organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o351-o352

3-Chloro-N-(di­phenyl­carbamo­thio­yl)benzamide

aDepartment of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR 33343, Turkey, bDepartment of Chemistry, University of Paderborn, Paderborn 33098, Germany, cDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, and dDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 13 January 2009; accepted 13 January 2009; online 17 January 2009)

In the title compound, C20H15ClN2OS, the bond lengths and angles in the thio­urea group are typical of thio­urea derivatives. The C—N bond lengths in the center of the mol­ecule are shorter than the normal C—N single bond due to the resonance effects in this part of the mol­ecule. The conformation of the title mol­ecule with respect to the thio­carbonyl and carbonyl groups is twisted, as reflected by the C—N—C—O and C—N—C—N torsion angles of −4.4 (6) and −53.3 (5)°, respectively. Pairs of the mol­ecules are linked into centrosymmetric dimers, stacked along the c axis via inter­molecular N—H⋯S inter­actions. There are also weak inter­molecular C—H⋯O and C—H⋯S contacts in the structure.

Related literature

For synthesis, see: Özer et al. (2009[Özer, C. K., Arslan, H., VanDerveer, D. & Binzet, G. (2009). J. Coord. Chem. 62, 266-276.]); Mansuroğlu et al. (2008[Mansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J. Coord. Chem. 61, 3134-3146.]); Uğur et al. (2006[Uğur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem. 32, 669-675.]); Arslan et al. (2003c[Arslan, H., Külcü, N. & Flörke, U. (2003c). Transition Met. Chem. 28, 816-819.]). For general background, see: Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216, 473-488.]); Huebhr et al. (1953[Huebhr, O. F., Marsh, J. L., Mizzoni, R. H., Mull, R. P., Schroeder, D. C., Troxell, H. A. & Scholz, C. R. (1953). J. Am. Chem. Soc. 75, 2274-2275.]); Madan et al. (1991[Madan, V. K., Taneja, A. D. & Kudesia, V. P. (1991). J. Indian Chem. Soc. 68, 471-472.]); Schroeder (1955[Schroeder, D. C. (1955). Chem. Rev. 55, 181-228.]). For related structures, see: Khawar Rauf et al. (2006[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006). Acta Cryst. E62, o4296-o4298.], 2009[Khawar Rauf, M., Bolte, M. & Badshah, A. (2009). Acta Cryst. E65, o177.]); Arslan et al. (2003a[Arslan, H., Flörke, U. & Külcü, N. (2003a). Acta Cryst. E59, o641-o642.],b[Arslan, H., Flörke, U. & Külcü, N. (2003b). J. Chem. Crystallogr. 33, 919-924.]); Yamin & Yusof (2003[Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15ClN2OS

  • Mr = 366.85

  • Triclinic, [P \overline 1]

  • a = 8.196 (5) Å

  • b = 10.357 (6) Å

  • c = 11.699 (6) Å

  • α = 72.565 (10)°

  • β = 70.495 (10)°

  • γ = 71.303 (10)°

  • V = 865.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 120 (2) K

  • 0.49 × 0.32 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.847, Tmax = 0.966

  • 5401 measured reflections

  • 3490 independent reflections

  • 2290 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.146

  • S = 1.06

  • 3490 reflections

  • 230 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.90 (2) 2.48 (3) 3.351 (4) 162 (2)
C13—H13A⋯O1ii 0.95 2.59 3.434 (5) 148
C18—H18A⋯S1iii 0.95 2.87 3.609 (5) 136
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) x, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thioureas and their metal complexes are an important class of compounds with a wide range of biological applications such as antitubercular, antithroid, anthelmintic, antibacterial, insecticidal and rodenticidal properties (Schroeder, 1955; Huebhr et al., 1953; Madan et al., 1991). Another area of the application of thiourea derivatives is analytical chemistry where some of these compounds have been used in the liquid-liquid extraction and separation of some transition metal ions (Koch, 2001).

Recently, a number of works on the structural and spectral properties of the thiourea derivatives and their metal complexes have appeared in the literature (Özer et al., 2009; Mansuroğlu et al., 2008; Uğur et al., 2006; Arslan et al., 2003c). We report here the crystal structure of one of them. The synthesis involves the reaction of a 3-chlorobenzoyl chloride with potassium thiocyanate in dry acetone followed by condensation of the 3-chlorobenzoyl isothiocyanate with the diphenylamine.

The molecular structure of the title compound, (I), is depicted in Fig. 1. The bond lengths and angles in the thiourea moiety are typical for thiourea derivatives; the C1-S1 (1.659 (3) Å) and C14-O1 (1.216 (4) Å) bonds both show typical double-bond character (Arslan et al., 2003a, 2003b; Khawar Rauf et al. 2009, 2006; Yamin & Yusof, 2003). The C-N bond lengths C14-N1 (1.388 (4) Å), C1-N1 (1.380 (4) Å) and C1-N2 (1.336 (4) Å) are shorter than the normal C-N single-bond length of about 1.48 Å. The shortening of these C-N bonds reveals the effects of resonance in this part of the molecule (Arslan et al., 2003a, 2003b; Khawar Rauf et al., 2009, 2006; Yamin & Yusof, 2003). The conformation of the title molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the C1-N1-C14-O1 and C14-N1-C1-N2 torsion angles of -4.4 (6) o and -53.3 (5) o, respectively.

The atom N2 is sp2-hybridized, because of the sum of the angles around atom N2 is 359.8 (3) °. The phenyl rings are rotated out of the mean plane of the N1-C1-S1-N2 atoms by 80.1 (2) ° (C2-C7 ring) and 69.96 (19) ° (C8-C13 ring). In addition, the dihedral angle between C2-C7 ring and C8-C13 ring is 72.8 (2) °.

As can be seen from the packing diagram (Fig. 2), intermolecular N-H···S hydrogen bond (Table 1) links the molecules into dimers, which are stacked along the c-axis. The other intermolecular contacts, C-H···O and C-H···S, are also listed in Table 1.

Related literature top

For synthesis, see: Özer et al. (2009); Mansuroğlu et al. (2008); Uğur et al. (2006); Arslan et al. (2003c). For general background, see: Koch (2001); Huebhr et al. (1953); Madan et al. (1991); Schroeder (1955). For related compounds, see: Khawar Rauf et al. (2006, 2009); Arslan et al. (2003a,b); Yamin & Yusof (2003).

Experimental top

The title compound was prepared with a procedure similar to that reported in the literature (Arslan et al., 2003a). A solution of 3-chlorobenzoyl chloride (0.01 mol) in acetone (50 cm3) was added dropwise to a suspension of potassium thiocyanate (0.01 mol) in acetone (30 cm3). The reaction mixture was heated under reflux for 30 min, and then cooled to room temperature. A solution of diphenylamine (0.01 mol) in acetone (10 cm3) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 cm3) was added to the solution, which was then filtered. The solid product was washed with water and purified by recrystalization from an ethanol:dichloromethane mixture (1:2). Anal. Calcd. for C20H15ClN2OS: C, 65.5; H, 4.1; N,7.6. Found: C, 65.4; H, 3.9; N, 7.7%.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
3-Chloro-N-(diphenylcarbamothioyl)benzamide top
Crystal data top
C20H15ClN2OSZ = 2
Mr = 366.85F(000) = 380
Triclinic, P1Dx = 1.407 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.196 (5) ÅCell parameters from 710 reflections
b = 10.357 (6) Åθ = 3.0–26.5°
c = 11.699 (6) ŵ = 0.35 mm1
α = 72.565 (10)°T = 120 K
β = 70.495 (10)°Prism, colourless
γ = 71.303 (10)°0.49 × 0.32 × 0.10 mm
V = 865.8 (9) Å3
Data collection top
Bruker SMART APEX
diffractometer
3490 independent reflections
Radiation source: sealed tube2290 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ϕ and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.847, Tmax = 0.966k = 1212
5401 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: difference Fourier map
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0629P)2]
where P = (Fo2 + 2Fc2)/3
3490 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C20H15ClN2OSγ = 71.303 (10)°
Mr = 366.85V = 865.8 (9) Å3
Triclinic, P1Z = 2
a = 8.196 (5) ÅMo Kα radiation
b = 10.357 (6) ŵ = 0.35 mm1
c = 11.699 (6) ÅT = 120 K
α = 72.565 (10)°0.49 × 0.32 × 0.10 mm
β = 70.495 (10)°
Data collection top
Bruker SMART APEX
diffractometer
3490 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2290 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.966Rint = 0.080
5401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0611 restraint
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
3490 reflectionsΔρmin = 0.31 e Å3
230 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51239 (14)0.17055 (10)0.41549 (10)0.0406 (3)
S10.36004 (12)0.69686 (9)0.05276 (9)0.0269 (2)
O10.2248 (3)0.3782 (2)0.3535 (2)0.0276 (6)
N10.2744 (4)0.4535 (3)0.1434 (3)0.0213 (6)
H10.364 (3)0.430 (3)0.078 (2)0.020 (9)*
N20.0613 (3)0.6406 (3)0.2112 (3)0.0210 (6)
C10.2248 (4)0.5945 (3)0.1413 (3)0.0210 (7)
C20.0059 (4)0.7766 (4)0.2405 (3)0.0226 (7)
C30.0764 (5)0.8908 (4)0.1661 (4)0.0330 (9)
H3A0.09180.88270.09170.040*
C40.1364 (5)1.0175 (4)0.2006 (5)0.0464 (11)
H4A0.19301.09750.14940.056*
C50.1154 (6)1.0291 (5)0.3079 (5)0.0506 (12)
H5A0.15651.11690.33090.061*
C60.0344 (6)0.9132 (5)0.3825 (4)0.0442 (11)
H6A0.02270.92050.45820.053*
C70.0294 (5)0.7869 (4)0.3478 (3)0.0322 (9)
H7A0.08930.70750.39770.039*
C80.0738 (4)0.5643 (3)0.2509 (3)0.0205 (7)
C90.1246 (5)0.5352 (4)0.1618 (3)0.0288 (8)
H9A0.06970.56500.07630.035*
C100.2535 (5)0.4636 (4)0.1963 (4)0.0361 (9)
H10A0.28690.44250.13490.043*
C110.3350 (5)0.4219 (4)0.3204 (4)0.0337 (9)
H11A0.42450.37200.34470.040*
C120.2857 (5)0.4530 (4)0.4097 (3)0.0291 (8)
H12A0.34160.42430.49520.035*
C130.1559 (4)0.5254 (4)0.3744 (3)0.0249 (8)
H13A0.12350.54830.43530.030*
C140.2666 (4)0.3508 (4)0.2519 (3)0.0220 (7)
C150.3130 (4)0.2074 (3)0.2337 (3)0.0213 (7)
C160.3799 (4)0.0992 (3)0.3218 (3)0.0235 (8)
H16A0.39530.11800.39170.028*
C170.4235 (5)0.0348 (4)0.3077 (3)0.0279 (8)
C180.3970 (5)0.0663 (4)0.2097 (3)0.0299 (9)
H18A0.42640.16040.20210.036*
C190.3273 (5)0.0413 (4)0.1234 (3)0.0314 (9)
H19A0.30740.02130.05570.038*
C200.2864 (5)0.1766 (4)0.1339 (3)0.0266 (8)
H20A0.23970.25010.07310.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0544 (6)0.0299 (5)0.0360 (6)0.0082 (5)0.0165 (5)0.0022 (4)
S10.0276 (5)0.0304 (5)0.0239 (5)0.0124 (4)0.0013 (4)0.0112 (4)
O10.0352 (14)0.0317 (14)0.0189 (13)0.0047 (11)0.0097 (11)0.0103 (11)
N10.0228 (15)0.0256 (15)0.0138 (15)0.0063 (12)0.0024 (12)0.0093 (12)
N20.0231 (15)0.0244 (15)0.0165 (15)0.0072 (12)0.0029 (12)0.0068 (12)
C10.0242 (17)0.0299 (19)0.0124 (17)0.0077 (15)0.0065 (14)0.0065 (14)
C20.0220 (17)0.0281 (19)0.0188 (18)0.0098 (15)0.0006 (14)0.0079 (15)
C30.033 (2)0.034 (2)0.028 (2)0.0098 (18)0.0074 (17)0.0003 (17)
C40.031 (2)0.029 (2)0.064 (3)0.0037 (18)0.003 (2)0.002 (2)
C50.050 (3)0.039 (3)0.060 (3)0.019 (2)0.014 (2)0.029 (2)
C60.051 (3)0.054 (3)0.039 (3)0.027 (2)0.004 (2)0.028 (2)
C70.039 (2)0.037 (2)0.025 (2)0.0152 (18)0.0062 (17)0.0088 (17)
C80.0216 (17)0.0235 (17)0.0169 (18)0.0060 (14)0.0047 (14)0.0048 (14)
C90.0303 (19)0.043 (2)0.0161 (18)0.0148 (18)0.0026 (15)0.0084 (16)
C100.042 (2)0.045 (2)0.031 (2)0.0138 (19)0.0168 (19)0.0099 (19)
C110.028 (2)0.040 (2)0.038 (2)0.0171 (18)0.0115 (18)0.0034 (18)
C120.0247 (19)0.036 (2)0.022 (2)0.0082 (17)0.0016 (16)0.0041 (16)
C130.0244 (18)0.0297 (19)0.0222 (19)0.0059 (15)0.0062 (15)0.0086 (15)
C140.0164 (16)0.0313 (19)0.0201 (19)0.0070 (14)0.0038 (14)0.0077 (15)
C150.0192 (16)0.0293 (19)0.0173 (18)0.0104 (14)0.0000 (14)0.0082 (15)
C160.0228 (17)0.032 (2)0.0175 (18)0.0119 (15)0.0003 (14)0.0081 (15)
C170.0269 (18)0.031 (2)0.023 (2)0.0121 (17)0.0033 (15)0.0002 (16)
C180.034 (2)0.026 (2)0.035 (2)0.0126 (16)0.0063 (17)0.0135 (17)
C190.037 (2)0.038 (2)0.028 (2)0.0163 (18)0.0071 (18)0.0129 (18)
C200.0290 (19)0.032 (2)0.0213 (19)0.0114 (16)0.0076 (16)0.0045 (16)
Geometric parameters (Å, º) top
Cl1—C171.730 (4)C8—C91.382 (4)
S1—C11.659 (3)C9—C101.366 (5)
O1—C141.216 (4)C9—H9A0.9500
N1—C11.380 (4)C10—C111.379 (5)
N1—C141.388 (4)C10—H10A0.9500
N1—H10.894 (10)C11—C121.387 (5)
N2—C11.336 (4)C11—H11A0.9500
N2—C81.437 (4)C12—C131.378 (5)
N2—C21.442 (4)C12—H12A0.9500
C2—C31.369 (5)C13—H13A0.9500
C2—C71.372 (5)C14—C151.473 (5)
C3—C41.378 (5)C15—C161.382 (5)
C3—H3A0.9500C15—C201.395 (4)
C4—C51.367 (6)C16—C171.364 (5)
C4—H4A0.9500C16—H16A0.9500
C5—C61.375 (6)C17—C181.380 (5)
C5—H5A0.9500C18—C191.375 (5)
C6—C71.374 (5)C18—H18A0.9500
C6—H6A0.9500C19—C201.367 (5)
C7—H7A0.9500C19—H19A0.9500
C8—C131.370 (5)C20—H20A0.9500
C1—N1—C14123.6 (3)C9—C10—C11119.9 (3)
C1—N1—H1114 (2)C9—C10—H10A120.0
C14—N1—H1115 (2)C11—C10—H10A120.0
C1—N2—C8122.0 (3)C10—C11—C12119.8 (3)
C1—N2—C2121.4 (3)C10—C11—H11A120.1
C8—N2—C2116.3 (3)C12—C11—H11A120.1
N2—C1—N1115.3 (3)C13—C12—C11120.1 (3)
N2—C1—S1123.8 (3)C13—C12—H12A120.0
N1—C1—S1120.9 (3)C11—C12—H12A120.0
C3—C2—C7121.0 (3)C8—C13—C12119.7 (3)
C3—C2—N2120.6 (3)C8—C13—H13A120.2
C7—C2—N2118.3 (3)C12—C13—H13A120.2
C2—C3—C4119.0 (4)O1—C14—N1122.1 (3)
C2—C3—H3A120.5O1—C14—C15123.2 (3)
C4—C3—H3A120.5N1—C14—C15114.7 (3)
C5—C4—C3120.6 (4)C16—C15—C20119.1 (3)
C5—C4—H4A119.7C16—C15—C14118.1 (3)
C3—C4—H4A119.7C20—C15—C14122.7 (3)
C4—C5—C6119.8 (4)C17—C16—C15119.5 (3)
C4—C5—H5A120.1C17—C16—H16A120.3
C6—C5—H5A120.1C15—C16—H16A120.3
C7—C6—C5120.2 (4)C16—C17—C18121.8 (3)
C7—C6—H6A119.9C16—C17—Cl1119.8 (3)
C5—C6—H6A119.9C18—C17—Cl1118.4 (3)
C2—C7—C6119.3 (4)C19—C18—C17118.6 (3)
C2—C7—H7A120.3C19—C18—H18A120.7
C6—C7—H7A120.3C17—C18—H18A120.7
C13—C8—C9120.3 (3)C20—C19—C18120.7 (3)
C13—C8—N2120.9 (3)C20—C19—H19A119.7
C9—C8—N2118.7 (3)C18—C19—H19A119.7
C10—C9—C8120.2 (3)C19—C20—C15120.3 (3)
C10—C9—H9A119.9C19—C20—H20A119.9
C8—C9—H9A119.9C15—C20—H20A119.9
C8—N2—C1—N120.3 (4)N2—C8—C9—C10179.6 (3)
C2—N2—C1—N1166.0 (3)C8—C9—C10—C110.9 (6)
C8—N2—C1—S1157.6 (2)C9—C10—C11—C120.1 (6)
C2—N2—C1—S116.2 (4)C10—C11—C12—C130.0 (6)
C14—N1—C1—N253.3 (4)C9—C8—C13—C122.1 (5)
C14—N1—C1—S1128.9 (3)N2—C8—C13—C12179.6 (3)
C1—N2—C2—C391.3 (4)C11—C12—C13—C81.1 (5)
C8—N2—C2—C382.8 (4)C1—N1—C14—O14.4 (5)
C1—N2—C2—C792.0 (4)C1—N1—C14—C15175.7 (3)
C8—N2—C2—C793.9 (4)O1—C14—C15—C1626.1 (5)
C7—C2—C3—C40.2 (5)N1—C14—C15—C16153.8 (3)
N2—C2—C3—C4176.4 (3)O1—C14—C15—C20151.6 (3)
C2—C3—C4—C50.4 (6)N1—C14—C15—C2028.4 (4)
C3—C4—C5—C60.4 (6)C20—C15—C16—C172.0 (5)
C4—C5—C6—C71.8 (6)C14—C15—C16—C17179.8 (3)
C3—C2—C7—C61.5 (5)C15—C16—C17—C182.3 (5)
N2—C2—C7—C6175.1 (3)C15—C16—C17—Cl1178.4 (2)
C5—C6—C7—C22.3 (6)C16—C17—C18—C191.1 (5)
C1—N2—C8—C13123.8 (4)Cl1—C17—C18—C19179.7 (3)
C2—N2—C8—C1362.2 (4)C17—C18—C19—C200.5 (5)
C1—N2—C8—C958.6 (4)C18—C19—C20—C150.8 (5)
C2—N2—C8—C9115.4 (4)C16—C15—C20—C190.5 (5)
C13—C8—C9—C102.0 (5)C14—C15—C20—C19178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.90 (2)2.48 (3)3.351 (4)162 (2)
C13—H13A···O1ii0.952.593.434 (5)148
C18—H18A···S1iii0.952.873.609 (5)136
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC20H15ClN2OS
Mr366.85
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.196 (5), 10.357 (6), 11.699 (6)
α, β, γ (°)72.565 (10), 70.495 (10), 71.303 (10)
V3)865.8 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.49 × 0.32 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.847, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
5401, 3490, 2290
Rint0.080
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.146, 1.06
No. of reflections3490
No. of parameters230
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.31

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.90 (2)2.48 (3)3.351 (4)162 (2)
C13—H13A···O1ii0.952.593.434 (5)148
C18—H18A···S1iii0.952.873.609 (5)136
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y1, z.
 

Acknowledgements

This work was supported by Mersin University Research Fund (Project Nos. BAP-ECZ-F-TBB-(HA) 2004–3 and BAPFEF-KB-(NK) 2006–3). This study is part of the PhD thesis of Gün Binzet.

References

First citationArslan, H., Flörke, U. & Külcü, N. (2003a). Acta Cryst. E59, o641–o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., Flörke, U. & Külcü, N. (2003b). J. Chem. Crystallogr. 33, 919–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationArslan, H., Külcü, N. & Flörke, U. (2003c). Transition Met. Chem. 28, 816–819.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuebhr, O. F., Marsh, J. L., Mizzoni, R. H., Mull, R. P., Schroeder, D. C., Troxell, H. A. & Scholz, C. R. (1953). J. Am. Chem. Soc. 75, 2274–2275.  Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006). Acta Cryst. E62, o4296–o4298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Badshah, A. (2009). Acta Cryst. E65, o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216, 473–488.  Web of Science CrossRef Google Scholar
First citationMadan, V. K., Taneja, A. D. & Kudesia, V. P. (1991). J. Indian Chem. Soc. 68, 471–472.  CAS Google Scholar
First citationMansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J. Coord. Chem. 61, 3134–3146.  Google Scholar
First citationÖzer, C. K., Arslan, H., VanDerveer, D. & Binzet, G. (2009). J. Coord. Chem. 62, 266–276.  Google Scholar
First citationSchroeder, D. C. (1955). Chem. Rev. 55, 181–228.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUğur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem. 32, 669–675.  Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o351-o352
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds