metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(1,10-phenanthroline)(pyridine-2,6-di­carboxyl­ato)nickel(II) pyridine-2,6-di­carboxylic acid solvate tetra­hydrate

aDepartment of Chemistry, Faculty of Science, University of Kashan, 51167 Kashan, Iran, bFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, cDepartment of Chemistry, Faculty of Science, Payame Noor University (PNU), Qom, Iran, and dDepartment of Chemistry, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: safaei@kashanu.ac.ir

(Received 3 September 2008; accepted 23 November 2008; online 3 December 2008)

The title compound, [Ni(C7H3NO4)(C12H8N2)(H2O)]·C7H5NO4·4H2O or [Ni(pydc)(phen)(H2O)].pydcH2·4H2O, was obtained by the reaction of nickel(II) nitrate hexa­hydrate with the proton-transfer compound (phenH)2(pydc) (phen is 1,10-phenanothroline and pydcH2 is pyridine-2,6-dicarboxylic acid) in aqueous solution. Both the cationic and anionic portions of the starting proton-transfer compound are involved in the complexation. The NiII atom has a distorted octa­hedral geometry and is hexa­coordinated by three O atoms and three N atoms from one phen fragment (as a bidentate ligand), one (pydc)2− unit (as a tridentate ligand) and one water mol­ecule. In the crystal structure, extensive O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds with DA distances ranging from 2.573 (2) to 3.385 (2) Å, ππ inter­actions between the phen ring systems [with centroid–centroid distances of 3.4694 (12), 3.4781 (11) and 3.8310 (11) Å] and inter­molecular C—O⋯π inter­actions [C⋯π distances of 3.4812 (17), 3.5784 (16) and 3.5926 (16) Å] connect the various components together.

Related literature

For proton-transfer compounds see: Aghabozorg et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.]); Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc., 5, 184-227.]); Aghabozorg, Motyeian et al. (2008[Aghabozorg, H., Motyeian, E., Khadivi, R., Ghadermazi, M. & Manteghi, F. (2008). Acta Cryst. E64, m320-m321.]); Aharif et al. (2007[A. Sharif, M., Aghabozorg, H., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2235-m2236.]). For the isostructural Co complex see: Su et al. (2005[Su, H., Wan, Y.-H. & Feng, Y.-L. (2005). Z. Kristallogr. New Cryst. Struct. 220, 560-562.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H3NO4)(C12H8N2)(H2O)]·C7H5NO4·4H2O

  • Mr = 661.22

  • Triclinic, [P \overline 1]

  • a = 9.9454 (7) Å

  • b = 11.3524 (7) Å

  • c = 12.7687 (10) Å

  • α = 76.527 (2)°

  • β = 81.252 (2)°

  • γ = 76.131 (2)°

  • V = 1354.00 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 100 (2) K

  • 0.41 × 0.32 × 0.26 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.736, Tmax = 0.820

  • 14769 measured reflections

  • 6485 independent reflections

  • 5910 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.01

  • 6485 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N1 1.9790 (15)
Ni1—N2 2.0462 (15)
Ni1—N3 2.0754 (16)
Ni1—O1W 2.1023 (13)
Ni1—O1 2.1325 (13)
Ni1—O3 2.1325 (13)
N1—Ni1—N2 176.22 (6)
N1—Ni1—N3 98.32 (6)
N2—Ni1—N3 80.66 (6)
N1—Ni1—O1W 91.23 (6)
N2—Ni1—O1W 89.89 (6)
O1—Ni1—O3 155.65 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2W 0.84 1.96 2.730 (2) 151
O8—H8A⋯O4i 0.84 1.73 2.573 (2) 177
O1W—H1⋯O4i 0.85 2.13 2.946 (2) 161
O1W—H2⋯O3W 0.85 1.95 2.796 (2) 171
O2W—H3⋯O2 0.85 2.09 2.900 (2) 159
O2W—H4⋯O7 0.85 1.94 2.788 (2) 174
O3W—H5⋯O2W 0.85 2.09 2.887 (2) 157
O3W—H6⋯O4Wii 0.85 2.37 3.083 (3) 142
O4W—H7⋯O1ii 0.85 2.03 2.864 (3) 168
O4W—H8⋯O5Wiii 0.85 1.93 2.772 (3) 169
O5W—H9⋯O2 0.85 2.24 2.878 (3) 131
O2W—H4⋯N4 0.85 2.54 2.968 (2) 112
O5—H5A⋯N4 0.84 2.18 2.669 (2) 117
C2—H2A⋯O6iv 0.95 2.28 3.105 (2) 144
C8—H8B⋯O1W 0.95 2.52 3.070 (2) 117
C12—H12A⋯O3v 0.95 2.60 3.317 (2) 132
C15—H15A⋯O1vi 0.95 2.52 3.385 (2) 151
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z; (iii) x-1, y, z; (iv) -x+1, -y+2, -z+1; (v) -x, -y+1, -z; (vi) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Non-covalent interactions including hydrogen bonds are of great importance in stabilizing the structures of different compounds in solid state. The importance of weak hydrogen bonds in the context of crystal engineering, molecular recognition and supramolecular chemistry has been well recognized in recent years. Recently, we have defined a plan to prepare water soluble proton transfer compounds as novel self assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which proton transfer from pyridine-2,3-dicarboxylic acid and pyridine-2,6-dicarboxylic acid (pydcH2), to piperazine (pipz), 1,10-phenanthroline, (phen) and propane-1,3-diamine (pn), resulted in the formation of self assembled systems. The resulting compounds, with some remaining sites as electron donors, can coordinate to metal ions (Aghabozorg, Daneshvar, et al., 2007; Sharif et al., 2007; Aghabozorg, Motyeian et al., 2008). For more details and related literature see our recent review article (Aghabozorg, Manteghi & Sheshmani (2008). The title compound is isostructural with a Co complex previously reported (Su et al., 2005).

The molecular structure of the title compound is presented in Fig. 1. In the [Ni(pydc)(phen)(H2O)].(pydcH2).4H2O compound, both cationic and anionic components of the starting proton transfer compound have been involved in the complexation. The NiII atom is coordinated by one 1,10-phenanthroline ligand, (phen as bidentate ligand), one pyridine-2,6-dicarboxylate group, ((pydc)2- as tridentate ligand) and one water molecule. The geometry of the resulting NiN3O3 coordination can be described as distorted octahedral. The angle between the two planes of the (pydc)2– and (phen) ligands is 89.49 (2)°, indicating that these two groups are almost perpendicular to each other.

There are notable π-π interactions between aromatic rings of coordinated (phen) fragments with distances of 3.4781 (11)Å [1 - x, 1 - y, -z], 3.4694 (12)Å [-x, 1 - y, -z] and 3.8310 (11)Å [-x, 1 - y, -z] (Fig. 2). There are also C–O···π intermolecular interactions between CO groups of carboxylate fragments with aromatic rings of pyridine-2,6-dicarboxylate with distances of 3.4812 (17) Å for C25—O6···Cg11 (1 - x, 2 - y, 1 - z), 3.5784 (16) Å for C7—O4···Cg4 (-x, 1 - y, 1 - z) and 3.5926 (16) Å for C26—O7···Cg4 (x, y, z) (Fig. 3). In addition to these interactions there is a wide range of hydrogen bonding of the type O—H···O, O—H···N and C—H···O with D···A ranging from 2.573 (2) to 3.385 (2) Å, (Table 2 and Fig. 4).

Related literature top

For proton-transfer compounds see: Aghabozorg et al. (2007); Aghabozorg, Manteghi & Sheshmani (2008); Aghabozorg, Motyeian et al. (2008); Sharif et al. (2007). For an isostructural Co complex see: Su et al. (2005).

Experimental top

The proton transfer ion pair was prepared by a reaction between phen and pydcH2. A solution of Ni(NO3)2.6H2O (143 mg, 0.5 mmol) in water (15 ml) was added to an aqueous solution of (phenH)2(pydc) (244 mg, 1 mmol) in water (15 ml) in a 1:2 molar ratio. Blue crystals of the title compound suitable for X-ray characterization were obtained after a few days at room temperature.

Refinement top

Hydrogen atoms of hydroxo groups and water molecules were located from the difference Fourier syntheses. The H(C) atoms were placed in geometrically calculated positions. Hydroxo O—H distances were set to 0.84 Å and C—H distances were set to 0.95 Å. Water O—H distances were normalized to 0.85 Å and the hydrogen positions were not further refined. Other hydrogen atom positions were refined with a riding model with the Uĩso~(H) parameters equal to 1.2Ueq(O) for hydroxo groups, 1.2Ueq(C) for bonded carbon atoms and to 1.5Ueq(O) for water molecules where U~eq~(C) and U~eq~(O) are the equivalent isotropic thermal parameters of the atoms to which corresponding H atoms are bonded.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. π-π interactions between aromatic rings of 1,10-phenanthroline (phen).
[Figure 3] Fig. 3. The C–O···π intermolecular interactions between CO of carboxylate groups and aromatic rings.
[Figure 4] Fig. 4. Crystal packing of the title compound along a axis. Hydrogen bonds are shown as dashed lines. The hydrogen atoms that do not take part in hydrogen bonding are not depicted for clarity.
Aqua(1,10-phenanthroline)(pyridine-2,6-dicarboxylato)nickel(II) pyridine-2,6-dicarboxylic acid solvate tetrahydrate top
Crystal data top
[Ni(C7H3NO4)(C12H8N2)(H2O)]·C7H5NO4·4H2OZ = 2
Mr = 661.22F(000) = 684
Triclinic, P1Dx = 1.622 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9454 (7) ÅCell parameters from 2738 reflections
b = 11.3524 (7) Åθ = 2.6–34.7°
c = 12.7687 (10) ŵ = 0.80 mm1
α = 76.527 (2)°T = 100 K
β = 81.252 (2)°Prism, blue
γ = 76.131 (2)°0.41 × 0.32 × 0.26 mm
V = 1354.00 (17) Å3
Data collection top
Bruker SMART APEXII
diffractometer
6485 independent reflections
Radiation source: fine-focus sealed tube5910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.736, Tmax = 0.820k = 1414
14769 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.092H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.04P)2 + 1.76P]
where P = (Fo2 + 2Fc2)/3
6485 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Ni(C7H3NO4)(C12H8N2)(H2O)]·C7H5NO4·4H2Oγ = 76.131 (2)°
Mr = 661.22V = 1354.00 (17) Å3
Triclinic, P1Z = 2
a = 9.9454 (7) ÅMo Kα radiation
b = 11.3524 (7) ŵ = 0.80 mm1
c = 12.7687 (10) ÅT = 100 K
α = 76.527 (2)°0.41 × 0.32 × 0.26 mm
β = 81.252 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
6485 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5910 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.820Rint = 0.023
14769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.01Δρmax = 0.47 e Å3
6485 reflectionsΔρmin = 0.51 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.14557 (2)0.61408 (2)0.219863 (18)0.01073 (7)
O10.27282 (14)0.74827 (12)0.17880 (10)0.0147 (3)
O20.42638 (15)0.81778 (13)0.24813 (11)0.0200 (3)
O30.06221 (13)0.46491 (12)0.32080 (10)0.0135 (3)
O40.07765 (14)0.33692 (12)0.48273 (11)0.0154 (3)
O50.32914 (16)1.18635 (13)0.32094 (11)0.0203 (3)
H5A0.29271.12620.32290.024*
O60.43646 (15)1.24853 (13)0.43060 (12)0.0204 (3)
O70.08261 (14)0.88178 (12)0.42880 (11)0.0163 (3)
O80.06159 (14)0.77645 (12)0.59989 (11)0.0171 (3)
H8A0.01400.74010.57420.021*
N10.23864 (15)0.58307 (14)0.35305 (12)0.0116 (3)
N20.05900 (16)0.65260 (14)0.07697 (12)0.0129 (3)
N30.29117 (16)0.49314 (14)0.13877 (12)0.0127 (3)
N40.24313 (16)1.01566 (14)0.48213 (12)0.0134 (3)
C10.32172 (18)0.65734 (16)0.35902 (14)0.0121 (3)
C20.37457 (19)0.65049 (17)0.45478 (15)0.0146 (3)
H2A0.43270.70410.45920.018*
C30.33980 (19)0.56227 (18)0.54497 (15)0.0155 (4)
H3A0.37400.55600.61200.019*
C40.25558 (19)0.48366 (17)0.53718 (15)0.0139 (3)
H4B0.23300.42220.59750.017*
C50.20561 (18)0.49817 (16)0.43806 (14)0.0116 (3)
C60.34375 (19)0.74912 (16)0.25348 (15)0.0137 (3)
C70.10751 (18)0.42734 (16)0.41213 (14)0.0118 (3)
C80.05952 (19)0.72987 (17)0.04897 (15)0.0152 (3)
H8B0.11580.77340.10080.018*
C90.1049 (2)0.74989 (18)0.05366 (15)0.0172 (4)
H9A0.19020.80600.07040.021*
C100.0251 (2)0.68771 (18)0.12991 (15)0.0171 (4)
H10A0.05400.70100.20010.021*
C110.1005 (2)0.60376 (18)0.10257 (15)0.0154 (4)
C120.1883 (2)0.53061 (19)0.17468 (15)0.0185 (4)
H12A0.16470.54070.24610.022*
C130.3046 (2)0.44706 (19)0.14207 (16)0.0186 (4)
H13A0.36060.39910.19090.022*
C140.34446 (19)0.42989 (17)0.03512 (15)0.0150 (3)
C150.4619 (2)0.34293 (17)0.00459 (16)0.0175 (4)
H15A0.52070.29140.04020.021*
C160.4904 (2)0.33338 (17)0.10809 (16)0.0168 (4)
H16A0.56910.27500.13570.020*
C170.40235 (19)0.41079 (17)0.17342 (15)0.0149 (3)
H17A0.42350.40360.24500.018*
C180.26186 (19)0.50255 (16)0.03579 (14)0.0130 (3)
C190.13779 (19)0.58987 (16)0.00219 (14)0.0131 (3)
C200.32109 (19)1.08231 (17)0.50875 (15)0.0138 (3)
C210.3586 (2)1.06598 (18)0.61277 (16)0.0175 (4)
H21A0.41391.11610.62850.021*
C220.3128 (2)0.97428 (19)0.69244 (16)0.0189 (4)
H22A0.33710.95960.76420.023*
C230.2307 (2)0.90385 (18)0.66607 (15)0.0167 (4)
H23A0.19780.84060.71940.020*
C240.19803 (18)0.92821 (16)0.56006 (15)0.0131 (3)
C250.36731 (19)1.17943 (17)0.41766 (15)0.0157 (4)
C260.10791 (18)0.86000 (16)0.52254 (15)0.0133 (3)
O1W0.02250 (14)0.73999 (12)0.28080 (11)0.0162 (3)
H10.03420.73390.34900.024*
H20.00890.80980.24460.024*
O2W0.20162 (16)1.03365 (13)0.25314 (11)0.0206 (3)
H30.27290.98120.23500.031*
H40.16540.99110.30940.031*
O3W0.00061 (15)0.96907 (14)0.14753 (12)0.0238 (3)
H50.04841.00920.17010.036*
H60.02790.95870.08330.036*
O4W0.2328 (2)1.09864 (16)0.03141 (15)0.0428 (5)
H70.24801.15280.02630.064*
H80.27521.04000.03900.064*
O5W0.5989 (2)0.92774 (19)0.06799 (16)0.0443 (5)
H90.58420.85950.10700.066*
H100.53400.97800.09640.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01194 (12)0.01138 (12)0.00901 (11)0.00305 (8)0.00187 (8)0.00123 (8)
O10.0164 (6)0.0140 (6)0.0136 (6)0.0047 (5)0.0022 (5)0.0008 (5)
O20.0198 (7)0.0206 (7)0.0217 (7)0.0116 (6)0.0009 (5)0.0020 (6)
O30.0145 (6)0.0154 (6)0.0113 (6)0.0053 (5)0.0023 (5)0.0013 (5)
O40.0178 (6)0.0146 (6)0.0139 (6)0.0068 (5)0.0018 (5)0.0004 (5)
O50.0295 (8)0.0183 (7)0.0165 (7)0.0131 (6)0.0065 (6)0.0006 (5)
O60.0236 (7)0.0193 (7)0.0218 (7)0.0110 (6)0.0049 (6)0.0026 (6)
O70.0174 (6)0.0177 (6)0.0147 (6)0.0067 (5)0.0028 (5)0.0015 (5)
O80.0207 (7)0.0167 (6)0.0161 (6)0.0099 (5)0.0029 (5)0.0009 (5)
N10.0111 (7)0.0117 (7)0.0119 (7)0.0023 (5)0.0011 (5)0.0028 (5)
N20.0151 (7)0.0126 (7)0.0115 (7)0.0050 (6)0.0021 (6)0.0009 (5)
N30.0148 (7)0.0121 (7)0.0121 (7)0.0057 (6)0.0012 (6)0.0013 (5)
N40.0136 (7)0.0131 (7)0.0138 (7)0.0034 (6)0.0020 (6)0.0023 (6)
C10.0102 (8)0.0115 (8)0.0144 (8)0.0015 (6)0.0009 (6)0.0034 (6)
C20.0121 (8)0.0163 (8)0.0171 (9)0.0038 (7)0.0020 (7)0.0056 (7)
C30.0137 (8)0.0196 (9)0.0139 (8)0.0016 (7)0.0043 (6)0.0048 (7)
C40.0133 (8)0.0153 (8)0.0119 (8)0.0018 (7)0.0024 (6)0.0009 (6)
C50.0109 (8)0.0113 (8)0.0123 (8)0.0012 (6)0.0015 (6)0.0027 (6)
C60.0134 (8)0.0123 (8)0.0146 (8)0.0016 (6)0.0001 (6)0.0032 (6)
C70.0117 (8)0.0119 (8)0.0121 (8)0.0026 (6)0.0009 (6)0.0038 (6)
C80.0165 (9)0.0143 (8)0.0145 (9)0.0040 (7)0.0027 (7)0.0007 (7)
C90.0171 (9)0.0178 (9)0.0159 (9)0.0050 (7)0.0053 (7)0.0017 (7)
C100.0194 (9)0.0207 (9)0.0122 (8)0.0081 (7)0.0046 (7)0.0010 (7)
C110.0167 (9)0.0184 (9)0.0126 (8)0.0079 (7)0.0010 (7)0.0021 (7)
C120.0218 (9)0.0244 (10)0.0123 (8)0.0098 (8)0.0003 (7)0.0055 (7)
C130.0194 (9)0.0244 (10)0.0148 (9)0.0098 (8)0.0033 (7)0.0077 (7)
C140.0159 (8)0.0161 (8)0.0145 (8)0.0075 (7)0.0014 (7)0.0035 (7)
C150.0166 (9)0.0158 (9)0.0205 (9)0.0058 (7)0.0044 (7)0.0060 (7)
C160.0140 (8)0.0146 (8)0.0202 (9)0.0029 (7)0.0001 (7)0.0016 (7)
C170.0157 (8)0.0141 (8)0.0148 (8)0.0051 (7)0.0007 (7)0.0012 (7)
C180.0149 (8)0.0134 (8)0.0117 (8)0.0072 (7)0.0002 (6)0.0009 (6)
C190.0149 (8)0.0136 (8)0.0116 (8)0.0065 (7)0.0007 (6)0.0012 (6)
C200.0125 (8)0.0136 (8)0.0153 (8)0.0024 (6)0.0021 (6)0.0028 (7)
C210.0177 (9)0.0189 (9)0.0190 (9)0.0062 (7)0.0039 (7)0.0060 (7)
C220.0218 (9)0.0226 (9)0.0135 (9)0.0056 (8)0.0044 (7)0.0038 (7)
C230.0188 (9)0.0167 (9)0.0146 (9)0.0053 (7)0.0021 (7)0.0012 (7)
C240.0119 (8)0.0120 (8)0.0151 (8)0.0021 (6)0.0011 (6)0.0030 (6)
C250.0157 (8)0.0144 (8)0.0172 (9)0.0033 (7)0.0026 (7)0.0028 (7)
C260.0121 (8)0.0113 (8)0.0163 (8)0.0019 (6)0.0009 (6)0.0031 (6)
O1W0.0178 (6)0.0170 (6)0.0126 (6)0.0011 (5)0.0008 (5)0.0037 (5)
O2W0.0291 (8)0.0170 (7)0.0158 (7)0.0069 (6)0.0043 (6)0.0001 (5)
O3W0.0238 (7)0.0283 (8)0.0233 (8)0.0102 (6)0.0030 (6)0.0081 (6)
O4W0.0644 (13)0.0272 (9)0.0417 (11)0.0193 (9)0.0339 (10)0.0116 (8)
O5W0.0342 (10)0.0487 (11)0.0398 (11)0.0134 (9)0.0049 (8)0.0100 (9)
Geometric parameters (Å, º) top
Ni1—N11.9790 (15)C9—H9A0.9500
Ni1—N22.0462 (15)C10—C111.414 (3)
Ni1—N32.0754 (16)C10—H10A0.9500
Ni1—O1W2.1023 (13)C11—C191.406 (3)
Ni1—O12.1325 (13)C11—C121.436 (3)
Ni1—O32.1325 (13)C12—C131.360 (3)
O1—C61.272 (2)C12—H12A0.9500
O2—C61.246 (2)C13—C141.436 (3)
O3—C71.257 (2)C13—H13A0.9500
O4—C71.260 (2)C14—C181.404 (3)
O5—C251.326 (2)C14—C151.411 (3)
O5—H5A0.8400C15—C161.368 (3)
O6—C251.212 (2)C15—H15A0.9500
O7—C261.217 (2)C16—C171.409 (3)
O8—C261.312 (2)C16—H16A0.9500
O8—H8A0.8400C17—H17A0.9500
N1—C51.331 (2)C18—C191.437 (3)
N1—C11.335 (2)C20—C211.393 (3)
N2—C81.332 (2)C20—C251.504 (3)
N2—C191.362 (2)C21—C221.385 (3)
N3—C171.324 (2)C21—H21A0.9500
N3—C181.364 (2)C22—C231.394 (3)
N4—C201.331 (2)C22—H22A0.9500
N4—C241.339 (2)C23—C241.389 (3)
C1—C21.382 (3)C23—H23A0.9500
C1—C61.522 (2)C24—C261.506 (3)
C2—C31.399 (3)O1W—H10.8500
C2—H2A0.9500O1W—H20.8501
C3—C41.390 (3)O2W—H30.8500
C3—H3A0.9500O2W—H40.8500
C4—C51.390 (2)O3W—H50.8501
C4—H4B0.9500O3W—H60.8501
C5—C71.519 (2)O4W—H70.8499
C8—C91.402 (3)O4W—H80.8500
C8—H8B0.9500O5W—H90.8500
C9—C101.376 (3)O5W—H100.8500
N1—Ni1—N2176.22 (6)C9—C10—H10A120.4
N1—Ni1—N398.32 (6)C11—C10—H10A120.4
N2—Ni1—N380.66 (6)C19—C11—C10117.33 (17)
N1—Ni1—O1W91.23 (6)C19—C11—C12119.15 (17)
N2—Ni1—O1W89.89 (6)C10—C11—C12123.49 (17)
N3—Ni1—O1W170.36 (6)C13—C12—C11120.85 (18)
N1—Ni1—O178.03 (6)C13—C12—H12A119.6
N2—Ni1—O198.33 (6)C11—C12—H12A119.6
N3—Ni1—O191.53 (5)C12—C13—C14121.23 (18)
O1W—Ni1—O191.76 (5)C12—C13—H13A119.4
N1—Ni1—O377.62 (6)C14—C13—H13A119.4
N2—Ni1—O3106.01 (5)C18—C14—C15117.11 (17)
N3—Ni1—O391.48 (5)C18—C14—C13118.81 (17)
O1W—Ni1—O389.24 (5)C15—C14—C13124.07 (18)
O1—Ni1—O3155.65 (5)C16—C15—C14119.53 (17)
C6—O1—Ni1114.67 (11)C16—C15—H15A120.2
C7—O3—Ni1114.38 (11)C14—C15—H15A120.2
C25—O5—H5A109.5C15—C16—C17119.54 (18)
C26—O8—H8A109.5C15—C16—H16A120.2
C5—N1—C1121.56 (16)C17—C16—H16A120.2
C5—N1—Ni1119.38 (12)N3—C17—C16122.47 (17)
C1—N1—Ni1118.66 (12)N3—C17—H17A118.8
C8—N2—C19117.89 (16)C16—C17—H17A118.8
C8—N2—Ni1128.89 (13)N3—C18—C14123.15 (17)
C19—N2—Ni1113.21 (12)N3—C18—C19116.67 (16)
C17—N3—C18118.21 (16)C14—C18—C19120.16 (17)
C17—N3—Ni1129.43 (13)N2—C19—C11123.22 (17)
C18—N3—Ni1112.35 (12)N2—C19—C18116.97 (16)
C20—N4—C24117.95 (16)C11—C19—C18119.77 (17)
N1—C1—C2121.05 (16)N4—C20—C21123.74 (17)
N1—C1—C6113.02 (15)N4—C20—C25115.21 (16)
C2—C1—C6125.88 (16)C21—C20—C25121.05 (17)
C1—C2—C3117.96 (17)C22—C21—C20117.81 (17)
C1—C2—H2A121.0C22—C21—H21A121.1
C3—C2—H2A121.0C20—C21—H21A121.1
C4—C3—C2120.48 (17)C21—C22—C23119.22 (18)
C4—C3—H3A119.8C21—C22—H22A120.4
C2—C3—H3A119.8C23—C22—H22A120.4
C5—C4—C3117.65 (17)C24—C23—C22118.47 (17)
C5—C4—H4B121.2C24—C23—H23A120.8
C3—C4—H4B121.2C22—C23—H23A120.8
N1—C5—C4121.29 (16)N4—C24—C23122.80 (17)
N1—C5—C7111.82 (15)N4—C24—C26113.94 (16)
C4—C5—C7126.87 (16)C23—C24—C26123.26 (16)
O2—C6—O1126.39 (17)O6—C25—O5120.81 (17)
O2—C6—C1118.29 (16)O6—C25—C20122.40 (17)
O1—C6—C1115.32 (16)O5—C25—C20116.79 (16)
O3—C7—O4125.29 (17)O7—C26—O8124.45 (17)
O3—C7—C5116.47 (15)O7—C26—C24121.99 (16)
O4—C7—C5118.24 (16)O8—C26—C24113.56 (16)
N2—C8—C9122.90 (18)Ni1—O1W—H1116.7
N2—C8—H8B118.6Ni1—O1W—H2102.9
C9—C8—H8B118.6H1—O1W—H2114.9
C10—C9—C8119.48 (18)H3—O2W—H4101.8
C10—C9—H9A120.3H5—O3W—H6113.4
C8—C9—H9A120.3H7—O4W—H8113.0
C9—C10—C11119.17 (17)H9—O5W—H1099.9
N1—Ni1—O1—C61.09 (12)N1—C5—C7—O4173.91 (15)
N2—Ni1—O1—C6179.94 (12)C4—C5—C7—O47.9 (3)
N3—Ni1—O1—C699.28 (13)C19—N2—C8—C90.7 (3)
O1W—Ni1—O1—C689.79 (13)Ni1—N2—C8—C9178.26 (13)
O3—Ni1—O1—C62.3 (2)N2—C8—C9—C100.1 (3)
N1—Ni1—O3—C70.40 (12)C8—C9—C10—C110.7 (3)
N2—Ni1—O3—C7178.50 (12)C9—C10—C11—C190.8 (3)
N3—Ni1—O3—C797.79 (13)C9—C10—C11—C12177.34 (18)
O1W—Ni1—O3—C791.82 (12)C19—C11—C12—C131.2 (3)
O1—Ni1—O3—C70.8 (2)C10—C11—C12—C13176.87 (18)
N3—Ni1—N1—C593.15 (14)C11—C12—C13—C140.6 (3)
O1W—Ni1—N1—C585.50 (13)C12—C13—C14—C180.9 (3)
O1—Ni1—N1—C5177.05 (14)C12—C13—C14—C15178.47 (18)
O3—Ni1—N1—C53.45 (13)C18—C14—C15—C160.3 (3)
N3—Ni1—N1—C194.01 (13)C13—C14—C15—C16179.67 (18)
O1W—Ni1—N1—C187.35 (13)C14—C15—C16—C170.2 (3)
O1—Ni1—N1—C14.20 (13)C18—N3—C17—C160.0 (3)
O3—Ni1—N1—C1176.30 (14)Ni1—N3—C17—C16178.89 (13)
N3—Ni1—N2—C8177.64 (16)C15—C16—C17—N30.3 (3)
O1W—Ni1—N2—C80.40 (16)C17—N3—C18—C140.5 (3)
O1—Ni1—N2—C892.17 (16)Ni1—N3—C18—C14179.59 (14)
O3—Ni1—N2—C888.78 (16)C17—N3—C18—C19177.93 (16)
N3—Ni1—N2—C193.34 (12)Ni1—N3—C18—C191.15 (19)
O1W—Ni1—N2—C19178.62 (12)C15—C14—C18—N30.7 (3)
O1—Ni1—N2—C1986.85 (12)C13—C14—C18—N3179.93 (16)
O3—Ni1—N2—C1992.20 (12)C15—C14—C18—C19177.73 (16)
N1—Ni1—N3—C177.14 (16)C13—C14—C18—C191.7 (3)
N2—Ni1—N3—C17176.54 (16)C8—N2—C19—C110.6 (3)
O1—Ni1—N3—C1785.27 (16)Ni1—N2—C19—C11178.56 (14)
O3—Ni1—N3—C1770.56 (16)C8—N2—C19—C18177.09 (16)
N1—Ni1—N3—C18173.91 (12)Ni1—N2—C19—C183.77 (19)
N2—Ni1—N3—C182.41 (12)C10—C11—C19—N20.2 (3)
O1—Ni1—N3—C1895.78 (12)C12—C11—C19—N2178.06 (17)
O3—Ni1—N3—C18108.39 (12)C10—C11—C19—C18177.79 (16)
C5—N1—C1—C21.3 (3)C12—C11—C19—C180.4 (3)
Ni1—N1—C1—C2171.37 (13)N3—C18—C19—N21.7 (2)
C5—N1—C1—C6178.88 (15)C14—C18—C19—N2176.74 (16)
Ni1—N1—C1—C66.2 (2)N3—C18—C19—C11179.51 (16)
N1—C1—C2—C30.8 (3)C14—C18—C19—C111.0 (3)
C6—C1—C2—C3178.04 (17)C24—N4—C20—C210.2 (3)
C1—C2—C3—C40.6 (3)C24—N4—C20—C25179.58 (16)
C2—C3—C4—C51.4 (3)N4—C20—C21—C220.6 (3)
C1—N1—C5—C40.4 (3)C25—C20—C21—C22179.68 (17)
Ni1—N1—C5—C4172.21 (13)C20—C21—C22—C230.7 (3)
C1—N1—C5—C7178.71 (15)C21—C22—C23—C240.2 (3)
Ni1—N1—C5—C76.08 (19)C20—N4—C24—C230.8 (3)
C3—C4—C5—N10.9 (3)C20—N4—C24—C26178.62 (16)
C3—C4—C5—C7177.09 (17)C22—C23—C24—N40.6 (3)
Ni1—O1—C6—O2179.10 (15)C22—C23—C24—C26178.76 (17)
Ni1—O1—C6—C11.73 (19)N4—C20—C25—O6178.52 (18)
N1—C1—C6—O2175.69 (16)C21—C20—C25—O61.3 (3)
C2—C1—C6—O26.9 (3)N4—C20—C25—O51.7 (2)
N1—C1—C6—O15.1 (2)C21—C20—C25—O5178.54 (17)
C2—C1—C6—O1172.37 (17)N4—C24—C26—O71.8 (3)
Ni1—O3—C7—O4176.60 (14)C23—C24—C26—O7178.84 (18)
Ni1—O3—C7—C53.63 (19)N4—C24—C26—O8178.54 (15)
N1—C5—C7—O36.3 (2)C23—C24—C26—O80.9 (3)
C4—C5—C7—O3171.87 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2W0.841.962.730 (2)151
O8—H8A···O4i0.841.732.573 (2)177
O1W—H1···O4i0.852.132.946 (2)161
O1W—H2···O3W0.851.952.796 (2)171
O2W—H3···O20.852.092.900 (2)159
O2W—H4···O70.851.942.788 (2)174
O3W—H5···O2W0.852.092.887 (2)157
O3W—H6···O4Wii0.852.373.083 (3)142
O4W—H7···O1ii0.852.032.864 (3)168
O4W—H8···O5Wiii0.851.932.772 (3)169
O5W—H9···O20.852.242.878 (3)131
O2W—H4···N40.852.542.968 (2)112
O5—H5A···N40.842.182.669 (2)117
C2—H2A···O6iv0.952.283.105 (2)144
C8—H8B···O1W0.952.523.070 (2)117
C12—H12A···O3v0.952.603.317 (2)132
C15—H15A···O1vi0.952.523.385 (2)151
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z; (iii) x1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C7H3NO4)(C12H8N2)(H2O)]·C7H5NO4·4H2O
Mr661.22
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.9454 (7), 11.3524 (7), 12.7687 (10)
α, β, γ (°)76.527 (2), 81.252 (2), 76.131 (2)
V3)1354.00 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.41 × 0.32 × 0.26
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.736, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
14769, 6485, 5910
Rint0.023
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.01
No. of reflections6485
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Selected geometric parameters (Å, º) top
Ni1—N11.9790 (15)Ni1—O1W2.1023 (13)
Ni1—N22.0462 (15)Ni1—O12.1325 (13)
Ni1—N32.0754 (16)Ni1—O32.1325 (13)
N1—Ni1—N2176.22 (6)N1—Ni1—O1W91.23 (6)
N1—Ni1—N398.32 (6)N2—Ni1—O1W89.89 (6)
N2—Ni1—N380.66 (6)O1—Ni1—O3155.65 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2W0.841.9642.730 (2)151.05
O8—H8A···O4i0.841.7332.573 (2)177.44
O1W—H1···O4i0.852.1282.946 (2)161.43
O1W—H2···O3W0.851.9532.796 (2)171.06
O2W—H3···O20.852.0922.900 (2)158.67
O2W—H4···O70.851.9412.788 (2)174.02
O3W—H5···O2W0.852.0872.887 (2)156.66
O3W—H6···O4Wii0.852.3713.083 (3)141.71
O4W—H7···O1ii0.852.0272.864 (3)168.23
O4W—H8···O5Wiii0.851.9322.772 (3)169.14
O5W—H9···O20.852.2442.878 (3)131.44
O2W—H4···N40.852.5402.968 (2)112.00
O5—H5A···N40.842.1802.669 (2)117.00
C2—H2A···O6iv0.952.2803.105 (2)144.00
C8—H8B···O1W0.952.5203.070 (2)117.00
C12—H12A···O3v0.952.6003.317 (2)132.00
C15—H15A···O1vi0.952.5203.385 (2)151.00
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z; (iii) x1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z; (vi) x+1, y+1, z.
 

Acknowledgements

Financial support by the University of Kashan and Payame-Noor University (PNU), Qom Center, is gratefully acknowledged. We thank the X-ray Structural Center (Moscow, Russia) for the data collection.

References

First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc., 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Motyeian, E., Khadivi, R., Ghadermazi, M. & Manteghi, F. (2008). Acta Cryst. E64, m320–m321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationA. Sharif, M., Aghabozorg, H., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2235–m2236.  Google Scholar
First citationBruker (2007). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, H., Wan, Y.-H. & Feng, Y.-L. (2005). Z. Kristallogr. New Cryst. Struct. 220, 560–562.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds