organic compounds
Methyl gallate
aDepartment of Chemistry, College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA, and bDepartment of Physics, College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: dcbebo@wm.edu
The 8H8O5, is composed of essentially planar molecules [maximum departures from the mean carbon and oxygen skeleton plane of 0.0348 (10) Å]. The H atoms of the three hydroxyl groups, which function as hydrogen-bond donors and acceptors simultaneously, are oriented in the same direction around the aromatic ring. In addition to two intramolecular hydrogen bonds, each molecule is hydrogen bonded to six others, creating a three-dimensional hydrogen-bonded network.
of the title compound (systematic name: methyl 3,4,5-trihydroxybenzoate), CRelated literature
For natural extracts containing gallic acid methyl ester, see: Saxena et al. (1994); Schmidt et al. (2003); Hawas (2007). For studies concerning antioxidant activity, see: Aruoma et al. (1993); Schmidt et al. (2003); Hawas (2007). For studies concerning anticancer properties, see: Fiuza et al. (2004) and for antimicrobial properties, see: Saxena et al. (1994); Landete et al. (2007). For cocrystals containing gallic acid methyl ester, see: Sekine et al. (2003); Martin et al. (1986). Similar gallate ester conformations are found in Parkin et al. (2002); Okabe & Kyoyama (2002a); Nomura et al. (2000); Mizuguchi et al. (2005). For structures with similar hydroxyl arrangements, see: Hitachi et al. (2005); Okabe et al. (2001); Okabe & Kyoyama (2002b). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker , 2004); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: WinGX (Farrugia, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
Supporting information
10.1107/S1600536809001123/rz2286sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809001123/rz2286Isup2.hkl
Gallic acid methyl ester was commercially obtained from Sigma-Aldrich (98% purity) and used as received. The
determination was carried out from a crystal with rhombic prismatic habit selected from the powder.All hydrogen atoms were observed in the Fourier difference map. However, the torsion angle for the hydroxyl H was refined from the electron density and the methyl H was positioned in idealized staggered geometry. The H atoms were refined constrained to ride on their parent C or O atoms, with Uiso(H)=1.2 Ueq(C) for aromatic H, and Uiso(H)=1.5 Ueq(C or O) for methyl and hydroxyl H, respectively.
Data collection: APEX2 (Bruker , 2004); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: WinGX (Farrugia, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C8H8O5 | F(000) = 384 |
Mr = 184.14 | Dx = 1.526 Mg m−3 |
Monoclinic, P21/n | Melting point: 474 K |
Hall symbol: -P 2yn | Cu Kα radiation, λ = 1.54178 Å |
a = 7.6963 (2) Å | Cell parameters from 1352 reflections |
b = 9.9111 (2) Å | θ = 6.1–67.0° |
c = 10.5625 (2) Å | µ = 1.12 mm−1 |
β = 95.993 (1)° | T = 100 K |
V = 801.29 (3) Å3 | Rhombic prism, colourless |
Z = 4 | 0.31 × 0.23 × 0.21 mm |
Bruker SMART APEXII CCD diffractometer | 1352 independent reflections |
Radiation source: fine-focus sealed tube | 1311 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ω and ψ scans | θmax = 67.0°, θmin = 6.1° |
Absorption correction: numerical (SADABS; Sheldrick, 2004) | h = −8→9 |
Tmin = 0.723, Tmax = 0.799 | k = −11→11 |
8192 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.093 | All H-atom parameters refined |
S = 0.69 | w = 1/[σ2(Fo2) + (0.0834P)2 + 0.9466P] where P = (Fo2 + 2Fc2)/3 |
1352 reflections | (Δ/σ)max = 0.004 |
121 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
32 constraints |
C8H8O5 | V = 801.29 (3) Å3 |
Mr = 184.14 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 7.6963 (2) Å | µ = 1.12 mm−1 |
b = 9.9111 (2) Å | T = 100 K |
c = 10.5625 (2) Å | 0.31 × 0.23 × 0.21 mm |
β = 95.993 (1)° |
Bruker SMART APEXII CCD diffractometer | 1352 independent reflections |
Absorption correction: numerical (SADABS; Sheldrick, 2004) | 1311 reflections with I > 2σ(I) |
Tmin = 0.723, Tmax = 0.799 | Rint = 0.034 |
8192 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.093 | All H-atom parameters refined |
S = 0.69 | Δρmax = 0.23 e Å−3 |
1352 reflections | Δρmin = −0.20 e Å−3 |
121 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.14003 (11) | 1.05605 (9) | 0.77633 (8) | 0.0145 (2) | |
O2 | 0.29090 (12) | 0.99023 (9) | 0.61631 (8) | 0.0156 (3) | |
O3 | −0.38148 (12) | 0.74067 (10) | 0.72722 (9) | 0.0189 (3) | |
H3 | −0.4389 | 0.6742 | 0.6963 | 0.028* | |
O4 | −0.33530 (12) | 0.58249 (9) | 0.52444 (9) | 0.0167 (2) | |
H4 | −0.314 | 0.5462 | 0.4559 | 0.025* | |
O5 | −0.05442 (13) | 0.61740 (10) | 0.39075 (9) | 0.0185 (3) | |
H5 | 0.0127 | 0.6524 | 0.3422 | 0.028* | |
C7 | 0.15489 (17) | 0.98352 (13) | 0.68447 (12) | 0.0121 (3) | |
C1 | 0.02736 (17) | 0.87858 (13) | 0.63777 (12) | 0.0126 (3) | |
C2 | −0.11958 (17) | 0.85957 (13) | 0.70290 (12) | 0.0126 (3) | |
H2 | −0.1378 | 0.9145 | 0.774 | 0.015* | |
C3 | −0.23803 (17) | 0.75983 (13) | 0.66260 (12) | 0.0129 (3) | |
C4 | −0.21306 (17) | 0.67861 (13) | 0.55808 (12) | 0.0129 (3) | |
C5 | −0.06683 (17) | 0.69987 (13) | 0.49284 (12) | 0.0134 (3) | |
C6 | 0.05370 (16) | 0.79838 (13) | 0.53249 (12) | 0.0134 (3) | |
H6 | 0.1539 | 0.8116 | 0.4885 | 0.016* | |
C8 | 0.42258 (18) | 1.09026 (14) | 0.65644 (13) | 0.0182 (3) | |
H8A | 0.5161 | 1.0867 | 0.6003 | 0.027* | |
H8B | 0.4712 | 1.0715 | 0.7441 | 0.027* | |
H8C | 0.3695 | 1.1802 | 0.6521 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0147 (5) | 0.0147 (5) | 0.0141 (5) | 0.0011 (4) | 0.0010 (4) | −0.0023 (4) |
O2 | 0.0135 (5) | 0.0186 (5) | 0.0153 (5) | −0.0048 (4) | 0.0040 (4) | −0.0030 (4) |
O3 | 0.0171 (5) | 0.0206 (5) | 0.0209 (5) | −0.0067 (4) | 0.0108 (4) | −0.0070 (4) |
O4 | 0.0188 (5) | 0.0180 (5) | 0.0141 (5) | −0.0071 (4) | 0.0058 (4) | −0.0043 (4) |
O5 | 0.0237 (5) | 0.0196 (5) | 0.0140 (5) | −0.0080 (4) | 0.0103 (4) | −0.0057 (4) |
C1 | 0.0135 (6) | 0.0127 (6) | 0.0114 (6) | 0.0019 (5) | 0.0004 (5) | 0.0028 (5) |
C2 | 0.0147 (7) | 0.0130 (6) | 0.0104 (6) | 0.0023 (5) | 0.0021 (5) | −0.0002 (5) |
C3 | 0.0127 (6) | 0.0147 (6) | 0.0120 (6) | 0.0012 (5) | 0.0041 (5) | 0.0025 (5) |
C4 | 0.0137 (6) | 0.0123 (6) | 0.0124 (6) | −0.0012 (5) | 0.0000 (5) | 0.0022 (5) |
C5 | 0.0176 (7) | 0.0129 (6) | 0.0100 (6) | 0.0012 (5) | 0.0032 (5) | 0.0002 (5) |
C6 | 0.0127 (6) | 0.0159 (7) | 0.0121 (6) | 0.0004 (5) | 0.0040 (5) | 0.0024 (5) |
C7 | 0.0129 (7) | 0.0122 (6) | 0.0111 (6) | 0.0037 (5) | 0.0006 (5) | 0.0030 (5) |
C8 | 0.0157 (7) | 0.0203 (7) | 0.0185 (7) | −0.0071 (5) | 0.0015 (6) | −0.0010 (5) |
O1—C7 | 1.2225 (16) | C1—C6 | 1.3988 (19) |
O2—C7 | 1.3327 (15) | C2—C3 | 1.3815 (18) |
O2—C8 | 1.4491 (16) | C2—H2 | 0.95 |
O3—C3 | 1.3705 (15) | C3—C4 | 1.3957 (18) |
O3—H3 | 0.84 | C4—C5 | 1.3956 (18) |
O4—C4 | 1.3598 (16) | C5—C6 | 1.3813 (18) |
O4—H4 | 0.84 | C6—H6 | 0.95 |
O5—C5 | 1.3644 (16) | C8—H8A | 0.98 |
O5—H5 | 0.84 | C8—H8B | 0.98 |
C7—C1 | 1.4790 (19) | C8—H8C | 0.98 |
C1—C2 | 1.3965 (17) | ||
C7—O2—C8 | 116.16 (10) | O4—C4—C5 | 123.25 (11) |
C3—O3—H3 | 109.5 | O4—C4—C3 | 117.52 (11) |
C4—O4—H4 | 109.5 | C5—C4—C3 | 119.22 (12) |
C5—O5—H5 | 109.5 | O5—C5—C6 | 124.25 (11) |
O1—C7—O2 | 122.91 (12) | O5—C5—C4 | 115.24 (12) |
O1—C7—C1 | 124.36 (11) | C6—C5—C4 | 120.51 (11) |
O2—C7—C1 | 112.72 (11) | C5—C6—C1 | 119.62 (12) |
C2—C1—C6 | 120.47 (12) | C5—C6—H6 | 120.2 |
C2—C1—C7 | 118.29 (11) | C1—C6—H6 | 120.2 |
C6—C1—C7 | 121.24 (12) | O2—C8—H8A | 109.5 |
C3—C2—C1 | 119.15 (12) | O2—C8—H8B | 109.5 |
C3—C2—H2 | 120.4 | H8A—C8—H8B | 109.5 |
C1—C2—H2 | 120.4 | O2—C8—H8C | 109.5 |
O3—C3—C2 | 119.06 (11) | H8A—C8—H8C | 109.5 |
O3—C3—C4 | 119.91 (12) | H8B—C8—H8C | 109.5 |
C2—C3—C4 | 121.03 (12) | ||
C8—O2—C7—O1 | −0.42 (18) | C2—C3—C4—O4 | 179.88 (11) |
C8—O2—C7—C1 | −179.68 (10) | O3—C3—C4—C5 | 179.65 (11) |
O1—C7—C1—C2 | −0.53 (19) | C2—C3—C4—C5 | −0.7 (2) |
O2—C7—C1—C2 | 178.71 (11) | O4—C4—C5—O5 | 0.45 (19) |
O1—C7—C1—C6 | −179.44 (12) | C3—C4—C5—O5 | −178.97 (11) |
O2—C7—C1—C6 | −0.19 (17) | O4—C4—C5—C6 | −179.37 (11) |
C6—C1—C2—C3 | 0.47 (19) | C3—C4—C5—C6 | 1.21 (19) |
C7—C1—C2—C3 | −178.44 (11) | O5—C5—C6—C1 | 179.28 (12) |
C1—C2—C3—O3 | 179.52 (11) | C4—C5—C6—C1 | −0.92 (19) |
C1—C2—C3—C4 | −0.17 (19) | C2—C1—C6—C5 | 0.07 (19) |
O3—C3—C4—O4 | 0.19 (18) | C7—C1—C6—C5 | 178.95 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O4 | 0.84 | 2.25 | 2.7075 (13) | 115 |
O4—H4···O5 | 0.84 | 2.29 | 2.7247 (12) | 112 |
O4—H4···O1i | 0.84 | 2.15 | 2.9470 (13) | 159 |
O3—H3···O1ii | 0.84 | 1.99 | 2.7007 (12) | 142 |
O5—H5···O3iii | 0.84 | 1.86 | 2.6859 (12) | 166 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x−1/2, y−1/2, −z+3/2; (iii) x+1/2, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C8H8O5 |
Mr | 184.14 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 7.6963 (2), 9.9111 (2), 10.5625 (2) |
β (°) | 95.993 (1) |
V (Å3) | 801.29 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.12 |
Crystal size (mm) | 0.31 × 0.23 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Numerical (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.723, 0.799 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8192, 1352, 1311 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.093, 0.69 |
No. of reflections | 1352 |
No. of parameters | 121 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.23, −0.20 |
Computer programs: APEX2 (Bruker , 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), WinGX (Farrugia, 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O4 | 0.84 | 2.25 | 2.7075 (13) | 114.5 |
O4—H4···O5 | 0.84 | 2.29 | 2.7247 (12) | 112.4 |
O4—H4···O1i | 0.84 | 2.15 | 2.9470 (13) | 159.2 |
O3—H3···O1ii | 0.84 | 1.99 | 2.7007 (12) | 142.4 |
O5—H5···O3iii | 0.84 | 1.86 | 2.6859 (12) | 166.4 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x−1/2, y−1/2, −z+3/2; (iii) x+1/2, −y+3/2, z−1/2. |
Acknowledgements
We are indebted to the NSF (CHE-0443345) and The College of William and Mary for the purchase of X-ray equipment. This work was supported in part by the US National Science Foundation (CHE-0315934). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. SP gratefully acknowledges the Physics Department of the College of William and Mary for funding and ICDD GIA 08–04.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Aruoma, O. I., Murcia, A., Butler, J. & Halliwell, B. (1993). J. Agric. Food Chem. 41, 1880–1885. CrossRef CAS Web of Science Google Scholar
Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison Wisconsin, U. S. A.. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fiuza, S. M., Gomes, C., Teixeira, L. J., Girao da Cruz, M. T., Cordeiro, M. N. D. S., Milhazes, N., Borges, F. & Marques, M. P. M. (2004). Bioorg. Med. Chem. 12, 3581–3589. Web of Science CrossRef PubMed CAS Google Scholar
Hawas, U. W. (2007). Nat. Prod. Res. 21, 632–640. Web of Science CrossRef PubMed CAS Google Scholar
Hitachi, A., Makino, T., Iwata, S. & Mizuguchi, J. (2005). Acta Cryst. E61, o2590–o2592. Web of Science CSD CrossRef IUCr Journals Google Scholar
Landete, J. M., Rodriguez, H., De las Rivas, B. & Munoz, R. (2007). J. Food. Prot., 70, 2670–2675. Web of Science PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martin, R., Lilley, T. H., Bailey, N. A., Falshaw, C. P., Haslam, E., Magnolato, D. & Begley, M. J. (1986). Chem. Commun. pp. 105–106. CrossRef Google Scholar
Mizuguchi, J., Hitachi, A., Iwata, S. & Makino, T. (2005). Acta Cryst. E61, o2593–o2595. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nomura, E., Hosoda, A. & Taniguchi, H. (2000). Org. Lett. 2, 779–781. Web of Science CSD CrossRef PubMed CAS Google Scholar
Okabe, N. & Kyoyama, H. (2002a). Acta Cryst. E58, o245–o247. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okabe, N. & Kyoyama, H. (2002b). Acta Cryst. E58, o565–o567. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okabe, N., Kyoyama, H. & Suzuki, M. (2001). Acta Cryst. E57, o764–o766. CSD CrossRef IUCr Journals Google Scholar
Parkin, A., Parsons, S., Robertson, J. H. & Tasker, P. A. (2002). Acta Cryst. E58, o1348–o1350. Web of Science CSD CrossRef IUCr Journals Google Scholar
Saxena, G., McCutcheon, A. R., Farmer, S., Towers, G. H. N. & Hancock, R. (1994). J. Ethnopharm. 42, 95–99. CrossRef CAS Web of Science Google Scholar
Schmidt, S., Niklova, I., Pokorny, J., Farkas, P. & Sekretar, S. (2003). Eur. J. Lipid Sci. Technol. 105, 427–435. Web of Science CrossRef CAS Google Scholar
Sekine, A., Mitsumori, T., Uekusa, H., Ohashi, Y. & Yagi, M. (2003) Anal. Sci. X-Ray Struct. Anal. Online, 19, x47–x48. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Gallic acid methyl ester (I) is a polyphenolic compound present in grape seeds and other natural substrates (Saxena et al., 1994; Schmidt et al., 2003; Hawas, 2007). Like other polyphenols, I shows antioxidant activity (Aruoma et al., 1993; Schmidt et al., 2003; Hawas, 2007). Formerly used as an astringent and in opthalmology, its anticancer (Fiuza et al., 2004) and antimicrobial properties (Saxena et al., 1994; Landete et al., 2007) have also been studied. The molecular structure of I is shown below.
The molecular geometry is as expected from chemical bond rules (Figure 1) and it shows an almost planar conformation, with maximum departures from the mean carbon and oxygen skeleton plane of 0.0343 (9) and 0.0348 (10) Å for O4 and C8, respectively. The relative positions of the carbonyl and the three hydroxyls were also observed in a cocrystal of I and 5-chloro-2-methyl-4-isothiazoline-3-one (Sekine et al., 2003). Four other compounds containing a gallic acid ester moiety have crystallized in an analogous conformation (Parkin et al., 2002; Okabe & Kyoyama, 2002a; Nomura et al., 2000; Mizuguchi et al., 2005). Three other planar conformations of gallic acid esters are found in the Cambridge Structural Database (Allen, 2002). I has one of these other conformations in a cocrystal with caffeine (Martin et al., 1986).
Crystallized I has intra- and intermolecular hydrogen bonding. The hydroxyl H atoms bound to O3 and O4 (donors) form intramolecular hydrogen bonds to O4 and O5 (acceptors), respectively. This is shown in Figure 1. Similar hydroxyl arrangements have been reported in other gallic acid derivatives, such as gallate ester solvates (Hitachi et al., 2005), a gallic acid monohydrate polymorph (Okabe et al., 2001) and 2,3,4-trihydroxybenzophenone monohydrate (Okabe & Kyoyama, 2002b).
Gallic acid methyl ester forms a three-dimensional H-bonded network lacking significant aromatic ring stacking interactions. There is one molecule of I in the asymmetric unit. The H-bonded network is shown in Figure 2. Using the carbonyl ester oxygen O1 (acceptor) and the hydroxyl O3 and O4 (donors), each molecule is linked to another four through two O1···H3—O3, and two O1···H4—O4 H-bonds. These H-bonds are likely relatively weak due to the spacial orientation of the H atoms with respect to the lone electron pairs of O1. In addition, there are two other O5—H5···O3 H-bonds. The three hydroxyl sites are used as hydrogen bond donors and acceptors simultaneously. In the ester group, only the carbonyl oxygen is used as an H-bond acceptor.