organic compounds
5-(4-Phenoxyphenyl)-1,3,4-thiadiazol-2-amine
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn
The title compound, C14H11N3OS, was synthesized by the reaction of phenoxybenzoic acid and thiosemicarbazide. The thiadiazole ring makes dihedral angles of 0.99 (16) and 86.53 (18)°, respectively, with the benzene and phenyl rings. The dihedral angle between the benzene and phenyl rings is 87.17 (19)°. Intramolecular C—H⋯S contacts are present. In the crystal, intermolecular N—H⋯N hydrogen bonds link the molecules.
Related literature
For the fungicidal and herbicidal activities of thiadiazole derivatives, see: Chen et al. (2000); Kidwai et al. (2000); Vicentini et al. (1998). For their insecticidal activities, see: Arun et al. (1999); Wasfy et al. (1996). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809013257/at2760sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809013257/at2760Isup2.hkl
Phenoxybenzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were added in toluene (50 ml), which is heated under reflux for 4 h. The reaction mixture was left to cool to room temperature, poured into ice water, filtered, and the filter cake was crystallized from acetone to give pure compound (I) [m.p. 513–514 K]. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.
All H atoms were placed geometrically at the distances of C—H = 0.93 Å and N—H = 0.86 Å, and included in the
in riding motion approximation with Uiso(H) = 1.2Ueq of the carrier atom.Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell
CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C14H11N3OS | F(000) = 560 |
Mr = 269.32 | Dx = 1.390 Mg m−3 |
Monoclinic, P21/c | Melting point: 542 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.409 (3) Å | Cell parameters from 25 reflections |
b = 10.582 (2) Å | θ = 10–13° |
c = 9.5710 (19) Å | µ = 0.25 mm−1 |
β = 108.58 (3)° | T = 293 K |
V = 1287.3 (4) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.20 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | 1596 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.032 |
Graphite monochromator | θmax = 25.3°, θmin = 2.5° |
ω/2θ scans | h = 0→16 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→12 |
Tmin = 0.930, Tmax = 0.953 | l = −11→10 |
2438 measured reflections | 3 standard reflections every 200 reflections |
2336 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.074P)2 + 0.12P] where P = (Fo2 + 2Fc2)/3 |
2336 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C14H11N3OS | V = 1287.3 (4) Å3 |
Mr = 269.32 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.409 (3) Å | µ = 0.25 mm−1 |
b = 10.582 (2) Å | T = 293 K |
c = 9.5710 (19) Å | 0.30 × 0.20 × 0.20 mm |
β = 108.58 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1596 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.032 |
Tmin = 0.930, Tmax = 0.953 | 3 standard reflections every 200 reflections |
2438 measured reflections | intensity decay: 1% |
2336 independent reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.22 e Å−3 |
2336 reflections | Δρmin = −0.22 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S | 0.07308 (7) | 0.15388 (7) | 0.18224 (8) | 0.0444 (3) | |
O | 0.3343 (2) | −0.0997 (2) | −0.2453 (3) | 0.0751 (8) | |
N1 | 0.0991 (2) | −0.0816 (2) | 0.2420 (3) | 0.0438 (6) | |
N2 | 0.0458 (2) | −0.0359 (2) | 0.3336 (3) | 0.0450 (6) | |
N3 | −0.0237 (2) | 0.1545 (2) | 0.3882 (3) | 0.0564 (7) | |
H3A | −0.0449 | 0.1197 | 0.4550 | 0.068* | |
H3B | −0.0344 | 0.2337 | 0.3693 | 0.068* | |
C1 | 0.4549 (4) | 0.1716 (4) | −0.4561 (5) | 0.0764 (12) | |
H1B | 0.4826 | 0.2314 | −0.5046 | 0.092* | |
C2 | 0.3629 (4) | 0.1137 (4) | −0.5265 (5) | 0.0870 (13) | |
H2B | 0.3273 | 0.1343 | −0.6242 | 0.104* | |
C3 | 0.3208 (3) | 0.0249 (4) | −0.4566 (5) | 0.0729 (11) | |
H3C | 0.2572 | −0.0142 | −0.5061 | 0.087* | |
C4 | 0.3732 (3) | −0.0048 (3) | −0.3145 (4) | 0.0526 (8) | |
C5 | 0.4662 (3) | 0.0517 (4) | −0.2422 (4) | 0.0721 (11) | |
H5A | 0.5027 | 0.0301 | −0.1451 | 0.086* | |
C6 | 0.5062 (3) | 0.1415 (4) | −0.3144 (5) | 0.0834 (13) | |
H6A | 0.5691 | 0.1818 | −0.2648 | 0.100* | |
C7 | 0.2835 (3) | −0.0671 (3) | −0.1459 (4) | 0.0501 (8) | |
C8 | 0.2482 (3) | 0.0534 (3) | −0.1339 (4) | 0.0586 (9) | |
H8A | 0.2603 | 0.1185 | −0.1918 | 0.070* | |
C9 | 0.1947 (3) | 0.0763 (3) | −0.0349 (4) | 0.0537 (9) | |
H9A | 0.1701 | 0.1573 | −0.0272 | 0.064* | |
C10 | 0.1769 (2) | −0.0194 (3) | 0.0532 (3) | 0.0383 (7) | |
C11 | 0.2148 (2) | −0.1399 (3) | 0.0400 (4) | 0.0481 (8) | |
H11A | 0.2044 | −0.2051 | 0.0989 | 0.058* | |
C12 | 0.2673 (2) | −0.1634 (3) | −0.0592 (4) | 0.0516 (8) | |
H12A | 0.2919 | −0.2443 | −0.0677 | 0.062* | |
C13 | 0.1199 (2) | 0.0043 (3) | 0.1577 (3) | 0.0375 (7) | |
C14 | 0.0255 (2) | 0.0854 (3) | 0.3138 (3) | 0.0406 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.0627 (5) | 0.0291 (4) | 0.0463 (4) | 0.0030 (4) | 0.0244 (4) | 0.0026 (3) |
O | 0.101 (2) | 0.0436 (14) | 0.115 (2) | −0.0098 (13) | 0.0814 (18) | −0.0134 (14) |
N1 | 0.0596 (16) | 0.0287 (13) | 0.0480 (14) | 0.0027 (11) | 0.0241 (12) | 0.0010 (11) |
N2 | 0.0619 (17) | 0.0319 (13) | 0.0483 (15) | 0.0004 (12) | 0.0274 (13) | 0.0014 (11) |
N3 | 0.091 (2) | 0.0384 (14) | 0.0525 (15) | 0.0099 (14) | 0.0404 (15) | 0.0044 (13) |
C1 | 0.085 (3) | 0.072 (3) | 0.082 (3) | −0.004 (2) | 0.040 (2) | 0.017 (2) |
C2 | 0.097 (3) | 0.081 (3) | 0.070 (3) | 0.009 (3) | 0.008 (2) | 0.018 (2) |
C3 | 0.052 (2) | 0.066 (3) | 0.088 (3) | −0.0005 (19) | 0.005 (2) | −0.004 (2) |
C4 | 0.057 (2) | 0.0439 (18) | 0.069 (2) | −0.0033 (16) | 0.0369 (18) | −0.0102 (17) |
C5 | 0.081 (3) | 0.084 (3) | 0.049 (2) | −0.020 (2) | 0.0162 (19) | 0.0017 (19) |
C6 | 0.068 (3) | 0.095 (3) | 0.086 (3) | −0.035 (2) | 0.021 (2) | 0.006 (3) |
C7 | 0.055 (2) | 0.0393 (18) | 0.067 (2) | −0.0050 (15) | 0.0341 (17) | −0.0090 (16) |
C8 | 0.079 (2) | 0.0385 (18) | 0.075 (2) | 0.0031 (16) | 0.049 (2) | 0.0069 (16) |
C9 | 0.074 (2) | 0.0316 (16) | 0.069 (2) | 0.0056 (16) | 0.0412 (19) | 0.0000 (15) |
C10 | 0.0392 (16) | 0.0307 (15) | 0.0458 (16) | −0.0012 (12) | 0.0147 (13) | −0.0015 (12) |
C11 | 0.0474 (18) | 0.0367 (17) | 0.065 (2) | 0.0023 (14) | 0.0253 (16) | 0.0064 (15) |
C12 | 0.0516 (19) | 0.0341 (16) | 0.077 (2) | −0.0005 (14) | 0.0322 (17) | −0.0031 (16) |
C13 | 0.0410 (16) | 0.0299 (14) | 0.0392 (15) | −0.0004 (12) | 0.0093 (13) | 0.0004 (12) |
C14 | 0.0527 (19) | 0.0329 (16) | 0.0358 (15) | −0.0009 (13) | 0.0137 (14) | −0.0029 (12) |
S—C14 | 1.740 (3) | C3—H3C | 0.9300 |
S—C13 | 1.746 (3) | C4—C5 | 1.357 (5) |
O—C7 | 1.378 (4) | C5—C6 | 1.380 (5) |
O—C4 | 1.393 (4) | C5—H5A | 0.9300 |
N1—C13 | 1.303 (4) | C6—H6A | 0.9300 |
N1—N2 | 1.383 (3) | C7—C12 | 1.374 (4) |
N2—C14 | 1.314 (4) | C7—C8 | 1.378 (4) |
N3—C14 | 1.333 (4) | C8—C9 | 1.381 (4) |
N3—H3A | 0.8600 | C8—H8A | 0.9300 |
N3—H3B | 0.8600 | C9—C10 | 1.386 (4) |
C1—C6 | 1.349 (5) | C9—H9A | 0.9300 |
C1—C2 | 1.349 (6) | C10—C11 | 1.393 (4) |
C1—H1B | 0.9300 | C10—C13 | 1.462 (4) |
C2—C3 | 1.375 (6) | C11—C12 | 1.373 (4) |
C2—H2B | 0.9300 | C11—H11A | 0.9300 |
C3—C4 | 1.354 (5) | C12—H12A | 0.9300 |
C14—S—C13 | 87.14 (13) | C12—C7—C8 | 120.7 (3) |
C7—O—C4 | 119.3 (2) | C12—C7—O | 116.0 (3) |
C13—N1—N2 | 113.8 (2) | C8—C7—O | 123.2 (3) |
C14—N2—N1 | 112.0 (2) | C7—C8—C9 | 119.2 (3) |
C14—N3—H3A | 120.0 | C7—C8—H8A | 120.4 |
C14—N3—H3B | 120.0 | C9—C8—H8A | 120.4 |
H3A—N3—H3B | 120.0 | C8—C9—C10 | 121.1 (3) |
C6—C1—C2 | 119.2 (4) | C8—C9—H9A | 119.4 |
C6—C1—H1B | 120.4 | C10—C9—H9A | 119.4 |
C2—C1—H1B | 120.4 | C9—C10—C11 | 118.4 (3) |
C1—C2—C3 | 121.2 (4) | C9—C10—C13 | 121.3 (3) |
C1—C2—H2B | 119.4 | C11—C10—C13 | 120.3 (3) |
C3—C2—H2B | 119.4 | C12—C11—C10 | 120.7 (3) |
C4—C3—C2 | 119.0 (4) | C12—C11—H11A | 119.6 |
C4—C3—H3C | 120.5 | C10—C11—H11A | 119.6 |
C2—C3—H3C | 120.5 | C11—C12—C7 | 119.9 (3) |
C3—C4—C5 | 120.6 (3) | C11—C12—H12A | 120.1 |
C3—C4—O | 119.5 (3) | C7—C12—H12A | 120.1 |
C5—C4—O | 119.9 (3) | N1—C13—C10 | 124.5 (3) |
C4—C5—C6 | 119.2 (4) | N1—C13—S | 113.1 (2) |
C4—C5—H5A | 120.4 | C10—C13—S | 122.4 (2) |
C6—C5—H5A | 120.4 | N2—C14—N3 | 125.0 (3) |
C1—C6—C5 | 120.7 (4) | N2—C14—S | 113.9 (2) |
C1—C6—H6A | 119.6 | N3—C14—S | 121.1 (2) |
C5—C6—H6A | 119.6 | ||
C13—N1—N2—C14 | 1.2 (4) | C9—C10—C11—C12 | −0.7 (5) |
C6—C1—C2—C3 | −0.1 (7) | C13—C10—C11—C12 | 179.2 (3) |
C1—C2—C3—C4 | −0.2 (7) | C10—C11—C12—C7 | 0.4 (5) |
C2—C3—C4—C5 | −0.3 (6) | C8—C7—C12—C11 | 0.5 (5) |
C2—C3—C4—O | −176.4 (3) | O—C7—C12—C11 | −178.2 (3) |
C7—O—C4—C3 | −103.8 (4) | N2—N1—C13—C10 | 178.9 (3) |
C7—O—C4—C5 | 80.0 (4) | N2—N1—C13—S | −0.7 (3) |
C3—C4—C5—C6 | 1.0 (6) | C9—C10—C13—N1 | 178.9 (3) |
O—C4—C5—C6 | 177.1 (4) | C11—C10—C13—N1 | −1.0 (4) |
C2—C1—C6—C5 | 0.8 (7) | C9—C10—C13—S | −1.6 (4) |
C4—C5—C6—C1 | −1.3 (7) | C11—C10—C13—S | 178.6 (2) |
C4—O—C7—C12 | −166.5 (3) | C14—S—C13—N1 | 0.1 (2) |
C4—O—C7—C8 | 14.8 (5) | C14—S—C13—C10 | −179.6 (2) |
C12—C7—C8—C9 | −1.0 (6) | N1—N2—C14—N3 | −179.2 (3) |
O—C7—C8—C9 | 177.6 (3) | N1—N2—C14—S | −1.2 (3) |
C7—C8—C9—C10 | 0.7 (5) | C13—S—C14—N2 | 0.6 (2) |
C8—C9—C10—C11 | 0.2 (5) | C13—S—C14—N3 | 178.7 (3) |
C8—C9—C10—C13 | −179.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.86 | 2.21 | 3.042 (4) | 162 |
N3—H3B···N1ii | 0.86 | 2.26 | 3.094 (3) | 163 |
C9—H9A···S | 0.93 | 2.72 | 3.133 (4) | 108 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H11N3OS |
Mr | 269.32 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 13.409 (3), 10.582 (2), 9.5710 (19) |
β (°) | 108.58 (3) |
V (Å3) | 1287.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.930, 0.953 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2438, 2336, 1596 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.141, 1.00 |
No. of reflections | 2336 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.22 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.8600 | 2.2100 | 3.042 (4) | 162.00 |
N3—H3B···N1ii | 0.8600 | 2.2600 | 3.094 (3) | 163.00 |
C9—H9A···S | 0.9300 | 2.7200 | 3.133 (4) | 108.00 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, y+1/2, −z+1/2. |
Acknowledgements
The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998–1001. Google Scholar
Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315. Web of Science CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46–48. CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29–36. CrossRef CAS Google Scholar
Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218–1220. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal and herbicidal activities (Chen et al., 2000; Kidwai et al., 2000; Vicentini et al., 1998); some show insecticidal activities (Arun et al., 1999; Wasfy et al., 1996). We report here the crystal structure of the title compound, (I).
The molecular structure of (I) is shown in Fig.1, in which the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. The thiadiazole ring makes dihedral angles of 0.99 (16)° and 86.53 (18) ° with the benzene and phenyl rings, respectively. The dihedral angle between the benzene and phenyl rings is 87.17 (19)°. There are intramolecular C—H···S contacts (Fig. 1), and intermolecular N—H···N hydrogen bonds, linking the molecules into chains along the b axis (Fig. 2).