metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(phenanthridinium) hexa­chloridoplatinate(IV) di­methyl sulfoxide disolvate

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry Department, Shahid Beheshti University, GC, Tehran, Iran, cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, and dDepartment of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 21 January 2009; accepted 22 January 2009; online 28 January 2009)

The asymmetric unit of the title compound, (C13H10N)2[PtCl6]·2C2H6OS, contains one independent protonated phenanthridinium cation, half of a centrosymmetric [PtCl6]2−anion and one dimethyl sulfoxide solvent mol­ecule. Intra­molecular N—H⋯O and inter­molecular C—H⋯Cl hydrogen-bonding inter­actions seem to be effective in the stabilization of the structure.

Related literature

For related literature, see: Abedi et al. (2008[Abedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990.]); Amani et al. (2008[Amani, V., Rahimi, R. & Khavasi, H. R. (2008). Acta Cryst. E64, m1143-m1144.]); Hasan et al. (2001[Hasan, M., Kozhevnikov, I. V., Siddiqui, M. R. H., Femoni, C., Steiner, A. & Winterton, N. (2001). Inorg. Chem. 40, 795-800.]); Hu et al. (2003[Hu, N. H., Norifusa, T. & Aoki, K. (2003). Dalton Trans. pp. 335-341.]); Juan et al. (1998[Juan, C., Mareque, R. & Lee, B. (1998). Inorg. Chem. 37, 4756-4757.]); Kalateh et al. (2008[Kalateh, K., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1267-m1268.]); Li & Liu (2003[Li, D. & Liu, D. (2003). Anal. Sci. 19, 1089-1090.]); Terzis & Mentzafos (1983[Terzis, A. & Mentzafos, D. (1983). Inorg. Chem. 22, 1140-1143.]); Yousefi, Ahmadi et al. (2007[Yousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114-m3115.]); Yousefi, Teimouri et al. (2007a[Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007a). Acta Cryst. E63, m2460-m2461.],b[Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007b). Acta Cryst. E63, m2748-m2749.]); Zafar et al. (2000[Zafar, A., Geib, S. J., Hamuro, Y., Carr, A. J. & Hamilton, A. D. (2000). Tetrahedron, 56, 8419-8427.]); Zordan & Brammer (2004[Zordan, F. & Brammer, L. (2004). Acta Cryst. B60, 512-519.]); Zordan et al. (2005[Zordan, F., Purver, S. L., Adams, H. & Brammer, L. (2005). CrystEngComm, 7, 350-354.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H10N)2[PtCl6]·2C2H6OS

  • Mr = 924.50

  • Orthorhombic, P b c n

  • a = 24.3695 (11) Å

  • b = 7.9061 (3) Å

  • c = 17.4322 (6) Å

  • V = 3358.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.81 mm−1

  • T = 295 (2) K

  • 0.80 × 0.35 × 0.09 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.114, Tmax = 0.671

  • 33029 measured reflections

  • 3533 independent reflections

  • 2992 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.096

  • S = 1.12

  • 3533 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.20 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O1 0.84 (9) 1.79 (9) 2.621 (8) 169 (8)
C7—H7⋯Cl2i 0.93 2.68 3.540 (7) 154
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, there has been considerable interest in proton transfer systems and their structures (Zafar et al., 2000; Abedi et al., 2008). Several proton transfer systems using H2[PtCl6] with proton acceptor molecules, such as [HpyBr-3]2[PtCl6].2H2O, (II), and [HpyI-3]2[PtCl6].2H2O, (III), (Zordan et al., 2005), [BMIM]2[PtCl6], (IV), and [EMIM]2[PtCl6], (V), (Hasan et al., 2001), {(DABCO)H2[PtCl6]}, (VI), (Juan et al.,1998), {p-C6H4(CH2ImMe)2[PtCl6]}, (VII), (Li & Liu, 2003), [het][PtCl6].2H2O, (VIII), (Hu et al., 2003), [9-MeGuaH]2[PtCl6].2H2O, (IX), (Terzis & Mentzafos, 1983), [HpyCl-3]3[PtCl6]Cl, (X), (Zordan et al., 2004), [2,9-dmphen.H]2[PtCl6], (XI), (Yousefi et al., 2007), [H2DA18C6][PtCl6].2H2O, (XII), (Yousefi et al., 2007a), [2,6-dmpy.H]2[PtCl6], (XIII), (Amani et al., 2008), [TBA]3[PtCl6]Cl, (XIV), (Yousefi et al., 2007b) and [2,4,6-dmpy.H]2[PtCl6], (XV), (Kalateh et al., 2008) [where hpy is halo-pyridinium, BMIM+ is 1-n-butyl-3-methylimidazolium, EMIM+ is1-ethyl-3-methylimidazolium, DABCO is 1,4-diazabicyclooctane, Im is imidazolium, het is 2-(α-hydroxyethyl) thiamine, 9-MeGuaH is 9-methylguaninium, 2,9-dmphen.H is 2,9-dimethyl-1,10-phenanthrolinium, H2DA18C6 is 1,10-Diazonia-18-crown-6,2,6-dmpy.H is 2,6-dimethylpyridinium, TBA is tribenzylammonium and 2,4,6-dmpy.H is 2,4,6-dimethylpyridinium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of the title compound (I), (Fig. 1) contains one independent protonated phenanthridinium cation and one half PtCl2-6 anion, and one dimethyl sulfoxide solvate. The Pt ion has an octahedral coordination (Table 1). In cation, the bond lengths and angles are normal. In PtCl2-6 anion, the Pt—Cl bond lengths and Cl—Pt—Cl bond angles are also within normal ranges, as in (III) to (XV).

The intramolecular N—H···O and intermolecular C—H···Cl hydrogen bonding interactions (Table 1) seem to be effective in the stabilization of the structure (Fig. 2).

Related literature top

For related literature, see: Abedi et al. (2008); Amani et al. (2008); Hasan et al. (2001); Hu et al. (2003); Juan et al. (1998); Kalateh et al. (2008); Li & Liu (2003); Terzis & Mentzafos (1983); Yousefi, Ahmadi et al. (2007); Yousefi, Teimouri et al. (2007a,b); Zafar et al. (2000); Zordan & Brammer (2004); Zordan et al. (2005).

Experimental top

For the preparation of the title compound, (I), a solution of phenanthridine (0.27 g,1.48 mmol) in ethanol (10 ml) was added to a solution of H2PtCl6.6H2O, (0.38 g, 0.74 mmol) in ethanol (10 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by ethanol diffusion in a solution of orange precipitated in DMSO after one week [yield; 0.51 g, 74.7%, m.p. < 573 K].

Refinement top

The C-bound H-atoms were placed in calculated positions with C—H = 0.93 Å and C—H 0.96 Å, and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq (ring C) and Uiso(H) = 1.5Ueq (methyl C). The N-bound H-atom was found from a difference Fourier map and refined freely. In the final Fourier map, the highest and deepest peaks were located 1.13 and 0.47 Å from atom S1, respectively.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 view of the title molecule, with the atom-numbering scheme and 50% probability displacement ellipsoids
[Figure 2] Fig. 2. View of the packing and hydrogen bonding interactions. For clarity, H atoms not involved in hydrogen bonds have been omitted.
Bis(phenanthridinium) hexachloridoplatinate(IV) dimethyl sulfoxide disolvate top
Crystal data top
(C13H10N)2[PtCl6]·2C2H6OSF(000) = 1816
Mr = 924.50Dx = 1.828 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 46774 reflections
a = 24.3695 (11) Åθ = 1.4–27.3°
b = 7.9061 (3) ŵ = 4.81 mm1
c = 17.4322 (6) ÅT = 295 K
V = 3358.6 (2) Å3Prism, yellow
Z = 40.80 × 0.35 × 0.09 mm
Data collection top
Stoe IPDS-2
diffractometer
3533 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2992 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.106
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 1.7°
ω scansh = 3030
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 910
Tmin = 0.114, Tmax = 0.671l = 2220
33029 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0192P)2 + 15.6678P]
where P = (Fo2 + 2Fc2)/3
3533 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 2.20 e Å3
0 restraintsΔρmin = 1.01 e Å3
Crystal data top
(C13H10N)2[PtCl6]·2C2H6OSV = 3358.6 (2) Å3
Mr = 924.50Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 24.3695 (11) ŵ = 4.81 mm1
b = 7.9061 (3) ÅT = 295 K
c = 17.4322 (6) Å0.80 × 0.35 × 0.09 mm
Data collection top
Stoe IPDS-2
diffractometer
3533 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2992 reflections with I > 2σ(I)
Tmin = 0.114, Tmax = 0.671Rint = 0.106
33029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0192P)2 + 15.6678P]
where P = (Fo2 + 2Fc2)/3
3533 reflectionsΔρmax = 2.20 e Å3
199 parametersΔρmin = 1.01 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3026 (2)0.7872 (7)0.9147 (3)0.0450 (17)
C10.2284 (2)0.9236 (7)0.8111 (3)0.0380 (17)
C20.1935 (3)0.9962 (8)0.7558 (4)0.051 (2)
C30.2148 (3)1.0700 (9)0.6916 (4)0.057 (3)
C40.2715 (3)1.0779 (9)0.6797 (4)0.059 (3)
C50.3067 (3)1.0107 (9)0.7327 (4)0.052 (2)
C60.2855 (2)0.9333 (8)0.7987 (3)0.0417 (17)
C70.3209 (3)0.8621 (8)0.8539 (4)0.048 (2)
C80.2463 (3)0.7702 (8)0.9301 (3)0.0403 (17)
C90.2309 (3)0.6859 (9)0.9972 (4)0.049 (2)
C100.1764 (3)0.6683 (9)1.0126 (4)0.056 (2)
C110.1378 (3)0.7337 (9)0.9637 (5)0.060 (3)
C120.1527 (3)0.8186 (8)0.8981 (4)0.051 (2)
C130.2085 (2)0.8394 (7)0.8797 (3)0.0383 (17)
S10.42059 (10)0.6422 (3)1.04509 (15)0.0776 (8)
O10.3643 (2)0.7031 (10)1.0318 (4)0.099 (3)
C140.4292 (4)0.6686 (12)1.1452 (5)0.080 (3)
C150.4641 (5)0.7984 (15)1.0151 (6)0.111 (5)
Pt11.000000.67772 (4)0.250000.0358 (1)
Cl10.95124 (7)0.8825 (2)0.18305 (10)0.0533 (5)
Cl21.04739 (6)0.4687 (2)0.31590 (9)0.0509 (5)
Cl31.06735 (7)0.6805 (2)0.15568 (9)0.0525 (5)
HN10.325 (4)0.753 (11)0.948 (5)0.09 (3)*
H20.155700.993800.763000.0610*
H30.191201.115800.655200.0690*
H40.285201.128900.635600.0710*
H50.344401.016400.724900.0620*
H70.358600.869200.846400.0580*
H90.257200.642901.030500.0590*
H100.165300.611501.056600.0670*
H110.100700.720300.975100.0710*
H120.125900.862500.865800.0610*
H14A0.406700.588101.172000.1200*
H14B0.418400.781101.159500.1200*
H14C0.467000.651001.158500.1200*
H15A0.464700.801500.960100.1660*
H15B0.500400.776001.034000.1660*
H15C0.451700.905401.034500.1660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.030 (3)0.053 (3)0.052 (3)0.001 (2)0.008 (2)0.008 (3)
C10.036 (3)0.037 (3)0.041 (3)0.002 (2)0.004 (2)0.009 (2)
C20.043 (3)0.056 (4)0.054 (4)0.007 (3)0.005 (3)0.007 (3)
C30.062 (5)0.059 (4)0.051 (4)0.011 (4)0.007 (4)0.001 (3)
C40.074 (5)0.057 (4)0.046 (4)0.004 (4)0.013 (4)0.000 (3)
C50.051 (4)0.061 (4)0.044 (4)0.005 (3)0.008 (3)0.009 (3)
C60.034 (3)0.047 (3)0.044 (3)0.005 (3)0.001 (3)0.013 (3)
C70.026 (3)0.057 (4)0.061 (4)0.002 (3)0.002 (3)0.012 (3)
C80.036 (3)0.043 (3)0.042 (3)0.002 (3)0.001 (3)0.013 (3)
C90.053 (4)0.053 (4)0.042 (3)0.002 (3)0.006 (3)0.004 (3)
C100.059 (4)0.055 (4)0.053 (4)0.005 (4)0.006 (4)0.000 (3)
C110.040 (4)0.061 (4)0.078 (5)0.000 (3)0.018 (4)0.003 (4)
C120.035 (3)0.054 (4)0.064 (4)0.005 (3)0.002 (3)0.000 (3)
C130.032 (3)0.041 (3)0.042 (3)0.004 (2)0.001 (2)0.013 (3)
S10.0602 (13)0.0891 (16)0.0836 (15)0.0018 (11)0.0189 (11)0.0056 (12)
O10.049 (3)0.170 (7)0.077 (4)0.013 (4)0.021 (3)0.027 (4)
C140.072 (6)0.106 (7)0.062 (5)0.016 (5)0.017 (4)0.030 (5)
C150.095 (8)0.166 (11)0.071 (6)0.051 (8)0.009 (6)0.023 (7)
Pt10.0247 (2)0.0484 (2)0.0342 (2)0.00000.0005 (1)0.0000
Cl10.0434 (9)0.0616 (9)0.0548 (9)0.0150 (8)0.0025 (7)0.0076 (8)
Cl20.0390 (8)0.0611 (9)0.0527 (9)0.0007 (7)0.0073 (7)0.0160 (8)
Cl30.0396 (8)0.0715 (10)0.0463 (8)0.0082 (8)0.0145 (7)0.0067 (8)
Geometric parameters (Å, º) top
Pt1—Cl1i2.3228 (17)C8—C131.386 (8)
Pt1—Cl2i2.3204 (16)C9—C101.362 (10)
Pt1—Cl3i2.3233 (16)C10—C111.371 (11)
Pt1—Cl32.3233 (16)C11—C121.375 (11)
Pt1—Cl12.3228 (17)C12—C131.407 (9)
Pt1—Cl22.3204 (16)C2—H20.9300
S1—C141.770 (9)C3—H30.9300
S1—C151.710 (12)C4—H40.9300
S1—O11.472 (6)C5—H50.9300
N1—C71.293 (9)C7—H70.9300
N1—C81.405 (9)C9—H90.9300
N1—HN10.84 (9)C10—H100.9300
C1—C61.410 (7)C11—H110.9300
C1—C21.408 (9)C12—H120.9300
C1—C131.452 (7)C14—H14B0.9600
C2—C31.365 (10)C14—H14A0.9600
C3—C41.399 (10)C14—H14C0.9600
C4—C51.368 (10)C15—H15C0.9600
C5—C61.402 (9)C15—H15A0.9600
C6—C71.410 (9)C15—H15B0.9600
C8—C91.398 (9)
Cl1···Cl1i3.331 (2)C8···O13.420 (9)
Cl1···Cl2i3.272 (2)C8···C6ix3.598 (8)
Cl1···Cl3i3.265 (2)C8···C9viii3.533 (9)
Cl1···Cl33.284 (2)C8···C1ix3.492 (8)
Cl2···Cl1i3.272 (2)C9···O13.309 (9)
Cl2···Cl3i3.297 (2)C9···C8ix3.533 (9)
Cl2···Cl33.293 (2)C10···Cl3xi3.646 (7)
Cl2···C7ii3.540 (7)C13···C6ix3.511 (8)
Cl2···Cl2i3.258 (2)C2···H122.7400
Cl3···Cl23.293 (2)C2···H14Axii2.9200
Cl3···Cl13.284 (2)C4···H10xii3.0400
Cl3···Cl1i3.265 (2)C10···H3xiii3.0400
Cl3···C10iii3.646 (7)C12···H22.7300
Cl3···Cl2i3.297 (2)HN1···H92.3600
Cl1···H15Aiv2.9100HN1···S13.01 (9)
Cl1···H14Cv2.9400HN1···O11.79 (9)
Cl1···H2vi2.9400H2···H122.1900
Cl1···H7iv3.0500H2···H14Axii2.2900
Cl1···H12vi2.8900H2···C122.7300
Cl2···H7ii2.6800H2···Cl1vi2.9400
Cl2···H15Aii3.1200H3···C10xiv3.0400
Cl2···H5ii3.0800H5···H72.4400
Cl3···H15Cvii3.0700H5···Cl2x3.0800
Cl3···H10iii3.0000H5···Cl3x2.9200
Cl3···H5ii2.9200H7···Cl1xv3.0500
S1···HN13.01 (9)H7···H52.4400
O1···N12.621 (8)H7···Cl2x2.6800
O1···C93.309 (9)H9···O12.6500
O1···C83.420 (9)H9···HN12.3600
O1···HN11.79 (9)H10···C4xvi3.0400
O1···H92.6500H10···Cl3xi3.0000
N1···O12.621 (8)H11···H15Bxvii2.4500
C1···C8viii3.492 (8)H12···C22.7400
C1···C4ix3.566 (9)H12···H22.1900
C2···C7viii3.379 (9)H12···Cl1vi2.8900
C2···C6viii3.573 (9)H14A···C2xvi2.9200
C3···C6viii3.426 (9)H14A···H2xvi2.2900
C3···C5viii3.596 (10)H14B···H15C2.5200
C4···C1viii3.566 (9)H14C···H15B2.5200
C5···C3ix3.596 (10)H14C···Cl1xviii2.9400
C6···C3ix3.426 (9)H15A···Cl2x3.1200
C6···C13viii3.511 (8)H15A···Cl1xv2.9100
C6···C2ix3.573 (9)H15B···H14C2.5200
C6···C8viii3.598 (8)H15B···H11xix2.4500
C7···C2ix3.379 (9)H15C···H14B2.5200
C7···Cl2x3.540 (7)H15C···Cl3xx3.0700
Cl1i—Pt1—Cl289.60 (6)C9—C10—C11120.5 (7)
Cl2—Pt1—Cl2i89.18 (6)C10—C11—C12121.4 (7)
Cl2—Pt1—Cl3i90.46 (5)C11—C12—C13120.1 (6)
Cl1i—Pt1—Cl389.29 (6)C1—C13—C8118.8 (5)
Cl2i—Pt1—Cl390.46 (5)C1—C13—C12124.4 (5)
Cl3—Pt1—Cl3i178.92 (6)C8—C13—C12116.9 (5)
Cl1i—Pt1—Cl2i178.75 (6)C1—C2—H2120.00
Cl1i—Pt1—Cl3i89.96 (6)C3—C2—H2120.00
Cl2i—Pt1—Cl3i90.32 (5)C2—C3—H3119.00
Cl2—Pt1—Cl390.32 (5)C4—C3—H3120.00
Cl1—Pt1—Cl1i91.62 (6)C3—C4—H4120.00
Cl1—Pt1—Cl2178.75 (6)C5—C4—H4120.00
Cl1—Pt1—Cl389.96 (6)C6—C5—H5120.00
Cl1—Pt1—Cl2i89.60 (6)C4—C5—H5120.00
Cl1—Pt1—Cl3i89.29 (6)N1—C7—H7119.00
O1—S1—C14103.1 (4)C6—C7—H7119.00
O1—S1—C15107.1 (5)C8—C9—H9121.00
C14—S1—C1598.2 (5)C10—C9—H9121.00
C7—N1—C8122.5 (5)C11—C10—H10120.00
C8—N1—HN1118 (6)C9—C10—H10120.00
C7—N1—HN1119 (6)C12—C11—H11119.00
C2—C1—C13123.3 (5)C10—C11—H11119.00
C2—C1—C6118.0 (5)C13—C12—H12120.00
C6—C1—C13118.7 (5)C11—C12—H12120.00
C1—C2—C3120.4 (6)S1—C14—H14A109.00
C2—C3—C4121.1 (7)S1—C14—H14B109.00
C3—C4—C5120.1 (7)S1—C14—H14C110.00
C4—C5—C6119.5 (6)H14A—C14—H14B109.00
C1—C6—C5120.9 (5)H14A—C14—H14C110.00
C5—C6—C7120.6 (5)H14B—C14—H14C110.00
C1—C6—C7118.5 (5)S1—C15—H15A109.00
N1—C7—C6122.1 (6)S1—C15—H15B109.00
C9—C8—C13122.7 (6)S1—C15—H15C109.00
N1—C8—C9117.9 (6)H15A—C15—H15B109.00
N1—C8—C13119.4 (5)H15A—C15—H15C110.00
C8—C9—C10118.4 (7)H15B—C15—H15C109.00
C7—N1—C8—C9179.5 (6)C4—C5—C6—C10.1 (10)
C7—N1—C8—C131.7 (9)C4—C5—C6—C7179.6 (6)
C8—N1—C7—C60.4 (10)C1—C6—C7—N10.7 (9)
C6—C1—C2—C31.4 (9)C5—C6—C7—N1178.8 (6)
C13—C1—C2—C3178.4 (6)N1—C8—C9—C10179.8 (6)
C13—C1—C6—C70.6 (8)C13—C8—C9—C101.4 (10)
C2—C1—C13—C8179.2 (6)N1—C8—C13—C11.7 (8)
C2—C1—C13—C121.0 (9)N1—C8—C13—C12179.9 (5)
C6—C1—C13—C80.6 (8)C9—C8—C13—C1179.5 (6)
C6—C1—C13—C12178.8 (6)C9—C8—C13—C121.2 (9)
C2—C1—C6—C50.9 (9)C8—C9—C10—C110.8 (11)
C2—C1—C6—C7179.6 (6)C9—C10—C11—C120.1 (11)
C13—C1—C6—C5178.9 (6)C10—C11—C12—C130.3 (11)
C1—C2—C3—C41.1 (10)C11—C12—C13—C1178.6 (6)
C2—C3—C4—C50.2 (11)C11—C12—C13—C80.4 (9)
C3—C4—C5—C60.3 (10)
Symmetry codes: (i) x+2, y, z+1/2; (ii) x+3/2, y+3/2, z1/2; (iii) x+1, y, z1; (iv) x+1/2, y+3/2, z+1; (v) x+3/2, y+1/2, z1; (vi) x+1, y+2, z+1; (vii) x+3/2, y1/2, z1; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y1/2, z; (x) x+3/2, y+3/2, z+1/2; (xi) x1, y, z+1; (xii) x+1/2, y+3/2, z1/2; (xiii) x, y+2, z+1/2; (xiv) x, y+2, z1/2; (xv) x1/2, y+3/2, z+1; (xvi) x+1/2, y+3/2, z+1/2; (xvii) x1/2, y+3/2, z+2; (xviii) x+3/2, y1/2, z+1; (xix) x+1/2, y+3/2, z+2; (xx) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O10.84 (9)1.79 (9)2.621 (8)169 (8)
C7—H7···Cl2x0.932.683.540 (7)154
Symmetry code: (x) x+3/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C13H10N)2[PtCl6]·2C2H6OS
Mr924.50
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)295
a, b, c (Å)24.3695 (11), 7.9061 (3), 17.4322 (6)
V3)3358.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.81
Crystal size (mm)0.80 × 0.35 × 0.09
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.114, 0.671
No. of measured, independent and
observed [I > 2σ(I)] reflections
33029, 3533, 2992
Rint0.106
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.096, 1.12
No. of reflections3533
No. of parameters199
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0192P)2 + 15.6678P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.20, 1.01

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O10.84 (9)1.79 (9)2.621 (8)169 (8)
C7—H7···Cl2i0.932.683.540 (7)154
Symmetry code: (i) x+3/2, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the diffractometer (purchased under grant No. F.279 of the University Research Fund). NS, VA and AA are grateful to Shahid Beheshti University for financial support.

References

First citationAbedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmani, V., Rahimi, R. & Khavasi, H. R. (2008). Acta Cryst. E64, m1143–m1144.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHasan, M., Kozhevnikov, I. V., Siddiqui, M. R. H., Femoni, C., Steiner, A. & Winterton, N. (2001). Inorg. Chem. 40, 795–800.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, N. H., Norifusa, T. & Aoki, K. (2003). Dalton Trans. pp. 335–341.  Web of Science CSD CrossRef Google Scholar
First citationJuan, C., Mareque, R. & Lee, B. (1998). Inorg. Chem. 37, 4756–4757.  PubMed Google Scholar
First citationKalateh, K., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1267–m1268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, D. & Liu, D. (2003). Anal. Sci. 19, 1089–1090.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTerzis, A. & Mentzafos, D. (1983). Inorg. Chem. 22, 1140–1143.  CSD CrossRef CAS Web of Science Google Scholar
First citationYousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114–m3115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007a). Acta Cryst. E63, m2460–m2461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007b). Acta Cryst. E63, m2748–m2749.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZafar, A., Geib, S. J., Hamuro, Y., Carr, A. J. & Hamilton, A. D. (2000). Tetrahedron, 56, 8419–8427.  Web of Science CSD CrossRef CAS Google Scholar
First citationZordan, F. & Brammer, L. (2004). Acta Cryst. B60, 512–519.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZordan, F., Purver, S. L., Adams, H. & Brammer, L. (2005). CrystEngComm, 7, 350–354.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds