organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1044

5-(4-Phen­oxy­phen­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 5 April 2009; accepted 7 April 2009; online 18 April 2009)

The title compound, C14H11N3OS, was synthesized by the reaction of phenoxy­benzoic acid and thio­semicarbazide. The thia­diazole ring makes dihedral angles of 0.99 (16) and 86.53 (18)°, respectively, with the benzene and phenyl rings. The dihedral angle between the benzene and phenyl rings is 87.17 (19)°. Intra­molecular C—H⋯S contacts are present. In the crystal, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For the fungicidal and herbicidal activities of thia­diazole derivatives, see: Chen et al. (2000[Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312-5315.]); Kidwai et al. (2000[Kidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46-48.]); Vicentini et al. (1998[Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29-36.]). For their insecticidal activities, see: Arun et al. (1999[Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998-1001.]); Wasfy et al. (1996[Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218-1220.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3OS

  • Mr = 269.32

  • Monoclinic, P 21 /c

  • a = 13.409 (3) Å

  • b = 10.582 (2) Å

  • c = 9.5710 (19) Å

  • β = 108.58 (3)°

  • V = 1287.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.930, Tmax = 0.953

  • 2438 measured reflections

  • 2336 independent reflections

  • 1596 reflections with I > 2σ(I)

  • Rint = 0.032

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.141

  • S = 1.00

  • 2336 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.21 3.042 (4) 162
N3—H3B⋯N1ii 0.86 2.26 3.094 (3) 163
C9—H9A⋯S 0.93 2.72 3.133 (4) 108
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal and herbicidal activities (Chen et al., 2000; Kidwai et al., 2000; Vicentini et al., 1998); some show insecticidal activities (Arun et al., 1999; Wasfy et al., 1996). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig.1, in which the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. The thiadiazole ring makes dihedral angles of 0.99 (16)° and 86.53 (18) ° with the benzene and phenyl rings, respectively. The dihedral angle between the benzene and phenyl rings is 87.17 (19)°. There are intramolecular C—H···S contacts (Fig. 1), and intermolecular N—H···N hydrogen bonds, linking the molecules into chains along the b axis (Fig. 2).

Related literature top

For thefungicidal and herbicidal activities of thiadiazole derivatives, see: Chen et al. (2000); Kidwai et al. (2000); Vicentini et al. (1998). For insecticidal activities, see: Arun et al. (1999); Wasfy et al. (1996). For bond-length data, see: Allen et al. (1987).

Experimental top

Phenoxybenzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were added in toluene (50 ml), which is heated under reflux for 4 h. The reaction mixture was left to cool to room temperature, poured into ice water, filtered, and the filter cake was crystallized from acetone to give pure compound (I) [m.p. 513–514 K]. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were placed geometrically at the distances of C—H = 0.93 Å and N—H = 0.86 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate the intramolecular C—H···S contact.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen-bonded network. Dashed lines indicate intermolecular N—H···N hydrogen bonds.
5-(4-Phenoxyphenyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C14H11N3OSF(000) = 560
Mr = 269.32Dx = 1.390 Mg m3
Monoclinic, P21/cMelting point: 542 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.409 (3) ÅCell parameters from 25 reflections
b = 10.582 (2) Åθ = 10–13°
c = 9.5710 (19) ŵ = 0.25 mm1
β = 108.58 (3)°T = 293 K
V = 1287.3 (4) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1596 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25.3°, θmin = 2.5°
ω/2θ scansh = 016
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.930, Tmax = 0.953l = 1110
2438 measured reflections3 standard reflections every 200 reflections
2336 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.074P)2 + 0.12P]
where P = (Fo2 + 2Fc2)/3
2336 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H11N3OSV = 1287.3 (4) Å3
Mr = 269.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.409 (3) ŵ = 0.25 mm1
b = 10.582 (2) ÅT = 293 K
c = 9.5710 (19) Å0.30 × 0.20 × 0.20 mm
β = 108.58 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1596 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.930, Tmax = 0.9533 standard reflections every 200 reflections
2438 measured reflections intensity decay: 1%
2336 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
2336 reflectionsΔρmin = 0.22 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.07308 (7)0.15388 (7)0.18224 (8)0.0444 (3)
O0.3343 (2)0.0997 (2)0.2453 (3)0.0751 (8)
N10.0991 (2)0.0816 (2)0.2420 (3)0.0438 (6)
N20.0458 (2)0.0359 (2)0.3336 (3)0.0450 (6)
N30.0237 (2)0.1545 (2)0.3882 (3)0.0564 (7)
H3A0.04490.11970.45500.068*
H3B0.03440.23370.36930.068*
C10.4549 (4)0.1716 (4)0.4561 (5)0.0764 (12)
H1B0.48260.23140.50460.092*
C20.3629 (4)0.1137 (4)0.5265 (5)0.0870 (13)
H2B0.32730.13430.62420.104*
C30.3208 (3)0.0249 (4)0.4566 (5)0.0729 (11)
H3C0.25720.01420.50610.087*
C40.3732 (3)0.0048 (3)0.3145 (4)0.0526 (8)
C50.4662 (3)0.0517 (4)0.2422 (4)0.0721 (11)
H5A0.50270.03010.14510.086*
C60.5062 (3)0.1415 (4)0.3144 (5)0.0834 (13)
H6A0.56910.18180.26480.100*
C70.2835 (3)0.0671 (3)0.1459 (4)0.0501 (8)
C80.2482 (3)0.0534 (3)0.1339 (4)0.0586 (9)
H8A0.26030.11850.19180.070*
C90.1947 (3)0.0763 (3)0.0349 (4)0.0537 (9)
H9A0.17010.15730.02720.064*
C100.1769 (2)0.0194 (3)0.0532 (3)0.0383 (7)
C110.2148 (2)0.1399 (3)0.0400 (4)0.0481 (8)
H11A0.20440.20510.09890.058*
C120.2673 (2)0.1634 (3)0.0592 (4)0.0516 (8)
H12A0.29190.24430.06770.062*
C130.1199 (2)0.0043 (3)0.1577 (3)0.0375 (7)
C140.0255 (2)0.0854 (3)0.3138 (3)0.0406 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0627 (5)0.0291 (4)0.0463 (4)0.0030 (4)0.0244 (4)0.0026 (3)
O0.101 (2)0.0436 (14)0.115 (2)0.0098 (13)0.0814 (18)0.0134 (14)
N10.0596 (16)0.0287 (13)0.0480 (14)0.0027 (11)0.0241 (12)0.0010 (11)
N20.0619 (17)0.0319 (13)0.0483 (15)0.0004 (12)0.0274 (13)0.0014 (11)
N30.091 (2)0.0384 (14)0.0525 (15)0.0099 (14)0.0404 (15)0.0044 (13)
C10.085 (3)0.072 (3)0.082 (3)0.004 (2)0.040 (2)0.017 (2)
C20.097 (3)0.081 (3)0.070 (3)0.009 (3)0.008 (2)0.018 (2)
C30.052 (2)0.066 (3)0.088 (3)0.0005 (19)0.005 (2)0.004 (2)
C40.057 (2)0.0439 (18)0.069 (2)0.0033 (16)0.0369 (18)0.0102 (17)
C50.081 (3)0.084 (3)0.049 (2)0.020 (2)0.0162 (19)0.0017 (19)
C60.068 (3)0.095 (3)0.086 (3)0.035 (2)0.021 (2)0.006 (3)
C70.055 (2)0.0393 (18)0.067 (2)0.0050 (15)0.0341 (17)0.0090 (16)
C80.079 (2)0.0385 (18)0.075 (2)0.0031 (16)0.049 (2)0.0069 (16)
C90.074 (2)0.0316 (16)0.069 (2)0.0056 (16)0.0412 (19)0.0000 (15)
C100.0392 (16)0.0307 (15)0.0458 (16)0.0012 (12)0.0147 (13)0.0015 (12)
C110.0474 (18)0.0367 (17)0.065 (2)0.0023 (14)0.0253 (16)0.0064 (15)
C120.0516 (19)0.0341 (16)0.077 (2)0.0005 (14)0.0322 (17)0.0031 (16)
C130.0410 (16)0.0299 (14)0.0392 (15)0.0004 (12)0.0093 (13)0.0004 (12)
C140.0527 (19)0.0329 (16)0.0358 (15)0.0009 (13)0.0137 (14)0.0029 (12)
Geometric parameters (Å, º) top
S—C141.740 (3)C3—H3C0.9300
S—C131.746 (3)C4—C51.357 (5)
O—C71.378 (4)C5—C61.380 (5)
O—C41.393 (4)C5—H5A0.9300
N1—C131.303 (4)C6—H6A0.9300
N1—N21.383 (3)C7—C121.374 (4)
N2—C141.314 (4)C7—C81.378 (4)
N3—C141.333 (4)C8—C91.381 (4)
N3—H3A0.8600C8—H8A0.9300
N3—H3B0.8600C9—C101.386 (4)
C1—C61.349 (5)C9—H9A0.9300
C1—C21.349 (6)C10—C111.393 (4)
C1—H1B0.9300C10—C131.462 (4)
C2—C31.375 (6)C11—C121.373 (4)
C2—H2B0.9300C11—H11A0.9300
C3—C41.354 (5)C12—H12A0.9300
C14—S—C1387.14 (13)C12—C7—C8120.7 (3)
C7—O—C4119.3 (2)C12—C7—O116.0 (3)
C13—N1—N2113.8 (2)C8—C7—O123.2 (3)
C14—N2—N1112.0 (2)C7—C8—C9119.2 (3)
C14—N3—H3A120.0C7—C8—H8A120.4
C14—N3—H3B120.0C9—C8—H8A120.4
H3A—N3—H3B120.0C8—C9—C10121.1 (3)
C6—C1—C2119.2 (4)C8—C9—H9A119.4
C6—C1—H1B120.4C10—C9—H9A119.4
C2—C1—H1B120.4C9—C10—C11118.4 (3)
C1—C2—C3121.2 (4)C9—C10—C13121.3 (3)
C1—C2—H2B119.4C11—C10—C13120.3 (3)
C3—C2—H2B119.4C12—C11—C10120.7 (3)
C4—C3—C2119.0 (4)C12—C11—H11A119.6
C4—C3—H3C120.5C10—C11—H11A119.6
C2—C3—H3C120.5C11—C12—C7119.9 (3)
C3—C4—C5120.6 (3)C11—C12—H12A120.1
C3—C4—O119.5 (3)C7—C12—H12A120.1
C5—C4—O119.9 (3)N1—C13—C10124.5 (3)
C4—C5—C6119.2 (4)N1—C13—S113.1 (2)
C4—C5—H5A120.4C10—C13—S122.4 (2)
C6—C5—H5A120.4N2—C14—N3125.0 (3)
C1—C6—C5120.7 (4)N2—C14—S113.9 (2)
C1—C6—H6A119.6N3—C14—S121.1 (2)
C5—C6—H6A119.6
C13—N1—N2—C141.2 (4)C9—C10—C11—C120.7 (5)
C6—C1—C2—C30.1 (7)C13—C10—C11—C12179.2 (3)
C1—C2—C3—C40.2 (7)C10—C11—C12—C70.4 (5)
C2—C3—C4—C50.3 (6)C8—C7—C12—C110.5 (5)
C2—C3—C4—O176.4 (3)O—C7—C12—C11178.2 (3)
C7—O—C4—C3103.8 (4)N2—N1—C13—C10178.9 (3)
C7—O—C4—C580.0 (4)N2—N1—C13—S0.7 (3)
C3—C4—C5—C61.0 (6)C9—C10—C13—N1178.9 (3)
O—C4—C5—C6177.1 (4)C11—C10—C13—N11.0 (4)
C2—C1—C6—C50.8 (7)C9—C10—C13—S1.6 (4)
C4—C5—C6—C11.3 (7)C11—C10—C13—S178.6 (2)
C4—O—C7—C12166.5 (3)C14—S—C13—N10.1 (2)
C4—O—C7—C814.8 (5)C14—S—C13—C10179.6 (2)
C12—C7—C8—C91.0 (6)N1—N2—C14—N3179.2 (3)
O—C7—C8—C9177.6 (3)N1—N2—C14—S1.2 (3)
C7—C8—C9—C100.7 (5)C13—S—C14—N20.6 (2)
C8—C9—C10—C110.2 (5)C13—S—C14—N3178.7 (3)
C8—C9—C10—C13179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.213.042 (4)162
N3—H3B···N1ii0.862.263.094 (3)163
C9—H9A···S0.932.723.133 (4)108
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11N3OS
Mr269.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.409 (3), 10.582 (2), 9.5710 (19)
β (°) 108.58 (3)
V3)1287.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.930, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
2438, 2336, 1596
Rint0.032
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.141, 1.00
No. of reflections2336
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.86002.21003.042 (4)162.00
N3—H3B···N1ii0.86002.26003.094 (3)163.00
C9—H9A···S0.93002.72003.133 (4)108.00
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998–1001.  Google Scholar
First citationChen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46–48.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29–36.  CrossRef CAS Google Scholar
First citationWasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218–1220.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1044
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds