metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,1′-Di­phenyl-3,3′-(propane-1,3-diyldi­nitrilo)dibut-1-enolato]copper(II)

aDepartment of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran, and bFaculty of Chemistry, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: amirnasr@cc.iut.ac.ir

(Received 4 January 2009; accepted 9 January 2009; online 17 January 2009)

The title compound, [Cu(C23H24N2O2)] or [Cu{(BA)2pn}], where (BA)2pn is 1,1′-diphenyl-3,3′-(propane-1,3-diyldinitrilo)dibut-1-enolate, is a mononuclear copper(II) complex, located on a twofold axis. The four-coordinate CuII atom is in a tetra­hedrally distorted square plane defined by the N and O atoms of the Schiff base ligand. In the tetra­dentate ligand, the two chelate rings are twisted relative to each other, making a dihedral angle of 36.57 (3)°.

Related literature

For general background, see: Bunce et al. (1998[Bunce, S., Cross, R. J., Farrugia, L. J., Kunchandy, S., Meason, L. L., Muir, K. W., Odonnell, M., Peacock, R. D., Stirling, D. & Teat, S. J. (1998). Polyhedron, 17, 4179-4187.]); Klement et al. (1999[Klement, R., Stock, F., Elias, H., Paulus, H., Pelikan, P., Valko, P. & Mazur, M. (1999). Polyhedron, 18, 3617-3628.]); Meghdadi et al. (2008[Meghdadi, S., Amirnasr, M., Amiri, A., Ahmadi, F., Habibi, M. H., Kihara, K., Suzuki, T. & Bijanzadeh, H. R. (2008). Transition Met. Chem. 33, 879-886.]); Mikuriya et al. (2002[Mikuriya, M., Minowa, K. & Nukada, R. (2002). Bull. Chem. Soc. Jpn, 75, 2595-2607.]); Filomeni et al. (2007[Filomeni, G., Cerchiaro, G., Da Costa Ferreira, A. M., De Martino, A., Pedersen, J. Z., Rotilio, G. & Ciriolo, M. R. (2007). J. Biol. Chem. 282, 12010-12021.]). For a structure determination of the title compound in space group Cc, see: Sarkar et al. (2008[Sarkar, B., Bocelli, G., Cantoni, A. & Ghosh, A. (2008). Polyhedron, 27, 693-700.]). For the structure of a polymorph, see: Arıcı (2006[Arıcı, C. (2006). Acta Cryst. E62, m1950-m1951.]). For related structures, see: Arıcı et al. (2001[Arıcı, C., Ercan, F., Kurtaran, R. & Atakol, O. (2001). Acta Cryst. C57, 812-814.]); Dehghanpour et al. (2005[Dehghanpour, S., Mojahed, F. & Farzaneh, F. (2005). Z. Kristallogr. New Cryst. Struct. 220, 587-588.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C23H24N2O2)]

  • Mr = 423.98

  • Monoclinic, C 2/c

  • a = 12.2047 (12) Å

  • b = 20.320 (2) Å

  • c = 8.9992 (9) Å

  • β = 117.405 (1)°

  • V = 1981.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 100 (2) K

  • 0.50 × 0.46 × 0.35 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.57, Tmax = 0.68

  • 11028 measured reflections

  • 2881 independent reflections

  • 2780 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.063

  • S = 1.05

  • 2881 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of copper(II) complexes with N2O2 Schiff base ligands have been investigated extensively in recent years owing to their interesting physico–chemical properties, and their potential application in catalytic reactions and biological activities (Bunce et al., 1998; Klement et al.; 1999, Filomeni et al., 2007). These complexes are also attractive because of their preparative accessibility, diversity and structural variability. Most of the earlier investigations were carried out on the tetradentate Schiff base ligand salen and its derivatives, while N,N'–bis(benzoylacetone)–1,3–propylenediimine and its derivatives have rarely been studied [Mikuriya et al. 2002]. Two alternative reports on the synthesis and structure of Cu(II) complexes with (BA)2pn ligand under different conditions is already published [Arıcı, 2006; Sarkar et al., 2008]. In this context, we herein report the synthesis and structure of the title compound, [Cu((BA)2pn)], (I), and make a brief comparison with the reported structures.

The structure of [Cu((BA)2pn)], (I), is shown in Fig. 1. The complex has symmetry C2 with Cu(1) and C(12) on a C2 axis. The coordination geometry around Cu(II) center may be described as distorted square planar. This is indicated by the chelate angles which deviate from 90° (90.19 (4)° (O(1)–Cu(1)–O(1)i) to 94.56 (3)° (O(1)–Cu(1)–N(1))) and 180° (154.41 (4)° for O(1)–Cu(1)–N(1)i = O(1)i–Cu(1)–N(1)). The dihedral angle between the two Cu–O,N chelate rings is 36.57 (3)°. The Cu–O and Cu–N distances of the coordinated (BA)2pn in the equatorial plane, Cu(1)–O(1) = Cu(1)–O(1)i = 1.9145 (7) Å, Cu(1)–N(1) = Cu(1)–N(1)i = 1.9394 (9) Å, compare well with the Cu–O and Cu–N distances found in the related complex [Cu((BA)2en)] [Cu–Oav = 1.913 (2) Å, Cu–Nav = 1.930 (3) Å; Dehghanpour et al., (2005)]. The crystal structure is, in principle, identical to that reported by Sarkar et al., 2008. The space group was determined by these authors as Cc, however, it was overlooked that the structure has C2 axes parallel to b and therefore adopts space group symmetry C2/c. Due to this overlooked space group symmetry (Cc instead of C2/c), chemically equivalent bond lengths and angles in the reported structure vary widely (bond length differences of chemically equivalent bonds up to 0.17 Å (C19–C20 and C8–C9)). In another report (Arıcı, 2006), a polymorphic form of this compound with space group C2/c and a molecular conformation which differs most significantly from Sarkar's and the present work is presented. Among other features, this complex shows a more planar coordination of Cu with transoid O–Cu–N angles of about 170° and a half-chair conformation for the Cu–N,N chelate ring, whereas (I) exhibits a twist-boat conformation similar to the dimethyl-substituted homologue (at C(12) of (I)) described by Arıcı et al. (2001).

Related literature top

For general background, see : Bunce et al. (1998); Klement et al. (1999); Meghdadi et al. (2008); Mikuriya et al. (2002); Sarkar et al. (2008); Filomeni et al. (2007). For related structures, see: Arıcı (2006); Arıcı et al. (2001); Dehghanpour et al. (2005).

Experimental top

H2(BA)2pn, N,N'–bis(benzoylacetone)–1,3–propylenediimine was prepared according to the literature [Meghdadi et al. 2008] by the condensation of of benzoylacetone (0.324 g, 2 mmol) with 1,3–propylenediamine (0.074 g, 1 mmol) in methanol at room temperature. To a solution of H2(BA)2pn (0.362 g, 1 mmol) in methanol (30 ml) was added with stirring copper(II) acetate monohydrate (0.200 g, 1 mmol). The mixture was stirred at room temperature for about 30 min and then filtered. The filtrate was kept undisturbed in air and black oval–shaped crystals of (I) were formed upon slow evaporation of the solvent after two days. The crystals were filtered off, washed with cold methanol and dried under vacuum.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95Å (aromatic), 0.99Å (methylene) and 0.98Å (methyl) with Uiso(H) = 1.2 Ueq(aromatic, methylene) or Uiso(H) = 1.5 Ueq(methyl).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of (I), with atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (A) 1-x, y, 1/2-z].
[1,1'-Diphenyl-3,3'-(propane-1,3-diyldinitrilo)dibut-1-enolato]copper(II) top
Crystal data top
[Cu(C23H24N2O2)]F(000) = 884
Mr = 423.98Dx = 1.421 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8926 reflections
a = 12.2047 (12) Åθ = 2.1–30.0°
b = 20.320 (2) ŵ = 1.12 mm1
c = 8.9992 (9) ÅT = 100 K
β = 117.405 (1)°Oval, black
V = 1981.3 (3) Å30.50 × 0.46 × 0.35 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2881 independent reflections
Radiation source: fine-focus sealed tube2780 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.57, Tmax = 0.68k = 2828
11028 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0348P)2 + 1.3062P]
where P = (Fo2 + 2Fc2)/3
2881 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(C23H24N2O2)]V = 1981.3 (3) Å3
Mr = 423.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.2047 (12) ŵ = 1.12 mm1
b = 20.320 (2) ÅT = 100 K
c = 8.9992 (9) Å0.50 × 0.46 × 0.35 mm
β = 117.405 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2881 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2780 reflections with I > 2σ(I)
Tmin = 0.57, Tmax = 0.68Rint = 0.019
11028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
2881 reflectionsΔρmin = 0.34 e Å3
129 parameters
Special details top

Experimental. Dark crystals from methanol. Bruker Kappa APEXII CCD diffractometer, full sphere data collection.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.285854 (8)0.25000.01604 (6)
O10.58573 (7)0.35237 (3)0.19375 (9)0.01910 (14)
N10.62650 (9)0.21952 (4)0.30042 (11)0.01918 (16)
C10.62862 (9)0.44403 (5)0.00488 (13)0.02073 (18)
H1A0.54650.44140.01980.025*
C20.66276 (10)0.49606 (5)0.07553 (14)0.0239 (2)
H2A0.60360.52840.13960.029*
C30.78315 (10)0.50085 (5)0.05262 (13)0.0227 (2)
H3A0.80600.53600.10230.027*
C40.87007 (10)0.45401 (5)0.04322 (13)0.02263 (19)
H4A0.95290.45780.06150.027*
C50.83576 (9)0.40168 (5)0.11223 (13)0.02040 (18)
H5A0.89540.36960.17670.024*
C60.71452 (9)0.39567 (5)0.08789 (12)0.01713 (17)
C70.67614 (9)0.33962 (5)0.16071 (11)0.01684 (17)
C80.73853 (9)0.28017 (5)0.18784 (13)0.01919 (18)
H8A0.80050.27720.15220.023*
C90.71826 (10)0.22321 (5)0.26408 (12)0.01902 (18)
C100.81019 (10)0.16754 (5)0.30347 (14)0.0251 (2)
H10A0.76580.12630.25800.038*
H10B0.85980.16350.42500.038*
H10C0.86450.17680.25280.038*
C110.60558 (11)0.16066 (5)0.37870 (13)0.02317 (19)
H11A0.58530.17410.46890.028*
H11B0.68210.13410.42970.028*
C120.50000.11873 (7)0.25000.0241 (3)
H12A0.46730.09000.30930.029*0.50
H12B0.53270.09000.19070.029*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01768 (9)0.01421 (9)0.01729 (9)0.0000.00895 (7)0.000
O10.0193 (3)0.0171 (3)0.0243 (3)0.0005 (2)0.0130 (3)0.0002 (2)
N10.0227 (4)0.0162 (4)0.0171 (4)0.0019 (3)0.0078 (3)0.0007 (3)
C10.0175 (4)0.0200 (4)0.0242 (5)0.0008 (3)0.0093 (4)0.0006 (3)
C20.0222 (5)0.0208 (4)0.0254 (5)0.0008 (4)0.0083 (4)0.0019 (4)
C30.0244 (5)0.0227 (5)0.0208 (4)0.0068 (4)0.0103 (4)0.0020 (3)
C40.0192 (4)0.0275 (5)0.0225 (4)0.0055 (4)0.0108 (4)0.0029 (4)
C50.0159 (4)0.0240 (5)0.0207 (4)0.0014 (3)0.0079 (4)0.0008 (3)
C60.0164 (4)0.0185 (4)0.0164 (4)0.0019 (3)0.0075 (3)0.0028 (3)
C70.0156 (4)0.0184 (4)0.0156 (4)0.0014 (3)0.0064 (3)0.0026 (3)
C80.0174 (4)0.0194 (4)0.0205 (4)0.0005 (3)0.0085 (4)0.0031 (3)
C90.0193 (4)0.0175 (4)0.0161 (4)0.0020 (3)0.0046 (4)0.0033 (3)
C100.0238 (5)0.0208 (5)0.0260 (5)0.0065 (4)0.0075 (4)0.0027 (4)
C110.0308 (5)0.0183 (4)0.0199 (4)0.0031 (4)0.0113 (4)0.0039 (3)
C120.0327 (8)0.0159 (6)0.0260 (7)0.0000.0154 (6)0.000
Geometric parameters (Å, º) top
Cu1—O11.9145 (7)C5—C61.3978 (13)
Cu1—O1i1.9145 (7)C5—H5A0.9500
Cu1—N11.9394 (9)C6—C71.4928 (13)
Cu1—N1i1.9395 (9)C7—C81.3882 (13)
O1—C71.2943 (11)C8—C91.4241 (14)
N1—C91.3054 (14)C8—H8A0.9500
N1—C111.4688 (13)C9—C101.5158 (14)
C1—C21.3925 (14)C10—H10A0.9800
C1—C61.3986 (14)C10—H10B0.9800
C1—H1A0.9500C10—H10C0.9800
C2—C31.3900 (15)C11—C121.5342 (14)
C2—H2A0.9500C11—H11A0.9900
C3—C41.3903 (16)C11—H11B0.9900
C3—H3A0.9500C12—C11i1.5342 (14)
C4—C51.3896 (14)C12—H12A0.9900
C4—H4A0.9500C12—H12B0.9900
O1—Cu1—O1i90.19 (4)O1—C7—C8126.18 (9)
O1—Cu1—N194.56 (3)O1—C7—C6114.90 (8)
O1i—Cu1—N1154.41 (4)C8—C7—C6118.91 (9)
O1—Cu1—N1i154.41 (4)C7—C8—C9126.09 (9)
O1i—Cu1—N1i94.56 (3)C7—C8—H8A117.0
N1—Cu1—N1i91.94 (5)C9—C8—H8A117.0
C7—O1—Cu1123.15 (6)N1—C9—C8121.79 (9)
C9—N1—C11121.70 (9)N1—C9—C10121.77 (9)
C9—N1—Cu1125.72 (7)C8—C9—C10116.43 (9)
C11—N1—Cu1112.51 (7)C9—C10—H10A109.5
C2—C1—C6120.42 (9)C9—C10—H10B109.5
C2—C1—H1A119.8H10A—C10—H10B109.5
C6—C1—H1A119.8C9—C10—H10C109.5
C3—C2—C1120.23 (10)H10A—C10—H10C109.5
C3—C2—H2A119.9H10B—C10—H10C109.5
C1—C2—H2A119.9N1—C11—C12111.17 (8)
C2—C3—C4119.78 (10)N1—C11—H11A109.4
C2—C3—H3A120.1C12—C11—H11A109.4
C4—C3—H3A120.1N1—C11—H11B109.4
C5—C4—C3120.01 (10)C12—C11—H11B109.4
C5—C4—H4A120.0H11A—C11—H11B108.0
C3—C4—H4A120.0C11—C12—C11i112.54 (12)
C4—C5—C6120.79 (10)C11—C12—H12A109.1
C4—C5—H5A119.6C11i—C12—H12A109.1
C6—C5—H5A119.6C11—C12—H12B109.1
C5—C6—C1118.73 (9)C11i—C12—H12B109.1
C5—C6—C7121.42 (9)H12A—C12—H12B107.8
C1—C6—C7119.84 (9)
O1i—Cu1—O1—C7171.40 (9)Cu1—O1—C7—C811.84 (13)
N1—Cu1—O1—C716.58 (8)Cu1—O1—C7—C6168.64 (6)
N1i—Cu1—O1—C787.60 (11)C5—C6—C7—O1151.44 (9)
O1—Cu1—N1—C912.71 (9)C1—C6—C7—O127.61 (13)
O1i—Cu1—N1—C9112.72 (10)C5—C6—C7—C828.11 (13)
N1i—Cu1—N1—C9142.51 (10)C1—C6—C7—C8152.83 (9)
O1—Cu1—N1—C11170.40 (7)O1—C7—C8—C93.07 (16)
O1i—Cu1—N1—C1170.39 (11)C6—C7—C8—C9176.44 (9)
N1i—Cu1—N1—C1134.37 (6)C11—N1—C9—C8179.86 (9)
C6—C1—C2—C30.83 (16)Cu1—N1—C9—C83.24 (14)
C1—C2—C3—C40.93 (16)C11—N1—C9—C101.20 (15)
C2—C3—C4—C51.64 (16)Cu1—N1—C9—C10177.83 (7)
C3—C4—C5—C60.59 (15)C7—C8—C9—N17.75 (16)
C4—C5—C6—C11.15 (15)C7—C8—C9—C10171.24 (10)
C4—C5—C6—C7179.79 (9)C9—N1—C11—C12102.55 (11)
C2—C1—C6—C51.85 (15)Cu1—N1—C11—C1274.48 (9)
C2—C1—C6—C7179.07 (9)N1—C11—C12—C11i37.68 (6)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C23H24N2O2)]
Mr423.98
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)12.2047 (12), 20.320 (2), 8.9992 (9)
β (°) 117.405 (1)
V3)1981.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.50 × 0.46 × 0.35
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.57, 0.68
No. of measured, independent and
observed [I > 2σ(I)] reflections
11028, 2881, 2780
Rint0.019
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.063, 1.05
No. of reflections2881
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.34

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Partial support of this work by Isfahan University of Technology Research Council is gratefully acknowledged.

References

First citationArıcı, C. (2006). Acta Cryst. E62, m1950–m1951.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArıcı, C., Ercan, F., Kurtaran, R. & Atakol, O. (2001). Acta Cryst. C57, 812–814.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunce, S., Cross, R. J., Farrugia, L. J., Kunchandy, S., Meason, L. L., Muir, K. W., Odonnell, M., Peacock, R. D., Stirling, D. & Teat, S. J. (1998). Polyhedron, 17, 4179–4187.  Web of Science CSD CrossRef CAS Google Scholar
First citationDehghanpour, S., Mojahed, F. & Farzaneh, F. (2005). Z. Kristallogr. New Cryst. Struct. 220, 587–588.  CAS Google Scholar
First citationFilomeni, G., Cerchiaro, G., Da Costa Ferreira, A. M., De Martino, A., Pedersen, J. Z., Rotilio, G. & Ciriolo, M. R. (2007). J. Biol. Chem. 282, 12010–12021.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlement, R., Stock, F., Elias, H., Paulus, H., Pelikan, P., Valko, P. & Mazur, M. (1999). Polyhedron, 18, 3617–3628.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeghdadi, S., Amirnasr, M., Amiri, A., Ahmadi, F., Habibi, M. H., Kihara, K., Suzuki, T. & Bijanzadeh, H. R. (2008). Transition Met. Chem. 33, 879–886.  Web of Science CSD CrossRef CAS Google Scholar
First citationMikuriya, M., Minowa, K. & Nukada, R. (2002). Bull. Chem. Soc. Jpn, 75, 2595–2607.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarkar, B., Bocelli, G., Cantoni, A. & Ghosh, A. (2008). Polyhedron, 27, 693–700.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds