organic compounds
3-Chloro-N-(diphenylcarbamothioyl)benzamide
aDepartment of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR 33343, Turkey, bDepartment of Chemistry, University of Paderborn, Paderborn 33098, Germany, cDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, and dDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com
In the title compound, C20H15ClN2OS, the bond lengths and angles in the thiourea group are typical of thiourea derivatives. The C—N bond lengths in the center of the molecule are shorter than the normal C—N single bond due to the resonance effects in this part of the molecule. The conformation of the title molecule with respect to the thiocarbonyl and carbonyl groups is twisted, as reflected by the C—N—C—O and C—N—C—N torsion angles of −4.4 (6) and −53.3 (5)°, respectively. Pairs of the molecules are linked into centrosymmetric dimers, stacked along the c axis via intermolecular N—H⋯S interactions. There are also weak intermolecular C—H⋯O and C—H⋯S contacts in the structure.
Related literature
For synthesis, see: Özer et al. (2009); Mansuroğlu et al. (2008); Uğur et al. (2006); Arslan et al. (2003c). For general background, see: Koch (2001); Huebhr et al. (1953); Madan et al. (1991); Schroeder (1955). For related structures, see: Khawar Rauf et al. (2006, 2009); Arslan et al. (2003a,b); Yamin & Yusof (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809001639/bq2121sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809001639/bq2121Isup2.hkl
The title compound was prepared with a procedure similar to that reported in the literature (Arslan et al., 2003a). A solution of 3-chlorobenzoyl chloride (0.01 mol) in acetone (50 cm3) was added dropwise to a suspension of potassium thiocyanate (0.01 mol) in acetone (30 cm3). The reaction mixture was heated under reflux for 30 min, and then cooled to room temperature. A solution of diphenylamine (0.01 mol) in acetone (10 cm3) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 cm3) was added to the solution, which was then filtered. The solid product was washed with water and purified by recrystalization from an ethanol:dichloromethane mixture (1:2). Anal. Calcd. for C20H15ClN2OS: C, 65.5; H, 4.1; N,7.6. Found: C, 65.4; H, 3.9; N, 7.7%.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines. |
C20H15ClN2OS | Z = 2 |
Mr = 366.85 | F(000) = 380 |
Triclinic, P1 | Dx = 1.407 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.196 (5) Å | Cell parameters from 710 reflections |
b = 10.357 (6) Å | θ = 3.0–26.5° |
c = 11.699 (6) Å | µ = 0.35 mm−1 |
α = 72.565 (10)° | T = 120 K |
β = 70.495 (10)° | Prism, colourless |
γ = 71.303 (10)° | 0.49 × 0.32 × 0.10 mm |
V = 865.8 (9) Å3 |
Bruker SMART APEX diffractometer | 3490 independent reflections |
Radiation source: sealed tube | 2290 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.080 |
ϕ and ω scans | θmax = 26.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −10→10 |
Tmin = 0.847, Tmax = 0.966 | k = −12→12 |
5401 measured reflections | l = −13→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.146 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0629P)2] where P = (Fo2 + 2Fc2)/3 |
3490 reflections | (Δ/σ)max < 0.001 |
230 parameters | Δρmax = 0.37 e Å−3 |
1 restraint | Δρmin = −0.31 e Å−3 |
C20H15ClN2OS | γ = 71.303 (10)° |
Mr = 366.85 | V = 865.8 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.196 (5) Å | Mo Kα radiation |
b = 10.357 (6) Å | µ = 0.35 mm−1 |
c = 11.699 (6) Å | T = 120 K |
α = 72.565 (10)° | 0.49 × 0.32 × 0.10 mm |
β = 70.495 (10)° |
Bruker SMART APEX diffractometer | 3490 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 2290 reflections with I > 2σ(I) |
Tmin = 0.847, Tmax = 0.966 | Rint = 0.080 |
5401 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 1 restraint |
wR(F2) = 0.146 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.37 e Å−3 |
3490 reflections | Δρmin = −0.31 e Å−3 |
230 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.51239 (14) | −0.17055 (10) | 0.41549 (10) | 0.0406 (3) | |
S1 | 0.36004 (12) | 0.69686 (9) | 0.05276 (9) | 0.0269 (2) | |
O1 | 0.2248 (3) | 0.3782 (2) | 0.3535 (2) | 0.0276 (6) | |
N1 | 0.2744 (4) | 0.4535 (3) | 0.1434 (3) | 0.0213 (6) | |
H1 | 0.364 (3) | 0.430 (3) | 0.078 (2) | 0.020 (9)* | |
N2 | 0.0613 (3) | 0.6406 (3) | 0.2112 (3) | 0.0210 (6) | |
C1 | 0.2248 (4) | 0.5945 (3) | 0.1413 (3) | 0.0210 (7) | |
C2 | 0.0059 (4) | 0.7766 (4) | 0.2405 (3) | 0.0226 (7) | |
C3 | −0.0764 (5) | 0.8908 (4) | 0.1661 (4) | 0.0330 (9) | |
H3A | −0.0918 | 0.8827 | 0.0917 | 0.040* | |
C4 | −0.1364 (5) | 1.0175 (4) | 0.2006 (5) | 0.0464 (11) | |
H4A | −0.1930 | 1.0975 | 0.1494 | 0.056* | |
C5 | −0.1154 (6) | 1.0291 (5) | 0.3079 (5) | 0.0506 (12) | |
H5A | −0.1565 | 1.1169 | 0.3309 | 0.061* | |
C6 | −0.0344 (6) | 0.9132 (5) | 0.3825 (4) | 0.0442 (11) | |
H6A | −0.0227 | 0.9205 | 0.4582 | 0.053* | |
C7 | 0.0294 (5) | 0.7869 (4) | 0.3478 (3) | 0.0322 (9) | |
H7A | 0.0893 | 0.7075 | 0.3977 | 0.039* | |
C8 | −0.0738 (4) | 0.5643 (3) | 0.2509 (3) | 0.0205 (7) | |
C9 | −0.1246 (5) | 0.5352 (4) | 0.1618 (3) | 0.0288 (8) | |
H9A | −0.0697 | 0.5650 | 0.0763 | 0.035* | |
C10 | −0.2535 (5) | 0.4636 (4) | 0.1963 (4) | 0.0361 (9) | |
H10A | −0.2869 | 0.4425 | 0.1349 | 0.043* | |
C11 | −0.3350 (5) | 0.4219 (4) | 0.3204 (4) | 0.0337 (9) | |
H11A | −0.4245 | 0.3720 | 0.3447 | 0.040* | |
C12 | −0.2857 (5) | 0.4530 (4) | 0.4097 (3) | 0.0291 (8) | |
H12A | −0.3416 | 0.4243 | 0.4952 | 0.035* | |
C13 | −0.1559 (4) | 0.5254 (4) | 0.3744 (3) | 0.0249 (8) | |
H13A | −0.1235 | 0.5483 | 0.4353 | 0.030* | |
C14 | 0.2666 (4) | 0.3508 (4) | 0.2519 (3) | 0.0220 (7) | |
C15 | 0.3130 (4) | 0.2074 (3) | 0.2337 (3) | 0.0213 (7) | |
C16 | 0.3799 (4) | 0.0992 (3) | 0.3218 (3) | 0.0235 (8) | |
H16A | 0.3953 | 0.1180 | 0.3917 | 0.028* | |
C17 | 0.4235 (5) | −0.0348 (4) | 0.3077 (3) | 0.0279 (8) | |
C18 | 0.3970 (5) | −0.0663 (4) | 0.2097 (3) | 0.0299 (9) | |
H18A | 0.4264 | −0.1604 | 0.2021 | 0.036* | |
C19 | 0.3273 (5) | 0.0413 (4) | 0.1234 (3) | 0.0314 (9) | |
H19A | 0.3074 | 0.0213 | 0.0557 | 0.038* | |
C20 | 0.2864 (5) | 0.1766 (4) | 0.1339 (3) | 0.0266 (8) | |
H20A | 0.2397 | 0.2501 | 0.0731 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0544 (6) | 0.0299 (5) | 0.0360 (6) | −0.0082 (5) | −0.0165 (5) | −0.0022 (4) |
S1 | 0.0276 (5) | 0.0304 (5) | 0.0239 (5) | −0.0124 (4) | 0.0013 (4) | −0.0112 (4) |
O1 | 0.0352 (14) | 0.0317 (14) | 0.0189 (13) | −0.0047 (11) | −0.0097 (11) | −0.0103 (11) |
N1 | 0.0228 (15) | 0.0256 (15) | 0.0138 (15) | −0.0063 (12) | 0.0024 (12) | −0.0093 (12) |
N2 | 0.0231 (15) | 0.0244 (15) | 0.0165 (15) | −0.0072 (12) | −0.0029 (12) | −0.0068 (12) |
C1 | 0.0242 (17) | 0.0299 (19) | 0.0124 (17) | −0.0077 (15) | −0.0065 (14) | −0.0065 (14) |
C2 | 0.0220 (17) | 0.0281 (19) | 0.0188 (18) | −0.0098 (15) | −0.0006 (14) | −0.0079 (15) |
C3 | 0.033 (2) | 0.034 (2) | 0.028 (2) | −0.0098 (18) | −0.0074 (17) | −0.0003 (17) |
C4 | 0.031 (2) | 0.029 (2) | 0.064 (3) | −0.0037 (18) | −0.003 (2) | −0.002 (2) |
C5 | 0.050 (3) | 0.039 (3) | 0.060 (3) | −0.019 (2) | 0.014 (2) | −0.029 (2) |
C6 | 0.051 (3) | 0.054 (3) | 0.039 (3) | −0.027 (2) | 0.004 (2) | −0.028 (2) |
C7 | 0.039 (2) | 0.037 (2) | 0.025 (2) | −0.0152 (18) | −0.0062 (17) | −0.0088 (17) |
C8 | 0.0216 (17) | 0.0235 (17) | 0.0169 (18) | −0.0060 (14) | −0.0047 (14) | −0.0048 (14) |
C9 | 0.0303 (19) | 0.043 (2) | 0.0161 (18) | −0.0148 (18) | −0.0026 (15) | −0.0084 (16) |
C10 | 0.042 (2) | 0.045 (2) | 0.031 (2) | −0.0138 (19) | −0.0168 (19) | −0.0099 (19) |
C11 | 0.028 (2) | 0.040 (2) | 0.038 (2) | −0.0171 (18) | −0.0115 (18) | −0.0034 (18) |
C12 | 0.0247 (19) | 0.036 (2) | 0.022 (2) | −0.0082 (17) | −0.0016 (16) | −0.0041 (16) |
C13 | 0.0244 (18) | 0.0297 (19) | 0.0222 (19) | −0.0059 (15) | −0.0062 (15) | −0.0086 (15) |
C14 | 0.0164 (16) | 0.0313 (19) | 0.0201 (19) | −0.0070 (14) | −0.0038 (14) | −0.0077 (15) |
C15 | 0.0192 (16) | 0.0293 (19) | 0.0173 (18) | −0.0104 (14) | 0.0000 (14) | −0.0082 (15) |
C16 | 0.0228 (17) | 0.032 (2) | 0.0175 (18) | −0.0119 (15) | −0.0003 (14) | −0.0081 (15) |
C17 | 0.0269 (18) | 0.031 (2) | 0.023 (2) | −0.0121 (17) | −0.0033 (15) | −0.0002 (16) |
C18 | 0.034 (2) | 0.026 (2) | 0.035 (2) | −0.0126 (16) | −0.0063 (17) | −0.0135 (17) |
C19 | 0.037 (2) | 0.038 (2) | 0.028 (2) | −0.0163 (18) | −0.0071 (18) | −0.0129 (18) |
C20 | 0.0290 (19) | 0.032 (2) | 0.0213 (19) | −0.0114 (16) | −0.0076 (16) | −0.0045 (16) |
Cl1—C17 | 1.730 (4) | C8—C9 | 1.382 (4) |
S1—C1 | 1.659 (3) | C9—C10 | 1.366 (5) |
O1—C14 | 1.216 (4) | C9—H9A | 0.9500 |
N1—C1 | 1.380 (4) | C10—C11 | 1.379 (5) |
N1—C14 | 1.388 (4) | C10—H10A | 0.9500 |
N1—H1 | 0.894 (10) | C11—C12 | 1.387 (5) |
N2—C1 | 1.336 (4) | C11—H11A | 0.9500 |
N2—C8 | 1.437 (4) | C12—C13 | 1.378 (5) |
N2—C2 | 1.442 (4) | C12—H12A | 0.9500 |
C2—C3 | 1.369 (5) | C13—H13A | 0.9500 |
C2—C7 | 1.372 (5) | C14—C15 | 1.473 (5) |
C3—C4 | 1.378 (5) | C15—C16 | 1.382 (5) |
C3—H3A | 0.9500 | C15—C20 | 1.395 (4) |
C4—C5 | 1.367 (6) | C16—C17 | 1.364 (5) |
C4—H4A | 0.9500 | C16—H16A | 0.9500 |
C5—C6 | 1.375 (6) | C17—C18 | 1.380 (5) |
C5—H5A | 0.9500 | C18—C19 | 1.375 (5) |
C6—C7 | 1.374 (5) | C18—H18A | 0.9500 |
C6—H6A | 0.9500 | C19—C20 | 1.367 (5) |
C7—H7A | 0.9500 | C19—H19A | 0.9500 |
C8—C13 | 1.370 (5) | C20—H20A | 0.9500 |
C1—N1—C14 | 123.6 (3) | C9—C10—C11 | 119.9 (3) |
C1—N1—H1 | 114 (2) | C9—C10—H10A | 120.0 |
C14—N1—H1 | 115 (2) | C11—C10—H10A | 120.0 |
C1—N2—C8 | 122.0 (3) | C10—C11—C12 | 119.8 (3) |
C1—N2—C2 | 121.4 (3) | C10—C11—H11A | 120.1 |
C8—N2—C2 | 116.3 (3) | C12—C11—H11A | 120.1 |
N2—C1—N1 | 115.3 (3) | C13—C12—C11 | 120.1 (3) |
N2—C1—S1 | 123.8 (3) | C13—C12—H12A | 120.0 |
N1—C1—S1 | 120.9 (3) | C11—C12—H12A | 120.0 |
C3—C2—C7 | 121.0 (3) | C8—C13—C12 | 119.7 (3) |
C3—C2—N2 | 120.6 (3) | C8—C13—H13A | 120.2 |
C7—C2—N2 | 118.3 (3) | C12—C13—H13A | 120.2 |
C2—C3—C4 | 119.0 (4) | O1—C14—N1 | 122.1 (3) |
C2—C3—H3A | 120.5 | O1—C14—C15 | 123.2 (3) |
C4—C3—H3A | 120.5 | N1—C14—C15 | 114.7 (3) |
C5—C4—C3 | 120.6 (4) | C16—C15—C20 | 119.1 (3) |
C5—C4—H4A | 119.7 | C16—C15—C14 | 118.1 (3) |
C3—C4—H4A | 119.7 | C20—C15—C14 | 122.7 (3) |
C4—C5—C6 | 119.8 (4) | C17—C16—C15 | 119.5 (3) |
C4—C5—H5A | 120.1 | C17—C16—H16A | 120.3 |
C6—C5—H5A | 120.1 | C15—C16—H16A | 120.3 |
C7—C6—C5 | 120.2 (4) | C16—C17—C18 | 121.8 (3) |
C7—C6—H6A | 119.9 | C16—C17—Cl1 | 119.8 (3) |
C5—C6—H6A | 119.9 | C18—C17—Cl1 | 118.4 (3) |
C2—C7—C6 | 119.3 (4) | C19—C18—C17 | 118.6 (3) |
C2—C7—H7A | 120.3 | C19—C18—H18A | 120.7 |
C6—C7—H7A | 120.3 | C17—C18—H18A | 120.7 |
C13—C8—C9 | 120.3 (3) | C20—C19—C18 | 120.7 (3) |
C13—C8—N2 | 120.9 (3) | C20—C19—H19A | 119.7 |
C9—C8—N2 | 118.7 (3) | C18—C19—H19A | 119.7 |
C10—C9—C8 | 120.2 (3) | C19—C20—C15 | 120.3 (3) |
C10—C9—H9A | 119.9 | C19—C20—H20A | 119.9 |
C8—C9—H9A | 119.9 | C15—C20—H20A | 119.9 |
C8—N2—C1—N1 | −20.3 (4) | N2—C8—C9—C10 | −179.6 (3) |
C2—N2—C1—N1 | 166.0 (3) | C8—C9—C10—C11 | 0.9 (6) |
C8—N2—C1—S1 | 157.6 (2) | C9—C10—C11—C12 | 0.1 (6) |
C2—N2—C1—S1 | −16.2 (4) | C10—C11—C12—C13 | 0.0 (6) |
C14—N1—C1—N2 | −53.3 (4) | C9—C8—C13—C12 | 2.1 (5) |
C14—N1—C1—S1 | 128.9 (3) | N2—C8—C13—C12 | 179.6 (3) |
C1—N2—C2—C3 | 91.3 (4) | C11—C12—C13—C8 | −1.1 (5) |
C8—N2—C2—C3 | −82.8 (4) | C1—N1—C14—O1 | −4.4 (5) |
C1—N2—C2—C7 | −92.0 (4) | C1—N1—C14—C15 | 175.7 (3) |
C8—N2—C2—C7 | 93.9 (4) | O1—C14—C15—C16 | −26.1 (5) |
C7—C2—C3—C4 | −0.2 (5) | N1—C14—C15—C16 | 153.8 (3) |
N2—C2—C3—C4 | 176.4 (3) | O1—C14—C15—C20 | 151.6 (3) |
C2—C3—C4—C5 | −0.4 (6) | N1—C14—C15—C20 | −28.4 (4) |
C3—C4—C5—C6 | −0.4 (6) | C20—C15—C16—C17 | 2.0 (5) |
C4—C5—C6—C7 | 1.8 (6) | C14—C15—C16—C17 | 179.8 (3) |
C3—C2—C7—C6 | 1.5 (5) | C15—C16—C17—C18 | −2.3 (5) |
N2—C2—C7—C6 | −175.1 (3) | C15—C16—C17—Cl1 | 178.4 (2) |
C5—C6—C7—C2 | −2.3 (6) | C16—C17—C18—C19 | 1.1 (5) |
C1—N2—C8—C13 | 123.8 (4) | Cl1—C17—C18—C19 | −179.7 (3) |
C2—N2—C8—C13 | −62.2 (4) | C17—C18—C19—C20 | 0.5 (5) |
C1—N2—C8—C9 | −58.6 (4) | C18—C19—C20—C15 | −0.8 (5) |
C2—N2—C8—C9 | 115.4 (4) | C16—C15—C20—C19 | −0.5 (5) |
C13—C8—C9—C10 | −2.0 (5) | C14—C15—C20—C19 | −178.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.90 (2) | 2.48 (3) | 3.351 (4) | 162 (2) |
C13—H13A···O1ii | 0.95 | 2.59 | 3.434 (5) | 148 |
C18—H18A···S1iii | 0.95 | 2.87 | 3.609 (5) | 136 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z+1; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C20H15ClN2OS |
Mr | 366.85 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 8.196 (5), 10.357 (6), 11.699 (6) |
α, β, γ (°) | 72.565 (10), 70.495 (10), 71.303 (10) |
V (Å3) | 865.8 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.35 |
Crystal size (mm) | 0.49 × 0.32 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.847, 0.966 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5401, 3490, 2290 |
Rint | 0.080 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.146, 1.06 |
No. of reflections | 3490 |
No. of parameters | 230 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.37, −0.31 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.90 (2) | 2.48 (3) | 3.351 (4) | 162 (2) |
C13—H13A···O1ii | 0.95 | 2.59 | 3.434 (5) | 148 |
C18—H18A···S1iii | 0.95 | 2.87 | 3.609 (5) | 136 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z+1; (iii) x, y−1, z. |
Acknowledgements
This work was supported by Mersin University Research Fund (Project Nos. BAP-ECZ-F-TBB-(HA) 2004–3 and BAPFEF-KB-(NK) 2006–3). This study is part of the PhD thesis of Gün Binzet.
References
Arslan, H., Flörke, U. & Külcü, N. (2003a). Acta Cryst. E59, o641–o642. Web of Science CSD CrossRef IUCr Journals Google Scholar
Arslan, H., Flörke, U. & Külcü, N. (2003b). J. Chem. Crystallogr. 33, 919–924. Web of Science CSD CrossRef CAS Google Scholar
Arslan, H., Külcü, N. & Flörke, U. (2003c). Transition Met. Chem. 28, 816–819. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Huebhr, O. F., Marsh, J. L., Mizzoni, R. H., Mull, R. P., Schroeder, D. C., Troxell, H. A. & Scholz, C. R. (1953). J. Am. Chem. Soc. 75, 2274–2275. Google Scholar
Khawar Rauf, M., Badshah, A. & Bolte, M. (2006). Acta Cryst. E62, o4296–o4298. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khawar Rauf, M., Bolte, M. & Badshah, A. (2009). Acta Cryst. E65, o177. Web of Science CSD CrossRef IUCr Journals Google Scholar
Koch, K. R. (2001). Coord. Chem. Rev. 216, 473–488. Web of Science CrossRef Google Scholar
Madan, V. K., Taneja, A. D. & Kudesia, V. P. (1991). J. Indian Chem. Soc. 68, 471–472. CAS Google Scholar
Mansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J. Coord. Chem. 61, 3134–3146. Google Scholar
Özer, C. K., Arslan, H., VanDerveer, D. & Binzet, G. (2009). J. Coord. Chem. 62, 266–276. Google Scholar
Schroeder, D. C. (1955). Chem. Rev. 55, 181–228. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uğur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem. 32, 669–675. Google Scholar
Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thioureas and their metal complexes are an important class of compounds with a wide range of biological applications such as antitubercular, antithroid, anthelmintic, antibacterial, insecticidal and rodenticidal properties (Schroeder, 1955; Huebhr et al., 1953; Madan et al., 1991). Another area of the application of thiourea derivatives is analytical chemistry where some of these compounds have been used in the liquid-liquid extraction and separation of some transition metal ions (Koch, 2001).
Recently, a number of works on the structural and spectral properties of the thiourea derivatives and their metal complexes have appeared in the literature (Özer et al., 2009; Mansuroğlu et al., 2008; Uğur et al., 2006; Arslan et al., 2003c). We report here the crystal structure of one of them. The synthesis involves the reaction of a 3-chlorobenzoyl chloride with potassium thiocyanate in dry acetone followed by condensation of the 3-chlorobenzoyl isothiocyanate with the diphenylamine.
The molecular structure of the title compound, (I), is depicted in Fig. 1. The bond lengths and angles in the thiourea moiety are typical for thiourea derivatives; the C1-S1 (1.659 (3) Å) and C14-O1 (1.216 (4) Å) bonds both show typical double-bond character (Arslan et al., 2003a, 2003b; Khawar Rauf et al. 2009, 2006; Yamin & Yusof, 2003). The C-N bond lengths C14-N1 (1.388 (4) Å), C1-N1 (1.380 (4) Å) and C1-N2 (1.336 (4) Å) are shorter than the normal C-N single-bond length of about 1.48 Å. The shortening of these C-N bonds reveals the effects of resonance in this part of the molecule (Arslan et al., 2003a, 2003b; Khawar Rauf et al., 2009, 2006; Yamin & Yusof, 2003). The conformation of the title molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the C1-N1-C14-O1 and C14-N1-C1-N2 torsion angles of -4.4 (6) o and -53.3 (5) o, respectively.
The atom N2 is sp2-hybridized, because of the sum of the angles around atom N2 is 359.8 (3) °. The phenyl rings are rotated out of the mean plane of the N1-C1-S1-N2 atoms by 80.1 (2) ° (C2-C7 ring) and 69.96 (19) ° (C8-C13 ring). In addition, the dihedral angle between C2-C7 ring and C8-C13 ring is 72.8 (2) °.
As can be seen from the packing diagram (Fig. 2), intermolecular N-H···S hydrogen bond (Table 1) links the molecules into dimers, which are stacked along the c-axis. The other intermolecular contacts, C-H···O and C-H···S, are also listed in Table 1.