metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m42-m43

Di-μ-sulfato-bis­­[di­aqua­(1H-imidazo[4,5-f][1,10]phenanthroline)nickel(II)] dihydrate

aDepartment of Chemistry and Chemical Engineering, School of Life Science and Bioengineering, SouthWest JiaoTong University, Chengdu, Sichuan 610031, People's Republic of China, and bThe Second Research Institute of CAAC, Chengdu, Sichuan 610041, People's Republic of China
*Correspondence e-mail: wzsc2008@126.com

(Received 2 December 2008; accepted 3 December 2008; online 10 December 2008)

In the title compound, [Ni2(SO4)2(C13H8N4)2(H2O)4]·2H2O, the complete dimeric complex is generated by an inversion center. The NiII atoms are octa­hedrally coordinated by two N atoms from one 1H-imidazo[4,5-f][1,10]phenanthroline (IP) ligand and two O atoms from two adjacent sulfate ions forming the equatorial plane, with two coordinated water mol­ecules in the axial sites. Both of the sulfate ions act as bidentate-bridging ligands connecting the two NiII ions, thus generating a binuclear complex. In the crystal structure, O—H⋯O and O—H⋯N hydrogen bonds involving the coordinated and uncoordinated water mol­ecules and N—H⋯O links lead to the formation of a two-dimensional sheet structure developing parallel to (010). Weak ππ stacking inter­actions [centroid–centroid separation = 3.613 (2) Å] between the IP ligands also occur.

Related literature

For related structures, see: An et al. (2007[An, Z., Wu, Y.-L., Lin, F. & Zhu, L. (2007). Acta Cryst. E63, m477-m478.]); Gu et al. (2004[Gu, C.-S., Gao, S., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1852-m1854.]). For general background, see: Ross et al. (1999[Ross, S. A., Pitie, M. & Meunier, B. (1999). Eur. J. Inorg. Chem. pp. 557-563.]); Xu et al. (2003[Xu, L., Wang, E.-B. M., Peng, J. & Huang, R.-D. (2003). Inorg. Chem. Commun. 6, 740-743.]); Xiong et al. (1999[Xiong, Y., He, X.-F., Zou, X.-H., Wu, J.-Z., Chen, X.-M., Ji, L.-N., Li, R.-H., Zhou, J.-Y. & Yu, K.-B. (1999). J. Chem. Soc. Dalton Trans. pp. 19-24.]). For details of graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(SO4)2(C13H8N4)2(H2O)4]·2H2O

  • Mr = 858.10

  • Monoclinic, P 21 /c

  • a = 10.296 (2) Å

  • b = 9.0560 (18) Å

  • c = 16.836 (3) Å

  • β = 99.108 (3)°

  • V = 1550.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 298 (2) K

  • 0.28 × 0.20 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.689, Tmax = 0.835

  • 7756 measured reflections

  • 2887 independent reflections

  • 2085 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.146

  • S = 0.81

  • 2887 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1W 2.067 (3)
Ni1—O3i 2.095 (3)
Ni1—O1 2.094 (3)
Ni1—N2 2.120 (3)
Ni1—N1 2.136 (3)
Ni1—O2W 2.152 (3)
Symmetry code: (i) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O2ii 0.86 2.03 2.870 (5) 165
O1W—H1WA⋯O3Wiii 0.80 1.83 2.630 (4) 180
O1W—H1WB⋯O4i 0.80 1.89 2.695 (4) 180
O1W—H1WB⋯O3i 0.80 2.46 2.873 (4) 114
O2W—H2WA⋯N3iv 0.80 2.00 2.797 (4) 179
O3W—H3WB⋯O2i 0.80 2.00 2.803 (4) 179
O3W—H3WA⋯O4v 0.80 2.04 2.839 (4) 180
O2W—H2WB⋯O4 0.80 1.96 2.764 (4) 180
O2W—H2WB⋯O1 0.80 2.50 2.932 (4) 115
Symmetry codes: (i) -x, -y+1, -z; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x+1, -y+2, -z; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition-metal complexes with 1,10-phen ligands have shown their employments in catalysis, biochemistry, etc. (Ross, et al., 1999; Xu et al., 2003). 1H-imidazo[4,5-f][1,10]-phenanthroline (IP) is an important derivative of 1,10-phen that has been used to recognize the secondary structure of DNA in Ru(II) complexes (Xiong et al., 1999). Furthermore,the rich electron conjugated rings of IP may be important for providing potential supramolecular recognition sites for ππ aromatic stacking and, via the imidazole moiety, IP can form hydrogen-bonding interactions, thus allowing for the formation of supramolecular assemblies. Herein we report the synthesis and characterization of the title compound, (I).

The center of the dimeric complex is located on an inversion center. Each NiII atom is octahedrally coordinated by two N atoms from one IP ligand and two oxygen atoms from two adjacent sulfate ions forming the equatorial plane, whereas axial positions are occupied by two oxygen atoms of coordinated water molecules (Figure 1). Taking account of these two irregular bond angles [168.06 (11)° for O3—Ni—N1 and 172.06 (12)° for O1W—Ni—O2W], the geometry of copper center is best described as a distorted octahedron (Table 1). The distances of Ni—N and Ni—O bonds are similar to those of related complexes (An et al., 2007; Xu et al., 2003). Both of sulfates taking as bidentated-bridging mode connect NiII ions, generating a binuclear complex. The separation of Ni—Ni distance is 5.16 (6) Å, which is markedly shorter than the corresponding Ni—Ni distance of 6.132 (4)Å in NiII analog (Gu et al., 2004). Each IP molecule only binds to NiII center via two nitrogen atoms from two pyridine rings. The IP ligand does not show any abnormal characteristic, with its four bound rings being basically coplanar. One type of ππ stacking interaction between pyridine and imidazole ring from two adjacent IP ligands. The centroid to centroid distances for the further ππ stacking interaction is 3.613 (2)Å [symmetry code = x, -y, z - 1/2], thus indicating weak ππ stacking interaction (Fig. 2).

Intramolecular hydrogen bonds between coordinated water molecules and oxygen atoms from sulfate ions may contribute to its stability (Table 2). Fruthermore, the linking agent is the extensive hydrogen-bonding network involving all the available water molecules and, together with some N atoms of the organic ligand, resulting in the formation of a two-dimensionnal network (Figure 2). For example, the lattice water molecule (O3W) is hydrogen bonded to the O2 and O4 atoms of two related sulfates groups, so generating a R42(8) motif (Bernstein et al., 1995) (Figure 2).

Related literature top

For related structures, see: An et al. (2007); Gu et al. (2004). For general background, see: Ross et al. (1999); Xu et al. (2003); Xiong et al. (1999). For details of graph-set theory, see: Bernstein et al. (1995).

Experimental top

IP (0.031 g, 0.18 mmol) and NiSO4 (0.28 g, 0.11 mmol) were added to acetonitrile (15 ml), the mixture was heated for ten hours under reflux conditions. The resultant solution was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel: three weeks later, green blocks of (I) were collected.

Refinement top

All H atoms attached to C atoms, and N atoms were fixed geometrically and treated as riding with C—H distances of 0.93Å (pyridine ring), 0.86 Å (amine group), with UisoH = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints [O—H = 0.82 (1)Å and H···H = 1.38 (2) Å]. In the last stage of refinement, they were treated as riding on their parent O atom with O—H = 0.80Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i)-x,1 - y,-z; (ii) x, y + 1, z]
[Figure 2] Fig. 2. A packing view of the title compound. Hydrogen bonds are shown as dashed lines.
Di-µ-sulfato-bis[diaqua(1H- imidazo[4,5-f][1,10]phenanthroline)nickel(II)] dihydrate top
Crystal data top
[Ni2(SO4)2(C13H8N4)2(H2O)4]·2H2OF(000) = 880
Mr = 858.10Dx = 1.839 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2887 reflections
a = 10.296 (2) Åθ = 2.5–25.5°
b = 9.0560 (18) ŵ = 1.44 mm1
c = 16.836 (3) ÅT = 298 K
β = 99.108 (3)°Block, green
V = 1550.0 (5) Å30.28 × 0.20 × 0.13 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2887 independent reflections
Radiation source: fine-focus sealed tube2085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1211
Tmin = 0.689, Tmax = 0.835k = 810
7756 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.127P)2]
where P = (Fo2 + 2Fc2)/3
2887 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ni2(SO4)2(C13H8N4)2(H2O)4]·2H2OV = 1550.0 (5) Å3
Mr = 858.10Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.296 (2) ŵ = 1.44 mm1
b = 9.0560 (18) ÅT = 298 K
c = 16.836 (3) Å0.28 × 0.20 × 0.13 mm
β = 99.108 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2887 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2085 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.835Rint = 0.040
7756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.81Δρmax = 0.47 e Å3
2887 reflectionsΔρmin = 0.41 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.18902 (5)0.68064 (6)0.04131 (3)0.0299 (2)
S10.03201 (9)0.60119 (10)0.11230 (5)0.0263 (3)
N10.2570 (3)0.9021 (4)0.03289 (18)0.0266 (7)
N20.3746 (3)0.6769 (3)0.11665 (19)0.0275 (7)
N30.6436 (3)1.2065 (4)0.1392 (2)0.0338 (8)
N40.7470 (3)1.0131 (4)0.20327 (19)0.0340 (8)
H4A0.80770.96270.23210.034 (12)*
O1W0.0747 (3)0.7638 (4)0.12140 (18)0.0487 (9)
H1WA0.07830.84000.14570.058*
H1WB0.03400.68940.12480.058*
O2W0.2961 (3)0.5649 (3)0.03940 (15)0.0342 (7)
H2WA0.31370.63040.06780.041*
H2WB0.22810.54210.06660.041*
O20.0906 (3)0.6771 (3)0.18632 (17)0.0401 (8)
O40.0613 (3)0.4873 (3)0.13353 (15)0.0311 (6)
O10.0382 (2)0.7092 (3)0.05661 (16)0.0300 (6)
O3W0.0861 (4)0.0146 (4)0.20094 (19)0.0661 (11)
H3WB0.08730.10250.19630.079*
H3WA0.07900.01370.24760.079*
C10.1913 (4)1.0142 (5)0.0056 (2)0.0314 (9)
H1A0.10830.99610.03470.038*
C20.2408 (4)1.1571 (5)0.0042 (2)0.0339 (10)
H2A0.19151.23250.03180.041*
C30.3637 (4)1.1857 (4)0.0385 (2)0.0308 (9)
H3A0.39891.28040.03950.037*
C40.4353 (3)1.0702 (4)0.0806 (2)0.0263 (9)
C50.3759 (3)0.9290 (4)0.0770 (2)0.0231 (8)
C60.4416 (4)0.8062 (4)0.1208 (2)0.0250 (8)
C70.4319 (4)0.5593 (5)0.1541 (2)0.0337 (9)
H7A0.38600.47050.15050.040*
C80.5586 (4)0.5636 (5)0.1988 (2)0.0358 (10)
H8A0.59600.47900.22410.043*
C90.6267 (4)0.6942 (4)0.2048 (2)0.0323 (10)
H9A0.71070.69930.23470.039*
C100.5692 (4)0.8195 (4)0.1657 (2)0.0250 (8)
C110.6261 (4)0.9622 (5)0.1659 (2)0.0300 (9)
C120.5625 (4)1.0813 (4)0.1265 (2)0.0291 (9)
C130.7502 (4)1.1573 (5)0.1853 (3)0.0378 (10)
H13A0.82181.21750.20390.045*
O30.1354 (3)0.5305 (3)0.07522 (17)0.0352 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0279 (3)0.0279 (4)0.0327 (3)0.0050 (2)0.0010 (2)0.0018 (2)
S10.0263 (5)0.0234 (6)0.0273 (5)0.0047 (4)0.0016 (4)0.0013 (4)
N10.0259 (17)0.0269 (19)0.0260 (16)0.0023 (14)0.0013 (13)0.0010 (14)
N20.0265 (17)0.0267 (19)0.0294 (17)0.0031 (14)0.0046 (14)0.0015 (14)
N30.033 (2)0.033 (2)0.0345 (19)0.0099 (15)0.0029 (16)0.0019 (15)
N40.0277 (18)0.040 (2)0.0310 (17)0.0034 (16)0.0053 (15)0.0003 (16)
O1W0.061 (2)0.0305 (18)0.061 (2)0.0183 (16)0.0311 (18)0.0190 (16)
O2W0.0315 (15)0.0345 (17)0.0370 (15)0.0029 (13)0.0061 (13)0.0004 (12)
O20.0454 (19)0.0349 (18)0.0342 (16)0.0055 (13)0.0118 (14)0.0063 (13)
O40.0293 (15)0.0253 (15)0.0375 (15)0.0050 (12)0.0021 (12)0.0043 (12)
O10.0253 (14)0.0252 (15)0.0348 (15)0.0025 (11)0.0096 (12)0.0042 (11)
O3W0.126 (4)0.0292 (19)0.0479 (19)0.015 (2)0.028 (2)0.0107 (16)
C10.023 (2)0.033 (2)0.036 (2)0.0010 (17)0.0009 (16)0.0032 (18)
C20.034 (2)0.031 (2)0.034 (2)0.0067 (18)0.0012 (18)0.0047 (18)
C30.036 (2)0.019 (2)0.036 (2)0.0032 (17)0.0020 (18)0.0029 (17)
C40.025 (2)0.028 (2)0.0251 (18)0.0012 (16)0.0022 (16)0.0029 (16)
C50.0232 (19)0.021 (2)0.0240 (18)0.0031 (15)0.0006 (15)0.0002 (15)
C60.026 (2)0.025 (2)0.0239 (19)0.0050 (16)0.0027 (16)0.0018 (15)
C70.038 (2)0.027 (2)0.035 (2)0.0067 (18)0.0029 (18)0.0014 (18)
C80.039 (2)0.029 (2)0.038 (2)0.0085 (19)0.0021 (19)0.0065 (18)
C90.024 (2)0.038 (3)0.032 (2)0.0001 (18)0.0031 (17)0.0009 (18)
C100.027 (2)0.025 (2)0.0236 (18)0.0011 (16)0.0045 (16)0.0009 (15)
C110.024 (2)0.039 (2)0.0252 (19)0.0072 (18)0.0023 (16)0.0030 (18)
C120.031 (2)0.030 (2)0.0265 (19)0.0052 (17)0.0061 (16)0.0013 (17)
C130.038 (3)0.035 (3)0.038 (2)0.019 (2)0.001 (2)0.0038 (19)
O30.0311 (15)0.0242 (15)0.0521 (17)0.0034 (12)0.0116 (13)0.0031 (13)
Geometric parameters (Å, º) top
Ni1—O1W2.067 (3)O3W—H3WB0.8000
Ni1—O3i2.095 (3)O3W—H3WA0.8000
Ni1—O12.094 (3)C1—C21.390 (6)
Ni1—N22.120 (3)C1—H1A0.9300
Ni1—N12.136 (3)C2—C31.378 (6)
Ni1—O2W2.152 (3)C2—H2A0.9300
S1—O11.464 (3)C3—C41.405 (5)
S1—O31.464 (3)C3—H3A0.9300
S1—O21.467 (3)C4—C51.414 (5)
S1—O41.491 (3)C4—C121.415 (5)
N1—C11.330 (5)C5—C61.442 (5)
N1—C51.349 (5)C6—C101.413 (5)
N2—C71.327 (5)C7—C81.400 (6)
N2—C61.355 (5)C7—H7A0.9300
N3—C131.317 (5)C8—C91.371 (6)
N3—C121.405 (5)C8—H8A0.9300
N4—C131.341 (5)C9—C101.396 (5)
N4—C111.382 (5)C9—H9A0.9300
N4—H4A0.8600C10—C111.419 (5)
O1W—H1WA0.8000C11—C121.376 (6)
O1W—H1WB0.8000C13—H13A0.9300
O2W—H2WA0.8000O3—Ni1i2.095 (3)
O2W—H2WB0.8000
O1W—Ni1—O3i87.30 (12)N1—C1—H1A118.5
O1W—Ni1—O192.33 (12)C2—C1—H1A118.5
O3i—Ni1—O197.62 (11)C3—C2—C1119.2 (4)
O1W—Ni1—N299.67 (13)C3—C2—H2A120.4
O3i—Ni1—N294.22 (11)C1—C2—H2A120.4
O1—Ni1—N2163.51 (11)C2—C3—C4119.2 (4)
O1W—Ni1—N185.86 (12)C2—C3—H3A120.4
O3i—Ni1—N1168.08 (11)C4—C3—H3A120.4
O1—Ni1—N192.40 (11)C3—C4—C5117.6 (3)
N2—Ni1—N177.35 (12)C3—C4—C12126.1 (4)
O1W—Ni1—O2W172.06 (12)C5—C4—C12116.4 (3)
O3i—Ni1—O2W84.89 (10)N1—C5—C4122.4 (3)
O1—Ni1—O2W87.31 (11)N1—C5—C6117.0 (3)
N2—Ni1—O2W82.35 (11)C4—C5—C6120.7 (3)
N1—Ni1—O2W102.08 (11)N2—C6—C10121.6 (3)
O1—S1—O3109.72 (16)N2—C6—C5116.5 (3)
O1—S1—O2109.01 (16)C10—C6—C5121.9 (3)
O3—S1—O2109.77 (17)N2—C7—C8122.7 (4)
O1—S1—O4110.14 (15)N2—C7—H7A118.7
O3—S1—O4109.85 (16)C8—C7—H7A118.7
O2—S1—O4108.32 (17)C9—C8—C7119.1 (4)
C1—N1—C5118.5 (3)C9—C8—H8A120.5
C1—N1—Ni1127.0 (3)C7—C8—H8A120.5
C5—N1—Ni1114.3 (2)C8—C9—C10119.5 (4)
C7—N2—C6119.0 (3)C8—C9—H9A120.2
C7—N2—Ni1126.0 (3)C10—C9—H9A120.2
C6—N2—Ni1114.9 (3)C9—C10—C11126.5 (4)
C13—N3—C12103.7 (3)C9—C10—C6118.2 (3)
C13—N4—C11106.0 (3)C11—C10—C6115.3 (3)
C13—N4—H4A127.0N4—C11—C12106.5 (4)
C11—N4—H4A127.0N4—C11—C10130.3 (4)
Ni1—O1W—H1WA131.4C12—C11—C10123.2 (3)
Ni1—O1W—H1WB95.7C11—C12—N3109.4 (3)
H1WA—O1W—H1WB132.3C11—C12—C4122.4 (4)
Ni1—O2W—H2WA101.7N3—C12—C4128.1 (4)
Ni1—O2W—H2WB89.9N3—C13—N4114.4 (4)
H2WA—O2W—H2WB96.3N3—C13—H13A122.8
S1—O1—Ni1130.62 (17)N4—C13—H13A122.8
H3WB—O3W—H3WA96.4S1—O3—Ni1i139.12 (17)
N1—C1—C2123.1 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O2ii0.862.032.870 (5)165
O1W—H1WA···O3Wiii0.801.832.630 (4)180
O1W—H1WB···O4i0.801.892.695 (4)180
O1W—H1WB···O3i0.802.462.873 (4)114
O2W—H2WA···N3iv0.802.002.797 (4)179
O3W—H3WB···O2i0.802.002.803 (4)179
O3W—H3WA···O4v0.802.042.839 (4)180
O2W—H2WB···O40.801.962.764 (4)180
O2W—H2WB···O10.802.502.932 (4)115
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+2, z; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni2(SO4)2(C13H8N4)2(H2O)4]·2H2O
Mr858.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.296 (2), 9.0560 (18), 16.836 (3)
β (°) 99.108 (3)
V3)1550.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.28 × 0.20 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.689, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
7756, 2887, 2085
Rint0.040
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.146, 0.81
No. of reflections2887
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.41

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
Ni1—O1W2.067 (3)Ni1—N22.120 (3)
Ni1—O3i2.095 (3)Ni1—N12.136 (3)
Ni1—O12.094 (3)Ni1—O2W2.152 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O2ii0.862.032.870 (5)165
O1W—H1WA···O3Wiii0.801.832.630 (4)180
O1W—H1WB···O4i0.801.892.695 (4)180
O1W—H1WB···O3i0.802.462.873 (4)114
O2W—H2WA···N3iv0.802.002.797 (4)179
O3W—H3WB···O2i0.802.002.803 (4)179
O3W—H3WA···O4v0.802.042.839 (4)180
O2W—H2WB···O40.801.962.764 (4)180
O2W—H2WB···O10.802.502.932 (4)115
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+2, z; (v) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to SouthWest JiaoTong University for financial support.

References

First citationAn, Z., Wu, Y.-L., Lin, F. & Zhu, L. (2007). Acta Cryst. E63, m477–m478.  CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGu, C.-S., Gao, S., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1852–m1854.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoss, S. A., Pitie, M. & Meunier, B. (1999). Eur. J. Inorg. Chem. pp. 557–563.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, Y., He, X.-F., Zou, X.-H., Wu, J.-Z., Chen, X.-M., Ji, L.-N., Li, R.-H., Zhou, J.-Y. & Yu, K.-B. (1999). J. Chem. Soc. Dalton Trans. pp. 19–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, L., Wang, E.-B. M., Peng, J. & Huang, R.-D. (2003). Inorg. Chem. Commun. 6, 740–743.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m42-m43
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds