inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cs10Ta29.27O78

aDepartment Chemie und Biochemie, Ludwig-Maximilians-Universität München, Lehrstuhl für Anorganische Festkörperchemie, Butenandtstrasse 5–13, D-81377 München, Germany
*Correspondence e-mail: wolfgang.schnick@uni-muenchen.de

(Received 13 January 2009; accepted 23 January 2009; online 28 January 2009)

Single crystals of caesium tantalate(V), Cs10Ta29.27O78, were obtained as a serendipitous product in a welded tantalum ampoule by a blank reaction of CsBr and bis­muth subnitrate [Bi5O(OH)9(NO3)4] with the container material. The crystal structure of the title compound is made up of a three-dimensional framework constituted by two types of layers, viz. (Ta6O15)n and (Ta3O9)n, parallel to (001), which are linked together by TaO6 octa­hedra (3m. symmetry) along [001]. This framework has cavities where three independent Cs+ ions (3m. and [\overline{6}]m2 symmetry, respectively) are located. The compound reveals a Ta deficiency at one trigonal prismatic coordinated site ([\overline{6}]m2 symmetry). The composition of the title compound was verified by energy-dispersive X-ray analysis of single crystals.

Related literature

For a previous powder diffraction study of Cs10Ta29.27O78, see: Michel et al. (1978[Michel, C., Guyomarch, A. & Raveau, B. (1978). J. Solid State Chem. 25, 251-261.]). For an isotypic compound, see: Haddad & Jouini (1997[Haddad, A. & Jouini, T. (1997). J. Solid State Chem. 25, 251-261.]). For general background and related structures, see: du Boulay et al. (2003[Boulay, D. du, Oono, A. & Ishizawa, N. (2003). Acta Cryst. E59, i86-i88.]); Magnéli (1953[Magnéli, A. (1953). Acta Chem. Scand. 7, 315-324.]); Marini et al. (1979[Marini, A., Michel, C. & Raveau, B. (1979). J. Rev. Chim. Miner. 16, 73-79.]); Serafin & Hoppe (1982[Serafin, M. & Hoppe, R. (1982). Z. Anorg. Allg. Chem. 493, 77-92.]).

Experimental

Crystal data
  • Cs10Ta29.27O78

  • Mr = 7873.51

  • Hexagonal, P 63 /m m c

  • a = 7.5170 (11) Å

  • c = 36.340 (7) Å

  • V = 1778.3 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 49.96 mm−1

  • T = 294 (2) K

  • 0.03 × 0.02 × 0.01 mm

Data collection
  • Stoe IPDS-I diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.218, Tmax = 0.607

  • 14043 measured reflections

  • 855 independent reflections

  • 587 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 0.89

  • 855 reflections

  • 67 parameters

  • Δρmax = 1.54 e Å−3

  • Δρmin = −3.28 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound has a three-dimensional framework, constituted by two types of layers, (Ta6O15)n (Fig. 1, green) and (Ta3O9)n (Fig. 2, blue), parallel to (001). These layers are linked together along [001], according to the sequence (Ta6O15)n-TaO6-(Ta3O9)n-(Ta3O9)n-TaO6, by sharing corners of TaO6 octahedra (red, Fig. 3). The tantalum atom with deficient occupation is located in a site with trigonal-prismatic coordinated sites (yellow), between two Ta3O9 units belonging to two neighboring (Ta3O9)n layers. This framework has cavities which communicate with interconnected channels, parallel to [100]. Cs+ ions (black) are located in these cavities. Geometric parameters of the title compound are in the usual ranges. Based on a previous powder diffraction study of Cs10Ta29.27O78 reported by Michel et al. (1978), an additional Ta site was found, but was not observed in the current re-investigation. The closely related structure of Tl10Nb29.2O78 was also reported (Marini et al., 1979) with an additional Nb site with too short interatomic distances between the Nb atoms.

The title compound crystallizes isotypically with Rb5VONb14O38 (Haddad & Jouini, 1997), in which the vanadium atom occupies the trigonal-prismatic Ta deficiency site of the title compound. The related compound Cs3Ta5O14 was first investigated by powder diffraction studies by Serafin & Hoppe (1982) and was later re-investigated on the basis of single-crystal X-ray diffraction by du Boulay et al. (2003). An overview on the related hexagonal tungsten bronzes of potassium, rubidium and caesium was presented by Magnéli (1953).

Related literature top

For a previous powder diffraction study of Cs10Ta29.27O78, see: Michel et al. (1978). For an isotypic compound, see: Haddad & Jouini (1997). For general background and related structures, see: du Boulay et al. (2003); Magnéli (1953); Marini et al. (1979); Serafin & Hoppe (1982).

Experimental top

The title compound was obtained as a serendipitious product by the reaction of CsBr and bismuth subnitrate (Bi5O(OH)9(NO3)4, 98%, Sigma-Aldrich) with the tantalum container material. It was synthesized under argon at temperatures of 1523 K in a welded tantalum ampoule. The air stable title compound crystallizes in brown rods. The chemical composition of the single-crystal was confirmed by energy-dispersive X-ray (EDX) analysis which revealed no impurity elements.

Refinement top

The site occupation factor (s.o.f.) of the Ta-deficient Ta4 site was refined freely. The maximum residual electron density lies 0.95 Å from O1 and the minimum residual electron density lies at the position of the Cs1 atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View along [001] on the (Ta6O15)n layer.
[Figure 2] Fig. 2. View along [001] on the (Ta3O9)n layer.
[Figure 3] Fig. 3. View along [010] on the layers of the title compound connected via TaO6 octahedra. Displacement ellipsoids are drawn at the 50% probability level.
caesium tantalate(V) top
Crystal data top
Cs10Ta29.27O78Dx = 7.352 Mg m3
Mr = 7873.51Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 1275 reflections
Hall symbol: -P 6c 2cθ = 2.6–31.6°
a = 7.5170 (11) ŵ = 49.96 mm1
c = 36.340 (7) ÅT = 294 K
V = 1778.3 (5) Å3Rod, brown
Z = 10.03 × 0.02 × 0.01 mm
F(000) = 3310.4
Data collection top
Stoe IPDS-I
diffractometer
855 independent reflections
Radiation source: fine-focus sealed tube587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
h = 99
Tmin = 0.218, Tmax = 0.607k = 99
14043 measured reflectionsl = 4646
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.033Secondary atom site location: difference Fourier map
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
855 reflectionsΔρmax = 1.54 e Å3
67 parametersΔρmin = 3.28 e Å3
Crystal data top
Cs10Ta29.27O78Z = 1
Mr = 7873.51Mo Kα radiation
Hexagonal, P63/mmcµ = 49.96 mm1
a = 7.5170 (11) ÅT = 294 K
c = 36.340 (7) Å0.03 × 0.02 × 0.01 mm
V = 1778.3 (5) Å3
Data collection top
Stoe IPDS-I
diffractometer
855 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
587 reflections with I > 2σ(I)
Tmin = 0.218, Tmax = 0.607Rint = 0.119
14043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03367 parameters
wR(F2) = 0.0830 restraints
S = 0.89Δρmax = 1.54 e Å3
855 reflectionsΔρmin = 3.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ta10.00000.00000.11749 (3)0.0166 (2)
Ta20.33551 (10)0.16775 (5)0.034126 (15)0.01525 (19)
Ta30.17146 (6)0.34292 (11)0.196383 (17)0.0204 (2)
Ta40.00000.00000.25000.0163 (8)0.633 (10)
O10.0814 (19)0.5407 (9)0.1881 (4)0.021 (2)
O20.5486 (9)0.4514 (9)0.0368 (3)0.019 (2)
O30.1256 (9)0.2511 (18)0.1456 (3)0.022 (2)
O40.2470 (17)0.1235 (8)0.0825 (3)0.017 (2)
O50.1410 (8)0.1410 (8)0.0233 (3)0.012 (2)
O60.2379 (18)0.1190 (9)0.2082 (3)0.019 (2)
O70.1878 (15)0.376 (3)0.25000.023 (4)
Cs10.66670.33330.25000.0337 (6)
Cs20.33330.66670.08755 (7)0.0459 (6)
Cs30.66670.33330.13681 (8)0.0564 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.0158 (3)0.0158 (3)0.0180 (5)0.00791 (16)0.0000.000
Ta20.0141 (3)0.0144 (3)0.0173 (3)0.00703 (15)0.0001 (2)0.00005 (11)
Ta30.0181 (3)0.0217 (4)0.0226 (4)0.01083 (19)0.00299 (13)0.0060 (3)
Ta40.0151 (10)0.0151 (10)0.0188 (13)0.0075 (5)0.0000.000
O10.019 (5)0.014 (4)0.031 (6)0.010 (3)0.001 (5)0.000 (2)
O20.020 (4)0.020 (4)0.022 (5)0.013 (5)0.002 (2)0.002 (2)
O30.025 (5)0.019 (6)0.020 (5)0.010 (3)0.000 (2)0.000 (4)
O40.016 (5)0.016 (4)0.019 (5)0.008 (3)0.007 (4)0.004 (2)
O50.015 (4)0.015 (4)0.002 (4)0.005 (4)0.0019 (19)0.0019 (19)
O60.016 (5)0.013 (4)0.028 (6)0.008 (3)0.000 (4)0.000 (2)
O70.021 (6)0.038 (11)0.015 (7)0.019 (5)0.0000.000
Cs10.0317 (9)0.0317 (9)0.0377 (15)0.0159 (5)0.0000.000
Cs20.0443 (8)0.0443 (8)0.0493 (15)0.0221 (4)0.0000.000
Cs30.0626 (11)0.0626 (11)0.0441 (14)0.0313 (6)0.0000.000
Geometric parameters (Å, º) top
Ta1—O31.928 (12)Ta3—O71.960 (2)
Ta1—O3i1.928 (12)Ta3—O6ii2.028 (12)
Ta1—O3ii1.928 (12)Ta3—O62.027 (10)
Ta1—O4i2.050 (11)Ta3—Ta42.9631 (8)
Ta1—O4ii2.050 (11)Ta4—O6i2.170 (12)
Ta1—O42.050 (11)Ta4—O6ii2.170 (12)
Ta2—O41.850 (11)Ta4—O6vii2.170 (12)
Ta2—O21.925 (7)Ta4—O62.170 (12)
Ta2—O2iii1.925 (8)Ta4—O6viii2.170 (12)
Ta2—O5ii2.070 (4)Ta4—O6ix2.170 (12)
Ta2—O52.070 (4)Ta4—O7ii2.45 (2)
Ta2—O5iv2.114 (10)Ta4—O72.45 (2)
Ta2—Ta2v3.3049 (10)Ta4—O7ix2.446 (19)
Ta2—Ta2iv3.3049 (10)Ta4—Ta3ii2.9631 (8)
Ta3—O31.940 (12)Ta4—Ta3i2.9631 (8)
Ta3—O11.941 (12)Ta4—Ta3vii2.9631 (8)
Ta3—O1vi1.941 (12)
O3—Ta1—O3i94.5 (5)O3—Ta3—Ta4113.2 (4)
O3—Ta1—O3ii94.5 (5)O1—Ta3—Ta4127.0 (4)
O3i—Ta1—O3ii94.5 (5)O1vi—Ta3—Ta4127.0 (4)
O3—Ta1—O4i173.7 (5)O7—Ta3—Ta455.1 (6)
O3i—Ta1—O4i89.8 (3)O6ii—Ta3—Ta447.1 (3)
O3ii—Ta1—O4i89.8 (3)O6—Ta3—Ta447.1 (3)
O3—Ta1—O4ii89.8 (3)O6i—Ta4—O6ii76.4 (5)
O3i—Ta1—O4ii173.7 (5)O6i—Ta4—O6vii138.2 (2)
O3ii—Ta1—O4ii89.8 (3)O6ii—Ta4—O6vii138.2 (2)
O4i—Ta1—O4ii85.6 (5)O6i—Ta4—O676.4 (5)
O3—Ta1—O489.8 (3)O6ii—Ta4—O676.4 (5)
O3i—Ta1—O489.8 (3)O6vii—Ta4—O688.9 (6)
O3ii—Ta1—O4173.7 (5)O6i—Ta4—O6viii138.2 (2)
O4i—Ta1—O485.6 (5)O6ii—Ta4—O6viii88.9 (6)
O4ii—Ta1—O485.6 (5)O6vii—Ta4—O6viii76.4 (5)
O4—Ta2—O2100.2 (4)O6—Ta4—O6viii138.2 (2)
O4—Ta2—O2iii100.2 (4)O6i—Ta4—O6ix88.9 (6)
O2—Ta2—O2iii87.5 (7)O6ii—Ta4—O6ix138.2 (2)
O4—Ta2—O5ii89.5 (4)O6vii—Ta4—O6ix76.4 (5)
O2—Ta2—O5ii85.4 (4)O6—Ta4—O6ix138.2 (2)
O2iii—Ta2—O5ii168.9 (4)O6viii—Ta4—O6ix76.4 (5)
O4—Ta2—O589.5 (4)O6i—Ta4—O7ii69.09 (12)
O2—Ta2—O5168.9 (4)O6ii—Ta4—O7ii69.09 (12)
O2iii—Ta2—O585.4 (4)O6vii—Ta4—O7ii135.5 (3)
O5ii—Ta2—O5100.3 (6)O6—Ta4—O7ii135.5 (3)
O4—Ta2—O5iv152.4 (5)O6viii—Ta4—O7ii69.09 (12)
O2—Ta2—O5iv99.7 (4)O6ix—Ta4—O7ii69.09 (12)
O2iii—Ta2—O5iv99.7 (4)O6i—Ta4—O7135.5 (3)
O5ii—Ta2—O5iv73.2 (4)O6ii—Ta4—O769.09 (12)
O5—Ta2—O5iv73.2 (4)O6vii—Ta4—O769.09 (12)
O4—Ta2—Ta2v127.6 (2)O6—Ta4—O769.09 (12)
O2—Ta2—Ta2v132.2 (3)O6viii—Ta4—O769.09 (12)
O2iii—Ta2—Ta2v83.1 (3)O6ix—Ta4—O7135.5 (3)
O5ii—Ta2—Ta2v95.4 (3)O7ii—Ta4—O7120.000 (1)
O5—Ta2—Ta2v38.3 (3)O6i—Ta4—O7ix69.09 (12)
O5iv—Ta2—Ta2v37.37 (10)O6ii—Ta4—O7ix135.5 (3)
O4—Ta2—Ta2iv127.6 (2)O6vii—Ta4—O7ix69.09 (12)
O2—Ta2—Ta2iv83.1 (3)O6—Ta4—O7ix69.09 (12)
O2iii—Ta2—Ta2iv132.2 (3)O6viii—Ta4—O7ix135.5 (3)
O5ii—Ta2—Ta2iv38.3 (3)O6ix—Ta4—O7ix69.09 (12)
O5—Ta2—Ta2iv95.4 (3)O7ii—Ta4—O7ix120.000 (1)
O5iv—Ta2—Ta2iv37.37 (10)O7—Ta4—O7ix120.000 (2)
Ta2v—Ta2—Ta2iv69.83 (3)Ta3ii—Ta4—Ta3vii135.741 (10)
O3—Ta3—O193.3 (4)Ta3i—Ta4—Ta3vii135.741 (10)
O3—Ta3—O1vi93.3 (5)Ta3—O1—Ta3x140.3 (7)
O1—Ta3—O1vi94.1 (7)Ta2—O2—Ta2xi151.8 (7)
O3—Ta3—O7168.3 (7)Ta1—O3—Ta3139.9 (7)
O1—Ta3—O794.7 (5)Ta2—O4—Ta1146.5 (7)
O1vi—Ta3—O794.7 (5)Ta2i—O5—Ta2132.0 (6)
O3—Ta3—O6ii88.8 (4)Ta2i—O5—Ta2v104.3 (3)
O1—Ta3—O6ii91.5 (5)Ta2—O5—Ta2v104.3 (3)
O1vi—Ta3—O6ii173.9 (5)Ta3i—O6—Ta3145.0 (6)
O7—Ta3—O6ii82.4 (6)Ta3i—O6—Ta489.8 (3)
O3—Ta3—O688.8 (4)Ta3—O6—Ta489.8 (3)
O1—Ta3—O6173.9 (5)Ta3—O7—Ta3vii167.5 (11)
O1vi—Ta3—O691.5 (5)Ta3—O7—Ta483.8 (6)
O7—Ta3—O682.4 (5)Ta3vii—O7—Ta483.8 (6)
O6ii—Ta3—O682.9 (6)
Symmetry codes: (i) x+y, x, z; (ii) y, xy, z; (iii) y+1, xy, z; (iv) xy, x, z; (v) y, x+y, z; (vi) y+1, xy+1, z; (vii) x, y, z+1/2; (viii) y, xy, z+1/2; (ix) x+y, x, z+1/2; (x) x+y, x+1, z; (xi) x+y+1, x+1, z.

Experimental details

Crystal data
Chemical formulaCs10Ta29.27O78
Mr7873.51
Crystal system, space groupHexagonal, P63/mmc
Temperature (K)294
a, c (Å)7.5170 (11), 36.340 (7)
V3)1778.3 (5)
Z1
Radiation typeMo Kα
µ (mm1)49.96
Crystal size (mm)0.03 × 0.02 × 0.01
Data collection
DiffractometerStoe IPDS-I
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1999)
Tmin, Tmax0.218, 0.607
No. of measured, independent and
observed [I > 2σ(I)] reflections
14043, 855, 587
Rint0.119
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 0.89
No. of reflections855
No. of parameters67
Δρmax, Δρmin (e Å3)1.54, 3.28

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

 

Acknowledgements

The authors are indebted to Thomas Miller for performing the single-crystal X-ray diffractometry. Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

First citationBoulay, D. du, Oono, A. & Ishizawa, N. (2003). Acta Cryst. E59, i86–i88.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHaddad, A. & Jouini, T. (1997). J. Solid State Chem. 25, 251–261.  Google Scholar
First citationMagnéli, A. (1953). Acta Chem. Scand. 7, 315–324.  Google Scholar
First citationMarini, A., Michel, C. & Raveau, B. (1979). J. Rev. Chim. Miner. 16, 73–79.  CAS Google Scholar
First citationMichel, C., Guyomarch, A. & Raveau, B. (1978). J. Solid State Chem. 25, 251–261.  CrossRef CAS Web of Science Google Scholar
First citationSerafin, M. & Hoppe, R. (1982). Z. Anorg. Allg. Chem. 493, 77–92.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds