metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m186-m187

Hydroxonium hydrate tris­­(2,4,6-tri­amino-1,3,5-triazin-1-ium) bis­­[bis­­(pyri­dine-2,6-di­carboxyl­ato)cuprate(II)] pyridine-2,6-di­carboxylic acid hexa­hydrate

aFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran, bDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA, cFaculty of Science, Department of Chemistry, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran, and dDepartment of Chemistry, Ilam University, Ilam, Iran
*Correspondence e-mail: olmstead@chem.ucdavis.edu

(Received 5 November 2008; accepted 7 January 2009; online 14 January 2009)

The reaction of copper(II) nitrate hexa­hydrate with pyridine-2,6-dicarboxylic acid (pydcH2) and 2,4,6-triamino-1,3,5-triazine (melamine) in aqueous solution in a 1:2:2 molar ratio gave the title compound, (H5O2)(C3H7N6)3[Cu(C7H3NO4)2]2·C7H5NO4·6H2O. The hydroxonium hydrate (H5O2)+, also known as the Zundel cation, resides on a twofold rotation axis. The O—H distance is 1.274 (14) Å, the O⋯O distance is 2.518 (5) Å, and the O—H—O angle is 162 (8)°. One of the melamine H+ cations, the uncoordinated pydcH2, and two water mol­ecules also reside on crystallographic twofold axes. The CuII atom has a tetra­gonally distorted octa­hedral coordination environment. The structure features extensive hydrogen bonding, with 21 distinct inter­actions. There is also a centrosymmetric C=O⋯π inter­action with an O⋯centroid distance of 3.288 (3) Å. The structure is similar to a mixed-valence manganese(II/III) structure but shows inter­esting differences in the metal-atom coordination. One of the water molecules is equally disordered with respect to a twofold axis.

Related literature

For related melamine salts, see: Aghabozorg, Aghajani & Sharif (2006[Aghabozorg, H., Aghajani, Z. & Sharif, M. A. (2006). Acta Cryst. E62, m1930-m1932.]); Aghabozorg, Attar Gharamaleki et al. (2008[Aghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m187-m188.]); Aghabozorg, Ghadermazi et al. (2008[Aghabozorg, H., Ghadermazi, M., Nakhjavan, B. & Manteghi, F. (2008). J. Chem. Cryst. 38, 135-145.]); Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran Chem. Soc. 5, 184-227.]); Aghabozorg, Zabihi et al. (2006[Aghabozorg, H., Zabihi, F., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62, m2091-m2093.]); Agha­­jani et al. (2006[Aghajani, Z., Sharif, M. A., Aghabozorg, H. & Naderpour, A. (2006). Acta Cryst. E62, m830-m832.]); Perpétuo & Janczak (2006[Perpétuo, G. J. & Janczak, J. (2006). Acta Cryst. C62, o372-o375.]); Sharif et al. (2006[Sharif, M. A., Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Moghimi, A. & Shamsipur, M. (2006). Pol. J. Chem. 80, 847-863.], 2007[Sharif, M. A., Aghabozorg, H. & Moghimi, A. (2007). Acta Cryst. E63, m1599-m1601.]); Zhang & Chen (2005[Zhang, X.-L., Chen, X.-M. & Ng, S. W. (2005). Acta Cryst. E61, o156-o157.]). For a nearly isostructural manganese(II/III) structure, see: Aghabozorg, Derikvand et al. (2008[Aghabozorg, H., Derikvand, Z., Olmstead, M. M. & Attar Gharamaleki, J. (2008). Acta Cryst. C64, m372-m374.]).

[Scheme 1]

Experimental

Crystal data
  • (H5O2)(C3H7N6)3[Cu(C7H3NO4)2]2·C7H5NO4·6H2O

  • Mr = 1481.19

  • Monoclinic, C 2/c

  • a = 27.575 (3) Å

  • b = 22.814 (3) Å

  • c = 9.8068 (12) Å

  • β = 108.327 (2)°

  • V = 5856.5 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 180 (2) K

  • 0.35 × 0.28 × 0.02 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.758, Tmax = 0.983

  • 26801 measured reflections

  • 5309 independent reflections

  • 3805 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.03

  • 5309 reflections

  • 531 parameters

  • 21 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O6 0.87 (3) 1.903 (12) 2.766 (3) 168 (3)
N6—H6A⋯O4i 0.876 (13) 2.062 (17) 2.880 (4) 155 (3)
N6—H6B⋯O5 0.88 (3) 2.007 (12) 2.872 (3) 167 (3)
N7—H7A⋯N9ii 0.88 (3) 2.086 (11) 2.965 (3) 176 (3)
N7—H7B⋯O9ii 0.879 (12) 2.13 (3) 2.815 (3) 134 (3)
N8—H8B⋯O14 0.88 (3) 1.964 (11) 2.842 (3) 177 (3)
N10—H10A⋯O15 0.882 (12) 1.782 (12) 2.649 (6) 167 (2)
N11—H11A⋯O9iii 0.88 (3) 2.064 (11) 2.939 (3) 172 (3)
N12—H12A⋯N5ii 0.87 (3) 2.090 (12) 2.959 (4) 173 (3)
N12—H12B⋯O1 0.882 (12) 2.07 (2) 2.846 (3) 146 (3)
O10—H10B⋯O13 0.85 (3) 1.83 (3) 2.671 (3) 172 (4)
O11—H11B⋯O2iv 0.81 (3) 2.10 (3) 2.896 (3) 167 (4)
O12—H12C⋯O8iii 0.84 (3) 1.72 (3) 2.555 (3) 173 (4)
O12—H12D⋯O2 0.84 (3) 1.89 (4) 2.700 (3) 162 (5)
O12—H12E⋯O12iv 1.274 (14) 1.274 (14) 2.518 (5) 162 (8)
O13—H13A⋯O4v 0.84 (3) 2.04 (3) 2.870 (3) 172 (4)
O13—H13B⋯N4ii 0.84 (3) 2.066 (17) 2.876 (3) 162 (4)
O14—H14A⋯O6 0.84 (3) 1.831 (12) 2.662 (3) 172 (3)
O14—H14B⋯O3v 0.84 (3) 2.05 (4) 2.850 (3) 160 (4)
O15—H15A⋯O11vi 0.84 (3) 1.98 (6) 2.748 (6) 151 (11)
O15—H15B⋯O7iii 0.84 (3) 1.82 (2) 2.636 (5) 163 (7)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x, y, -z-{\script{1\over 2}}]; (iv) [-x, y, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (vi) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We have previously reported a proton-transfer system using pyridine-2,6-dicarboxylic acid (pydcH2) and 2,4,6-triamino-1,3,5-triazine (melamine, also called tata), (melamineH)2(pydc) (Sharif et al., 2006). We also reported some complexes of this system (Aghabozorg, Aghajani et al., 2006; Aghajani et al., 2006; Sharif et al. 2007; Aghabozorg, Attar Gharamaleki et al. 2008). In the title compound, melamine is mono-protonated, but it is also known to form (melamineH2)2+ salts with trifluoroacetic acid (Perpétuo & Janczak, 2006), oxalic acid (Zhang et al., 2005), and other strong acids. For more details and related literature see our recent review article (Aghabozorg, Manteghi et al., 2008).

The formula unit of the title compound is depicted in Fig. 1. There are nine different moieties in the asymmetric unit. The cationic portion of the asymmetric unit consists of a half-hydroxonium hydrate, residing on a twofold axis, a molecule of melamineH+, and a half- molecule of melamineH+ residing on a twofold axis. The anionic portion is the [Cu(pydc)2]2– complex ion. In addition, the asymmetric unit contains a half-molecule of neutral pydcH2 residing on a twofold axis, two full molecules of solvate water, a half-molecule of water on a twofold axis, and another half-molecule of water that is disordered with respect to a twofold axis. In the [Cu(pydc)2]2–, the two ligands are almost perpendicular to each other. The dihedral angle between the two pydc planes consisting of the C7NO4 set is 89.03 (3)°. The Cu—O and Cu—N distances (Table 1) are in good agreement with those seen in related CuII bis(pydc) complexes (Aghabozorg, Zabihi et al., 2006, and Aghabozorg, Ghadermazi et al., 2008 are two examples). Of the four nominally equivalent Cu—O distances, Cu—O5 and Cu—O7 are an average of 0.15 Å longer than the other two, indicating a weak Jahn–Teller distortion and tetragonally distorted octahedral environment. The hydroxonium hydrate (H5O2)+ cation that resides on a 2-fold rotation axis is bent (details are in Table 2).

A centrosymmetrically related C=O···π interaction between C=O groups and centroids of aromatic rings of pyridine-2,6-dicarboxylate is shown in Fig. 2. With regard to the overall packing, the space between layers of [Cu(pydc)2]2– anions is filled with (melamineH)+ cations and pydcH2 molecules (Fig. 3). In fact, the layers involving the CuII complex are bridged by (melamineH)+ cations via extensive hydrogen bonds (Table 2).

The title compound is related to the recently published structure of (H5O2)(melamineH+)3[MnII/III(pydc)2]2(OH).(pydcH2) .5H2O (Aghabozorg, Derikvand et al., 2008), in which charge balance is achieved by conversion of one of the water molecules to a hydroxide. The Mn—O and Mn—N distances are longer than those of the Cu complex and there is no evidence of Jahn-Teller distortion. There are also differences in the angles about Mn that indicate a distortion away from octahedral towards tetrahedral geometry.

Related literature top

For related melamine salts, see: Aghabozorg, Aghajani & Sharif (2006); Aghabozorg, Attar Gharamaleki et al. (2008); Aghabozorg, Ghadermazi et al. (2008); Aghabozorg, Manteghi & Sheshmani (2008); Aghabozorg, Zabihi et al. (2006); Aghajani et al. (2006); Perpétuo & Janczak (2006); Sharif et al. (2006, 2007); Zhang & Chen (2005). For a nearly isostructural manganese(II/III) structure, see: Aghabozorg, Derikvand et al. (2008).

Experimental top

The title compound was produced by the reaction of Cu(NO3)2.6H2O (145 mg, 0.5 mmol), pyridine-2,6-dicarboxylic acid, pydcH2, (100 mg, 1 mmol) and 2,4,6-triamino-1,3,5-triazine, (melamine) (110 mg, 1 mmol) in water (50 ml). Blue crystals of the title compound were obtained by the slow evaporation of the solvent at room temperature.

Refinement top

All hydrogen atoms were initially located in a difference Fourier map. H atoms on C were refined with a riding model, C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C). H atoms on N and O were refined with distance restraints of 0.84 (1) Å for O—H and 0.88 (1) Å for N—H. Isotropic thermal parameters were refined. The water molecule O15 is disordered with respect to a 2-fold axis and the H15a···H15b distance was refined with a distance restraint of 1.30 (2) Å. The central H atom in the [H5O2]+ group was freely refined with no restraints.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the constituents of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) -x, y, -1/2 - z, (ii) -x, y, 1/2 - z.
[Figure 2] Fig. 2. Centrosymmetrically related (symmetry code 1/2 - x, 3/2 - y, -z) C=O···π interaction between C=O groups and centroid of the N2/C9—C13) aromatic ring of pyridine-2,6-dicarboxylate. The distances between the O atom and the ring centroid is 3.288 (3) Å.
[Figure 3] Fig. 3. A packing diagram of the title compound. The space between layers of [Cu(pydc)2]2– is filled with a layer of (H5O2)+ and (melamineH)+ cations, pydcH2 and water molecules.
Hydroxonium hydrate tris(2,4,6-triamino-1,3,5-triazin-1-ium) bis[bis(pyridine-2,6-dicarboxylato)cuprate(II)] pyridine-2,6-dicarboxylic acid hexahydrate top
Crystal data top
(H5O2)(C3H7N6)3[Cu(C7H3NO4)2]2·C7H5NO4·6H2OF(000) = 3048
Mr = 1481.19Dx = 1.680 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6004 reflections
a = 27.575 (3) Åθ = 2.8–26.1°
b = 22.814 (3) ŵ = 0.84 mm1
c = 9.8068 (12) ÅT = 180 K
β = 108.327 (2)°Plate, pale blue
V = 5856.5 (13) Å30.35 × 0.28 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
5309 independent reflections
Radiation source: fine-focus sealed tube3805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.3 pixels mm-1θmax = 25.3°, θmin = 2.8°
ω scansh = 3333
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2727
Tmin = 0.758, Tmax = 0.983l = 1111
26801 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0411P)2 + 8.7866P]
where P = (Fo2 + 2Fc2)/3
5309 reflections(Δ/σ)max = 0.001
531 parametersΔρmax = 0.26 e Å3
21 restraintsΔρmin = 0.77 e Å3
Crystal data top
(H5O2)(C3H7N6)3[Cu(C7H3NO4)2]2·C7H5NO4·6H2OV = 5856.5 (13) Å3
Mr = 1481.19Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.575 (3) ŵ = 0.84 mm1
b = 22.814 (3) ÅT = 180 K
c = 9.8068 (12) Å0.35 × 0.28 × 0.02 mm
β = 108.327 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
5309 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3805 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.983Rint = 0.051
26801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03521 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
5309 reflectionsΔρmin = 0.77 e Å3
531 parameters
Special details top

Experimental. The crystals cracked when cooled to 90 K so the data was collected at 180 K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.157851 (13)0.631029 (17)0.05095 (3)0.03071 (12)
O10.09962 (8)0.63287 (9)0.0509 (2)0.0352 (5)
O20.04357 (8)0.57153 (9)0.0993 (2)0.0396 (5)
O30.21154 (8)0.59453 (9)0.1422 (2)0.0359 (5)
O40.24379 (8)0.50682 (10)0.1733 (2)0.0441 (6)
O50.21596 (7)0.65786 (9)0.1601 (2)0.0327 (5)
O60.25253 (8)0.73927 (9)0.2729 (2)0.0362 (5)
O70.10282 (8)0.65042 (10)0.2763 (2)0.0374 (5)
O80.07941 (8)0.72696 (9)0.4265 (2)0.0377 (5)
N10.14634 (9)0.54895 (11)0.0330 (2)0.0280 (6)
N20.16513 (8)0.71590 (11)0.0740 (2)0.0291 (6)
C10.08130 (11)0.58215 (13)0.0608 (3)0.0295 (7)
C20.10898 (10)0.53146 (13)0.0179 (3)0.0279 (6)
C30.09751 (11)0.47292 (14)0.0232 (3)0.0336 (7)
H30.07120.46070.06030.040*
C40.12506 (11)0.43224 (15)0.0267 (3)0.0377 (7)
H40.11770.39160.02450.045*
C50.16359 (11)0.45086 (15)0.0803 (3)0.0366 (8)
H50.18260.42330.11560.044*
C60.17368 (11)0.50997 (14)0.0810 (3)0.0296 (7)
C70.21347 (11)0.53866 (14)0.1368 (3)0.0327 (7)
C80.22339 (10)0.71221 (14)0.1673 (3)0.0296 (7)
C90.19487 (10)0.74812 (14)0.0362 (3)0.0287 (7)
C100.19848 (11)0.80844 (14)0.0269 (3)0.0341 (7)
H100.21970.83030.10560.041*
C110.17062 (11)0.83657 (15)0.0989 (3)0.0364 (7)
H110.17240.87790.10730.044*
C120.14016 (11)0.80339 (14)0.2120 (3)0.0333 (7)
H120.12100.82160.29930.040*
C130.13815 (10)0.74347 (14)0.1956 (3)0.0289 (7)
C140.10436 (10)0.70318 (14)0.3083 (3)0.0301 (7)
N30.31880 (9)0.69464 (11)0.5251 (2)0.0276 (5)
H3A0.3001 (9)0.7133 (11)0.449 (2)0.029 (8)*
N40.34173 (9)0.60470 (11)0.6466 (2)0.0279 (5)
N50.37566 (9)0.69628 (11)0.7606 (2)0.0283 (5)
N60.28551 (9)0.60781 (12)0.4159 (2)0.0308 (6)
H6A0.2790 (12)0.5702 (5)0.415 (3)0.045 (10)*
H6B0.2656 (10)0.6283 (12)0.344 (2)0.038 (9)*
N70.39782 (10)0.60852 (12)0.8748 (3)0.0348 (6)
H7A0.4185 (10)0.6269 (12)0.950 (2)0.043 (9)*
H7B0.3957 (13)0.5701 (5)0.877 (4)0.054 (11)*
N80.35019 (10)0.78255 (12)0.6365 (3)0.0324 (6)
H8A0.3686 (9)0.8009 (11)0.714 (2)0.030 (8)*
H8B0.3313 (11)0.8021 (13)0.561 (2)0.053 (11)*
C150.31528 (10)0.63496 (13)0.5310 (3)0.0273 (6)
C160.37112 (10)0.63705 (13)0.7578 (3)0.0273 (6)
C170.34873 (10)0.72446 (13)0.6423 (3)0.0270 (6)
N90.02898 (8)0.83461 (10)0.1285 (2)0.0271 (5)
N100.00000.74606 (16)0.25000.0301 (8)
H10A0.00000.7074 (5)0.25000.057 (16)*
N110.00000.91967 (15)0.25000.0308 (8)
H11A0.0184 (10)0.9405 (12)0.324 (2)0.040 (9)*
N120.05475 (10)0.74580 (12)0.0180 (3)0.0356 (6)
H12A0.0731 (10)0.7644 (12)0.059 (2)0.036 (9)*
H12B0.0558 (13)0.7072 (5)0.020 (4)0.053 (11)*
C180.00000.86200 (17)0.25000.0244 (8)
C190.02795 (10)0.77645 (13)0.1311 (3)0.0277 (6)
O90.06509 (9)0.99585 (10)0.0244 (2)0.0508 (7)
O100.09675 (8)1.07950 (9)0.0842 (2)0.0334 (5)
H10B0.1173 (12)1.0565 (14)0.142 (3)0.075 (14)*
N130.00001.05523 (15)0.25000.0279 (8)
C200.00001.17795 (19)0.25000.0344 (10)
H200.00001.21960.25000.056 (15)*
C210.03105 (11)1.14704 (13)0.1331 (3)0.0301 (7)
H210.05221.16700.05090.029 (8)*
C220.03049 (10)1.08601 (12)0.1391 (3)0.0256 (6)
C230.06522 (11)1.04884 (14)0.0217 (3)0.0302 (7)
O110.00000.48788 (15)0.25000.0428 (8)
H11B0.0111 (14)0.5073 (16)0.302 (4)0.053 (11)*
O120.01661 (12)0.66299 (13)0.1148 (3)0.0631 (8)
H12C0.0356 (13)0.6839 (16)0.049 (3)0.079 (14)*
H12D0.0013 (16)0.6374 (16)0.092 (5)0.100 (18)*
H12E0.00000.672 (4)0.25000.17 (3)*
O130.16865 (9)1.01368 (11)0.2655 (2)0.0372 (5)
H13A0.1944 (10)1.0045 (19)0.242 (4)0.080 (15)*
H13B0.1636 (16)0.9829 (11)0.306 (4)0.079 (15)*
O140.28646 (9)0.84247 (11)0.3914 (2)0.0411 (6)
H14A0.2740 (12)0.8119 (9)0.347 (3)0.043 (10)*
H14B0.2899 (17)0.8674 (14)0.333 (4)0.088 (16)*
O150.0086 (2)0.6313 (2)0.2238 (8)0.0471 (15)0.50
H15A0.006 (3)0.599 (2)0.261 (12)0.07 (3)*0.50
H15B0.0385 (11)0.630 (3)0.219 (8)0.06 (3)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02553 (19)0.0436 (3)0.02402 (18)0.00683 (17)0.00929 (14)0.00601 (16)
O10.0351 (11)0.0301 (12)0.0447 (12)0.0009 (10)0.0189 (10)0.0083 (10)
O20.0400 (13)0.0334 (13)0.0575 (14)0.0033 (10)0.0330 (11)0.0056 (10)
O30.0390 (12)0.0375 (14)0.0356 (11)0.0126 (10)0.0179 (9)0.0096 (9)
O40.0431 (13)0.0424 (14)0.0582 (14)0.0146 (11)0.0324 (11)0.0096 (11)
O50.0311 (11)0.0353 (13)0.0275 (10)0.0019 (10)0.0033 (9)0.0064 (9)
O60.0333 (12)0.0361 (13)0.0323 (11)0.0008 (10)0.0006 (9)0.0084 (9)
O70.0388 (12)0.0390 (14)0.0386 (12)0.0103 (10)0.0181 (10)0.0129 (10)
O80.0362 (12)0.0424 (14)0.0292 (11)0.0005 (10)0.0030 (9)0.0125 (9)
N10.0244 (12)0.0386 (15)0.0204 (11)0.0077 (11)0.0062 (10)0.0031 (10)
N20.0188 (12)0.0456 (16)0.0245 (12)0.0075 (11)0.0090 (10)0.0114 (11)
C10.0289 (16)0.0325 (18)0.0296 (15)0.0026 (13)0.0131 (13)0.0048 (13)
C20.0241 (14)0.0347 (18)0.0239 (14)0.0027 (13)0.0060 (12)0.0008 (12)
C30.0230 (15)0.040 (2)0.0383 (17)0.0007 (14)0.0097 (13)0.0012 (14)
C40.0326 (17)0.0346 (19)0.0457 (18)0.0006 (14)0.0119 (14)0.0014 (14)
C50.0296 (17)0.041 (2)0.0398 (17)0.0075 (14)0.0112 (14)0.0029 (14)
C60.0232 (14)0.041 (2)0.0233 (14)0.0080 (14)0.0060 (12)0.0030 (13)
C70.0294 (16)0.042 (2)0.0271 (15)0.0100 (15)0.0087 (13)0.0077 (13)
C80.0203 (14)0.042 (2)0.0261 (15)0.0044 (13)0.0063 (12)0.0081 (13)
C90.0182 (14)0.041 (2)0.0282 (15)0.0036 (13)0.0097 (12)0.0114 (13)
C100.0251 (15)0.042 (2)0.0348 (16)0.0002 (14)0.0091 (13)0.0080 (14)
C110.0296 (16)0.040 (2)0.0422 (18)0.0022 (15)0.0148 (14)0.0163 (15)
C120.0264 (16)0.044 (2)0.0307 (16)0.0057 (14)0.0100 (13)0.0174 (14)
C130.0189 (14)0.044 (2)0.0267 (14)0.0051 (13)0.0109 (12)0.0123 (13)
C140.0217 (14)0.046 (2)0.0256 (15)0.0066 (14)0.0114 (12)0.0117 (13)
N30.0255 (13)0.0310 (15)0.0249 (12)0.0020 (11)0.0057 (10)0.0106 (11)
N40.0280 (13)0.0319 (14)0.0224 (12)0.0009 (11)0.0061 (10)0.0054 (10)
N50.0284 (13)0.0281 (15)0.0269 (12)0.0022 (11)0.0065 (10)0.0071 (10)
N60.0301 (14)0.0353 (17)0.0244 (13)0.0012 (12)0.0045 (11)0.0042 (11)
N70.0408 (16)0.0286 (16)0.0273 (14)0.0003 (13)0.0003 (12)0.0058 (11)
N80.0334 (15)0.0305 (16)0.0298 (14)0.0017 (12)0.0050 (12)0.0063 (12)
C150.0227 (14)0.0336 (18)0.0275 (14)0.0021 (13)0.0106 (11)0.0055 (13)
C160.0252 (14)0.0330 (18)0.0241 (14)0.0008 (13)0.0084 (11)0.0053 (12)
C170.0226 (14)0.0321 (18)0.0288 (15)0.0009 (13)0.0118 (12)0.0059 (12)
N90.0284 (13)0.0208 (14)0.0283 (12)0.0012 (10)0.0035 (10)0.0026 (10)
N100.0279 (19)0.021 (2)0.038 (2)0.0000.0060 (15)0.000
N110.036 (2)0.021 (2)0.0269 (19)0.0000.0024 (16)0.000
N120.0334 (15)0.0259 (17)0.0409 (16)0.0012 (12)0.0024 (12)0.0097 (13)
C180.0213 (19)0.022 (2)0.027 (2)0.0000.0041 (16)0.000
C190.0234 (14)0.0267 (18)0.0336 (16)0.0009 (12)0.0097 (12)0.0025 (12)
O90.0626 (16)0.0264 (14)0.0390 (13)0.0015 (11)0.0189 (11)0.0011 (10)
O100.0322 (12)0.0327 (13)0.0281 (11)0.0022 (10)0.0008 (9)0.0058 (9)
N130.0258 (18)0.029 (2)0.0262 (17)0.0000.0044 (14)0.000
C200.031 (2)0.024 (3)0.046 (3)0.0000.010 (2)0.000
C210.0267 (15)0.0289 (18)0.0340 (16)0.0041 (13)0.0086 (13)0.0063 (12)
C220.0241 (15)0.0244 (17)0.0271 (14)0.0020 (12)0.0064 (12)0.0028 (11)
C230.0283 (16)0.033 (2)0.0260 (15)0.0018 (13)0.0043 (12)0.0054 (12)
O110.062 (2)0.030 (2)0.042 (2)0.0000.0255 (18)0.000
O120.087 (2)0.069 (2)0.0308 (14)0.0485 (17)0.0157 (14)0.0130 (13)
O130.0320 (13)0.0404 (15)0.0374 (12)0.0012 (11)0.0086 (10)0.0076 (10)
O140.0568 (15)0.0361 (15)0.0267 (12)0.0032 (12)0.0077 (11)0.0052 (11)
O150.032 (4)0.027 (3)0.090 (5)0.000 (2)0.030 (3)0.003 (3)
Geometric parameters (Å, º) top
Cu1—N11.916 (3)N5—C161.357 (4)
Cu1—N21.967 (3)N6—C151.322 (4)
Cu1—O32.126 (2)N6—H6A0.876 (13)
Cu1—O12.142 (2)N6—H6B0.88 (3)
Cu1—O52.2670 (19)N7—C161.323 (4)
Cu1—O72.296 (2)N7—H7A0.88 (3)
O1—C11.279 (3)N7—H7B0.879 (12)
O2—C11.237 (3)N8—C171.328 (4)
O3—C71.276 (4)N8—H8A0.88 (3)
O4—C71.242 (3)N8—H8B0.88 (3)
O5—C81.255 (4)N9—C191.327 (4)
O6—C81.256 (3)N9—C181.360 (3)
O7—C141.248 (4)N10—C191.367 (3)
O8—C141.269 (3)N10—C19i1.367 (3)
N1—C21.339 (4)N10—H10A0.882 (12)
N1—C61.343 (4)N11—C181.315 (5)
N2—C131.347 (3)N11—H11A0.88 (2)
N2—C91.350 (4)N12—C191.323 (4)
C1—C21.516 (4)N12—H12A0.87 (3)
C2—C31.377 (4)N12—H12B0.876 (13)
C3—C41.383 (4)C18—N9i1.360 (3)
C3—H30.9500O9—C231.209 (4)
C4—C51.391 (4)O10—C231.325 (3)
C4—H40.9500O10—H10B0.85 (3)
C5—C61.377 (4)N13—C221.345 (3)
C5—H50.9500N13—C22i1.345 (3)
C6—C71.520 (4)C20—C21i1.388 (4)
C8—C91.519 (4)C20—C211.388 (4)
C9—C101.385 (4)C20—H200.9500
C10—C111.388 (4)C21—C221.393 (4)
C10—H100.9500C21—H210.9500
C11—C121.387 (4)C22—C231.506 (4)
C11—H110.9500O11—H11B0.81 (3)
C12—C131.379 (4)O12—H12C0.84 (3)
C12—H120.9500O12—H12D0.84 (3)
C13—C141.512 (4)O12—H12E1.274 (14)
N3—C151.367 (4)O13—H13A0.84 (3)
N3—C171.368 (4)O13—H13B0.84 (3)
N3—H3A0.874 (10)O14—H14A0.84 (3)
N4—C151.332 (3)O14—H14B0.84 (3)
N4—C161.355 (4)O15—H15A0.84 (3)
N5—C171.329 (3)O15—H15B0.84 (3)
N1—Cu1—N2176.51 (9)N2—C13—C14113.9 (3)
N1—Cu1—O379.24 (9)C12—C13—C14123.7 (2)
N2—Cu1—O3103.15 (9)O7—C14—O8126.2 (3)
N1—Cu1—O178.83 (9)O7—C14—C13117.7 (2)
N2—Cu1—O198.79 (9)O8—C14—C13116.1 (3)
O3—Cu1—O1158.06 (8)C15—N3—C17119.5 (2)
N1—Cu1—O5105.67 (8)C15—N3—H3A119.4 (19)
N2—Cu1—O576.75 (8)C17—N3—H3A121.0 (19)
O3—Cu1—O595.97 (8)C15—N4—C16115.6 (3)
O1—Cu1—O589.28 (8)C17—N5—C16116.2 (2)
N1—Cu1—O7101.42 (9)C15—N6—H6A123 (2)
N2—Cu1—O776.13 (8)C15—N6—H6B120 (2)
O3—Cu1—O790.42 (7)H6A—N6—H6B116 (3)
O1—Cu1—O794.57 (7)C16—N7—H7A122 (2)
O5—Cu1—O7152.87 (8)C16—N7—H7B120 (2)
C1—O1—Cu1112.94 (18)H7A—N7—H7B119 (3)
C7—O3—Cu1113.53 (18)C17—N8—H8A117 (2)
C8—O5—Cu1111.97 (16)C17—N8—H8B122 (2)
C14—O7—Cu1111.32 (18)H8A—N8—H8B121 (3)
C2—N1—C6121.0 (3)N6—C15—N4120.7 (3)
C2—N1—Cu1119.6 (2)N6—C15—N3117.6 (2)
C6—N1—Cu1119.2 (2)N4—C15—N3121.7 (3)
C13—N2—C9118.8 (3)N7—C16—N4117.3 (3)
C13—N2—Cu1120.9 (2)N7—C16—N5116.8 (3)
C9—N2—Cu1120.15 (18)N4—C16—N5125.9 (2)
O2—C1—O1126.2 (3)N8—C17—N5120.3 (3)
O2—C1—C2118.7 (3)N8—C17—N3118.6 (2)
O1—C1—C2115.1 (3)N5—C17—N3121.1 (3)
N1—C2—C3121.0 (3)C19—N9—C18116.1 (2)
N1—C2—C1112.9 (3)C19—N10—C19i119.1 (4)
C3—C2—C1126.0 (3)C19—N10—H10A120.47 (18)
C2—C3—C4118.7 (3)C19i—N10—H10A120.47 (18)
C2—C3—H3120.7C18—N11—H11A123 (2)
C4—C3—H3120.7C19—N12—H12A119 (2)
C3—C4—C5119.9 (3)C19—N12—H12B121 (2)
C3—C4—H4120.1H12A—N12—H12B120 (3)
C5—C4—H4120.1N11—C18—N9i117.36 (18)
C6—C5—C4118.7 (3)N11—C18—N9117.36 (18)
C6—C5—H5120.6N9i—C18—N9125.3 (4)
C4—C5—H5120.6N12—C19—N9120.6 (3)
N1—C6—C5120.7 (3)N12—C19—N10117.6 (3)
N1—C6—C7112.9 (3)N9—C19—N10121.7 (3)
C5—C6—C7126.4 (3)C23—O10—H10B110 (3)
O4—C7—O3126.5 (3)C22—N13—C22i117.0 (3)
O4—C7—C6118.7 (3)C21i—C20—C21118.9 (4)
O3—C7—C6114.8 (3)C21i—C20—H20120.5
O5—C8—O6125.7 (3)C21—C20—H20120.5
O5—C8—C9117.0 (3)C20—C21—C22118.5 (3)
O6—C8—C9117.4 (3)C20—C21—H21120.7
N2—C9—C10121.8 (3)C22—C21—H21120.7
N2—C9—C8114.0 (3)N13—C22—C21123.5 (3)
C10—C9—C8124.3 (3)N13—C22—C23114.2 (3)
C9—C10—C11119.1 (3)C21—C22—C23122.3 (2)
C9—C10—H10120.4O9—C23—O10122.8 (3)
C11—C10—H10120.4O9—C23—C22123.3 (2)
C12—C11—C10119.0 (3)O10—C23—C22113.9 (3)
C12—C11—H11120.5H12C—O12—H12D118 (4)
C10—C11—H11120.5H12C—O12—H12E130 (4)
C13—C12—C11119.0 (3)H12D—O12—H12E109 (4)
C13—C12—H12120.5H13A—O13—H13B102 (4)
C11—C12—H12120.5H14A—O14—H14B109 (4)
N2—C13—C12122.3 (3)H15A—O15—H15B102 (3)
Symmetry code: (i) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O60.87 (3)1.90 (1)2.766 (3)168 (3)
N6—H6A···O4ii0.88 (1)2.06 (2)2.880 (4)155 (3)
N6—H6B···O50.88 (3)2.01 (1)2.872 (3)167 (3)
N7—H7A···N9iii0.88 (3)2.09 (1)2.965 (3)176 (3)
N7—H7B···O9iii0.88 (1)2.13 (3)2.815 (3)134 (3)
N8—H8B···O140.88 (3)1.96 (1)2.842 (3)177 (3)
N10—H10A···O150.88 (1)1.78 (1)2.649 (6)167 (2)
N11—H11A···O9i0.88 (3)2.06 (1)2.939 (3)172 (3)
N12—H12A···N5iii0.87 (3)2.09 (1)2.959 (4)173 (3)
N12—H12B···O10.88 (1)2.07 (2)2.846 (3)146 (3)
O10—H10B···O130.85 (3)1.83 (3)2.671 (3)172 (4)
O11—H11B···O2iv0.81 (3)2.10 (3)2.896 (3)167 (4)
O12—H12C···O8i0.84 (3)1.72 (3)2.555 (3)173 (4)
O12—H12D···O20.84 (3)1.89 (4)2.700 (3)162 (5)
O12—H12E···O12iv1.27 (1)1.27 (1)2.518 (5)162 (8)
O13—H13A···O4v0.84 (3)2.04 (3)2.870 (3)172 (4)
O13—H13B···N4iii0.84 (3)2.07 (2)2.876 (3)162 (4)
O14—H14A···O60.84 (3)1.83 (1)2.662 (3)172 (3)
O14—H14B···O3v0.84 (3)2.05 (4)2.850 (3)160 (4)
O15—H15A···O11vi0.84 (3)1.98 (6)2.748 (6)151 (11)
O15—H15B···O7i0.84 (3)1.82 (2)2.636 (5)163 (7)
Symmetry codes: (i) x, y, z1/2; (ii) x, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x, y, z+1/2; (v) x+1/2, y+3/2, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula(H5O2)(C3H7N6)3[Cu(C7H3NO4)2]2·C7H5NO4·6H2O
Mr1481.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)180
a, b, c (Å)27.575 (3), 22.814 (3), 9.8068 (12)
β (°) 108.327 (2)
V3)5856.5 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.35 × 0.28 × 0.02
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.758, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
26801, 5309, 3805
Rint0.051
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.03
No. of reflections5309
No. of parameters531
No. of restraints21
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.77

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O60.87 (3)1.903 (12)2.766 (3)168 (3)
N6—H6A···O4i0.876 (13)2.062 (17)2.880 (4)155 (3)
N6—H6B···O50.88 (3)2.007 (12)2.872 (3)167 (3)
N7—H7A···N9ii0.88 (3)2.086 (11)2.965 (3)176 (3)
N7—H7B···O9ii0.879 (12)2.13 (3)2.815 (3)134 (3)
N8—H8B···O140.88 (3)1.964 (11)2.842 (3)177 (3)
N10—H10A···O150.882 (12)1.782 (12)2.649 (6)167 (2)
N11—H11A···O9iii0.88 (3)2.064 (11)2.939 (3)172 (3)
N12—H12A···N5ii0.87 (3)2.090 (12)2.959 (4)173 (3)
N12—H12B···O10.882 (12)2.07 (2)2.846 (3)146 (3)
O10—H10B···O130.85 (3)1.83 (3)2.671 (3)172 (4)
O11—H11B···O2iv0.81 (3)2.10 (3)2.896 (3)167 (4)
O12—H12C···O8iii0.84 (3)1.72 (3)2.555 (3)173 (4)
O12—H12D···O20.84 (3)1.89 (4)2.700 (3)162 (5)
O12—H12E···O12iv1.274 (14)1.274 (14)2.518 (5)162 (8)
O13—H13A···O4v0.84 (3)2.04 (3)2.870 (3)172 (4)
O13—H13B···N4ii0.84 (3)2.066 (17)2.876 (3)162 (4)
O14—H14A···O60.84 (3)1.831 (12)2.662 (3)172 (3)
O14—H14B···O3v0.84 (3)2.05 (4)2.850 (3)160 (4)
O15—H15A···O11vi0.84 (3)1.98 (6)2.748 (6)151 (11)
O15—H15B···O7iii0.84 (3)1.82 (2)2.636 (5)163 (7)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x, y, z1/2; (iv) x, y, z+1/2; (v) x+1/2, y+3/2, z; (vi) x, y+1, z.
 

Acknowledgements

The authors thank Tarbiat Moallem University for financial support and the University of California, Davis, for the purchase of the X-ray diffractometer.

References

First citationAghabozorg, H., Aghajani, Z. & Sharif, M. A. (2006). Acta Cryst. E62, m1930–m1932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m187–m188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Derikvand, Z., Olmstead, M. M. & Attar Gharamaleki, J. (2008). Acta Cryst. C64, m372–m374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M., Nakhjavan, B. & Manteghi, F. (2008). J. Chem. Cryst. 38, 135–145.  Web of Science CSD CrossRef CAS Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Zabihi, F., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62, m2091–m2093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghajani, Z., Sharif, M. A., Aghabozorg, H. & Naderpour, A. (2006). Acta Cryst. E62, m830–m832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPerpétuo, G. J. & Janczak, J. (2006). Acta Cryst. C62, o372–o375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharif, M. A., Aghabozorg, H. & Moghimi, A. (2007). Acta Cryst. E63, m1599–m1601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharif, M. A., Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Moghimi, A. & Shamsipur, M. (2006). Pol. J. Chem. 80, 847–863.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-L., Chen, X.-M. & Ng, S. W. (2005). Acta Cryst. E61, o156–o157.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m186-m187
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds