e Å3
132 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.51253 (3)0.65455 (6)0.34930 (3)0.03488 (15)
O10.50000.5931 (6)0.25000.0760 (11)
O20.63121 (14)0.6372 (3)0.41598 (13)0.0434 (5)
O30.4736 (2)0.8522 (3)0.35084 (18)0.0672 (7)
O40.44934 (17)0.5121 (3)0.37400 (14)0.0544 (6)
O50.7372 (2)0.1246 (3)0.67939 (16)0.0607 (7)
O60.6258 (2)0.0987 (3)0.55077 (17)0.0687 (7)
N10.70398 (18)0.4291 (3)0.55486 (16)0.0416 (6)
H10.67300.50200.51390.050*
N20.58479 (19)0.2213 (4)0.47828 (16)0.0544 (7)
H2A0.55680.30040.43970.065*
H2B0.55940.11550.47190.065*
N30.69260 (19)0.0377 (3)0.61537 (17)0.0425 (6)
C10.6667 (2)0.2622 (4)0.54739 (17)0.0351 (6)
C20.72292 (19)0.1482 (3)0.61610 (16)0.0317 (5)
C30.8061 (2)0.2088 (4)0.68474 (18)0.0402 (6)
H30.84090.13200.72960.048*
C40.8388 (2)0.3827 (4)0.6881 (2)0.0499 (8)
H40.89530.42520.73450.060*
C50.7856 (2)0.4899 (4)0.6213 (2)0.0494 (8)
H50.80630.60770.62180.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0320 (2)0.0429 (3)0.0274 (2)0.0004 (2)0.01125 (17)0.00519 (19)
O10.073 (2)0.122 (3)0.0321 (17)0.0000.0232 (17)0.000
O20.0357 (9)0.0461 (11)0.0406 (11)0.0011 (9)0.0101 (9)0.0065 (9)
O30.0642 (15)0.0518 (14)0.0762 (18)0.0208 (12)0.0233 (14)0.0154 (12)
O40.0483 (12)0.0604 (14)0.0583 (13)0.0093 (11)0.0272 (11)0.0052 (11)
O50.0850 (18)0.0428 (13)0.0624 (15)0.0050 (12)0.0402 (15)0.0172 (11)
O60.0712 (16)0.0492 (13)0.0703 (17)0.0253 (12)0.0182 (14)0.0142 (12)
N10.0445 (13)0.0357 (12)0.0502 (15)0.0080 (11)0.0263 (12)0.0123 (11)
N20.0428 (14)0.0691 (18)0.0389 (14)0.0034 (13)0.0072 (12)0.0105 (13)
N30.0505 (14)0.0339 (12)0.0511 (15)0.0035 (11)0.0298 (12)0.0016 (12)
C10.0334 (12)0.0418 (15)0.0339 (14)0.0036 (12)0.0186 (11)0.0044 (12)
C20.0343 (12)0.0304 (12)0.0323 (13)0.0013 (11)0.0168 (11)0.0004 (11)
C30.0407 (14)0.0429 (15)0.0327 (14)0.0044 (12)0.0128 (12)0.0036 (12)
C40.0453 (16)0.0486 (18)0.0464 (17)0.0110 (14)0.0122 (14)0.0121 (14)
C50.0550 (18)0.0321 (15)0.068 (2)0.0080 (13)0.0342 (17)0.0074 (14)
Geometric parameters (Å, º) top
Cr1—O31.588 (2)N2—H2A0.8600
Cr1—O41.603 (2)N2—H2B0.8600
Cr1—O21.625 (2)N3—C21.457 (3)
Cr1—O11.7601 (14)C1—C21.416 (4)
O1—Cr1i1.7601 (14)C2—C31.366 (4)
O5—N31.219 (3)C3—C41.377 (4)
O6—N31.221 (4)C3—H30.9300
N1—C51.336 (4)C4—C51.356 (5)
N1—C11.344 (4)C4—H40.9300
N1—H10.8600C5—H50.9300
N2—C11.320 (4)
O3—Cr1—O4110.50 (14)N2—C1—N1118.1 (3)
O3—Cr1—O2110.01 (13)N2—C1—C2127.3 (3)
O4—Cr1—O2108.49 (11)N1—C1—C2114.6 (2)
O3—Cr1—O1112.62 (17)C3—C2—C1121.3 (3)
O4—Cr1—O1107.14 (15)C3—C2—N3118.2 (2)
O2—Cr1—O1107.93 (9)C1—C2—N3120.4 (2)
Cr1i—O1—Cr1149.8 (3)C2—C3—C4120.5 (3)
C5—N1—C1124.7 (3)C2—C3—H3119.7
C5—N1—H1117.7C4—C3—H3119.7
C1—N1—H1117.7C5—C4—C3117.7 (3)
C1—N2—H2A120.0C5—C4—H4121.2
C1—N2—H2B120.0C3—C4—H4121.2
H2A—N2—H2B120.0N1—C5—C4121.1 (3)
O5—N3—O6123.8 (3)N1—C5—H5119.4
O5—N3—C2117.6 (3)C4—C5—H5119.4
O6—N3—C2118.6 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.872.707 (3)165
N2—H2A···O40.862.172.974 (4)155
N2—H2B···O60.862.062.654 (4)125
N2—H2B···O6ii0.862.593.061 (4)116
C3—H3···O4iii0.932.583.494 (4)167
C4—H4···O3iv0.932.503.337 (4)150
C5—H5···O2v0.932.343.232 (4)160
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+3/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula(C5H6N3O2)2[Cr2O7]
Mr496.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)14.799 (2), 7.464 (3), 17.870 (5)
β (°) 116.71 (4)
V3)1763.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.25 × 0.23 × 0.19
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3444, 2123, 1562
Rint0.021
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.04
No. of reflections2123
No. of parameters132
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.37

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-32 for Windows (Farrugia, 1998); DIAMOND (Brandenburg & Putz, 2005), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.872.707 (3)164.6
N2—H2A···O40.862.172.974 (4)154.7
N2—H2B···O60.862.062.654 (4)125.1
N2—H2B···O6i0.862.593.061 (4)115.8
C3—H3···O4ii0.932.583.494 (4)166.5
C4—H4···O3iii0.932.503.337 (4)149.6
C5—H5···O2iv0.932.343.232 (4)159.5
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+3/2, y+3/2, z+1.
 

References

First citationAkriche, S. & Rzaigui, M. (2000). Z. Kristallogr. New Cryst. Struct. 215, 617–618.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, Vol 54. New York: Elsevier.  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2321.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1998). ORTEP-32 for Windows. University of Glasgow, Scotland.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKhadhrani, H., Ben Smaïl, R., Driss, A. & Jouini, T. (2006). Acta Cryst. E62, m146–m148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLe Fur, Y., Masse, R. & Nicoud, J. F. (1998). New J. Chem. pp. 159–163.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicoud, J. F., Masse, R., Bourgogne, C. & Evans, C. (1997). J. Mater. Chem. 7, 35–39.  CSD CrossRef CAS Web of Science Google Scholar
First citationPanunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. & Etter, M. C. (1987). J. Am. Chem. Soc. 109, 7786–7797.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L. (2007). Acta Cryst. E63, m2068.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds