metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Di-μ-chlorido-bis­­[chlorido(1,10-phenanthroline-κ2N,N′)zinc(II)]

aInstitute of Applied Materials, College of Resource & Environment Management, Jiangxi University of Finance and Economics, Nanchang 330013, People's Republic of China
*Correspondence e-mail: xiaomaoyang09@126.com

(Received 12 April 2009; accepted 18 April 2009; online 25 April 2009)

In the crystal structure of the title complex, [Zn2Cl4(C12H8N2)2], each of the two five-coordinated ZnII atoms displays a strongly distorted trigonal-bipyramidal geometry defined by two N atoms from the chelate ligand and by one terminal and two bridging chloride anions. The crystal structure is stabilized by C—H⋯Cl inter­actions. There is inter­molecular ππ stacking between adjacent phenanthroline ligands, with a centroid–centroid distance of 3.151 (3) Å.

Related literature

For the use of metal complexes of phenanthroline and its derivatives with π-π stacking to study the hydrolysis of biologically important phosphate diesters with poor leaving groups, see: Wall et al. (1999[Wall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710-4711.]). For the structures of a series of metal complexes, see: Wu et al. (2003[Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809-m811.]); Pan & Xu (2004[Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.]); Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2Cl4(C12H8N2)2]

  • Mr = 632.95

  • Monoclinic, C c

  • a = 9.8537 (12) Å

  • b = 17.873 (2) Å

  • c = 13.3798 (12) Å

  • β = 106.502 (3)°

  • V = 2259.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.62 mm−1

  • T = 293 K

  • 0.19 × 0.16 × 0.12 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.636, Tmax = 0.744

  • 7229 measured reflections

  • 4218 independent reflections

  • 3453 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.073

  • S = 1.00

  • 4218 reflections

  • 307 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.] Friedel pairs

  • Flack parameter: 0.079 (12)

Table 1
Selected geometric parameters (Å, °)

Zn1—Cl1 2.2629 (16)
Zn1—Cl2 2.2596 (15)
Zn1—Cl3 2.7049 (14)
Zn1—N1 2.041 (4)
Zn1—N2 2.046 (4)
Zn2—Cl2 2.8525 (15)
Zn2—Cl3 2.2839 (14)
Zn2—Cl4 2.2545 (14)
Zn2—N3 2.031 (4)
Zn2—N4 2.032 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1 0.93 2.68 3.229 (7) 118
C6—H6⋯Cl2i 0.93 2.77 3.525 (6) 139
C10—H10⋯Cl2 0.93 2.68 3.235 (6) 119
C13—H13⋯Cl3 0.93 2.62 3.200 (6) 121
C17—H17⋯Cl3ii 0.93 2.67 3.500 (7) 149
C18—H18⋯Cl4ii 0.93 2.82 3.742 (7) 173
C22—H22⋯Cl4 0.93 2.68 3.238 (6) 119
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple metal complexes of phenanthroline and its derivatives with π-π stacking have attracted great interest because they can be used to study the hydrolysis of biologically important phosphate diesters with poor leaving groups (Wall et al., 1999). A series of metal complexes incorporating different aromatic ligands such as phenanthroline(phen), benzimidazole and quinoline have been prepared and their crystal structures provide useful information about π-π stacking (Wu et al., 2003; Pan & Xu, 2004; Li et al., 2005). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). In the crystal structure of the title complex, each of the two five-coordinated ZnII atoms displays a strongly distorted trigonalbipyramidal geometry, defined by two N atom from the organic ligand, and by one terminal and two bridging chloride anions (Table 1).

The crystal structure is stabilized by C—H···Cl interactions (Table 1). There is intermolecular π-π stacking between adjacent phenanthrolines, with a centroid-centroid distance of 3.151 (3) Å (symmetry code: -1/2 + x, 1/2 + y, z). These π-π stacking interactions lead to a supramolecular network structure (Fig. 2).

Related literature top

For the use of metal complexes of phenanthroline and its derivatives with π-π stacking to study the hydrolysis of biologically important phosphate diesters with poor leaving groups, see: Wall et al. (1999). For the structures of a series of metal complexes, see: Wu et al. (2003); Pan & Xu (2004); Li et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Zinc(II) chloride (136.3 mg, 1 mmol), phen (396 mg, 2 mmol) and distilled water (10 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 453 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colourless solution was decanted from small colourless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Di-µ-chlorido-bis[chlorido(1,10-phenanthroline- κ2N,N')zinc(II)] top
Crystal data top
[Zn2Cl4(C12H8N2)2]F(000) = 1264
Mr = 632.95Dx = 1.861 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3822 reflections
a = 9.8537 (12) Åθ = 2.3–27.3°
b = 17.873 (2) ŵ = 2.62 mm1
c = 13.3798 (12) ÅT = 293 K
β = 106.502 (3)°Plane, colourless
V = 2259.3 (4) Å30.19 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
4218 independent reflections
Radiation source: fine-focus sealed tube3453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000))
h = 1211
Tmin = 0.636, Tmax = 0.744k = 2221
7229 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.03P)2 + 0.16P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4218 reflectionsΔρmax = 0.47 e Å3
307 parametersΔρmin = 0.43 e Å3
2 restraintsAbsolute structure: Flack (1983), 1983 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.079 (12)
Crystal data top
[Zn2Cl4(C12H8N2)2]V = 2259.3 (4) Å3
Mr = 632.95Z = 4
Monoclinic, CcMo Kα radiation
a = 9.8537 (12) ŵ = 2.62 mm1
b = 17.873 (2) ÅT = 293 K
c = 13.3798 (12) Å0.19 × 0.16 × 0.12 mm
β = 106.502 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
4218 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000))
3453 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.744Rint = 0.033
7229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.47 e Å3
S = 1.00Δρmin = 0.43 e Å3
4218 reflectionsAbsolute structure: Flack (1983), 1983 Freidel pairs
307 parametersAbsolute structure parameter: 0.079 (12)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.69851 (5)0.33467 (3)0.27140 (4)0.03385 (16)
Zn20.99585 (6)0.30433 (3)0.49316 (5)0.03673 (16)
Cl30.76987 (13)0.34082 (7)0.48194 (10)0.0360 (3)
Cl20.91611 (14)0.29488 (8)0.27124 (10)0.0366 (4)
Cl10.60068 (15)0.21961 (8)0.23650 (12)0.0457 (4)
Cl41.08005 (15)0.42235 (7)0.50920 (12)0.0478 (4)
N10.5066 (4)0.3839 (2)0.2553 (3)0.0315 (10)
N20.7513 (4)0.4444 (2)0.2596 (3)0.0321 (10)
C110.6385 (5)0.4924 (3)0.2474 (3)0.0277 (11)
C120.5088 (5)0.4583 (3)0.2469 (4)0.0303 (12)
C10.3845 (6)0.3509 (4)0.2559 (4)0.0489 (16)
H10.38280.29930.26350.059*
C20.2584 (6)0.3918 (4)0.2455 (5)0.0515 (16)
H20.17520.36750.24610.062*
C80.7830 (7)0.5967 (3)0.2373 (4)0.0468 (16)
H80.79440.64760.22780.056*
C70.6504 (6)0.5691 (3)0.2363 (4)0.0367 (13)
C100.8756 (6)0.4746 (3)0.2632 (4)0.0366 (12)
H100.95380.44330.27390.044*
C30.2615 (6)0.4669 (4)0.2345 (4)0.0495 (15)
H30.17880.49430.22660.059*
C40.3884 (6)0.5051 (3)0.2347 (4)0.0401 (14)
C60.5230 (6)0.6132 (3)0.2241 (4)0.0447 (14)
H60.52710.66460.21450.054*
C50.4016 (7)0.5830 (3)0.2260 (4)0.0497 (16)
H50.32380.61360.22150.060*
N40.9434 (4)0.1943 (2)0.4907 (3)0.0284 (9)
N31.1864 (4)0.2591 (2)0.4971 (3)0.0357 (10)
C130.8177 (6)0.1637 (3)0.4836 (4)0.0408 (13)
H130.74050.19480.47890.049*
C231.1830 (5)0.1816 (3)0.4989 (4)0.0342 (13)
C221.3047 (6)0.2925 (3)0.4985 (4)0.0403 (15)
H221.30850.34450.49920.048*
C241.0533 (6)0.1489 (3)0.4961 (4)0.0309 (12)
C161.0413 (7)0.0691 (3)0.4961 (4)0.0429 (15)
C171.1629 (7)0.0258 (4)0.5004 (4)0.0515 (17)
H171.15650.02610.50160.062*
C150.9031 (7)0.0404 (3)0.4884 (4)0.0477 (15)
H150.88850.01100.48730.057*
C181.2876 (7)0.0575 (4)0.5027 (4)0.0545 (18)
H181.36570.02740.50570.065*
C140.7984 (7)0.0854 (3)0.4831 (4)0.0428 (15)
H140.70940.06600.47880.051*
C191.3008 (6)0.1378 (3)0.5006 (4)0.0450 (15)
C201.4266 (7)0.1761 (4)0.5006 (5)0.063 (2)
H201.50860.15000.50160.075*
C211.4242 (7)0.2522 (5)0.4989 (5)0.0599 (19)
H211.50590.27790.49800.072*
C90.8946 (7)0.5507 (3)0.2517 (5)0.0473 (16)
H90.98340.56950.25400.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0277 (3)0.0256 (3)0.0473 (3)0.0018 (3)0.0090 (2)0.0012 (3)
Zn20.0278 (3)0.0222 (3)0.0593 (4)0.0017 (3)0.0111 (3)0.0001 (3)
Cl30.0305 (8)0.0301 (7)0.0480 (8)0.0072 (5)0.0121 (6)0.0017 (6)
Cl20.0308 (8)0.0313 (8)0.0493 (8)0.0074 (6)0.0141 (6)0.0001 (6)
Cl10.0413 (9)0.0267 (8)0.0675 (10)0.0035 (7)0.0127 (7)0.0038 (7)
Cl40.0398 (8)0.0239 (7)0.0723 (10)0.0047 (6)0.0037 (7)0.0008 (6)
N10.025 (3)0.033 (3)0.036 (2)0.0032 (19)0.0084 (18)0.0008 (18)
N20.029 (2)0.027 (2)0.042 (2)0.009 (2)0.0108 (18)0.0046 (18)
C110.030 (3)0.022 (3)0.030 (2)0.002 (2)0.006 (2)0.0006 (19)
C120.029 (3)0.029 (3)0.032 (3)0.009 (2)0.006 (2)0.003 (2)
C10.047 (4)0.043 (4)0.058 (4)0.000 (3)0.016 (3)0.007 (3)
C20.026 (3)0.066 (5)0.065 (4)0.004 (3)0.016 (3)0.004 (3)
C80.067 (5)0.020 (3)0.049 (3)0.008 (3)0.010 (3)0.002 (2)
C70.048 (3)0.022 (3)0.038 (3)0.012 (2)0.008 (2)0.001 (2)
C100.029 (3)0.027 (3)0.052 (3)0.002 (2)0.009 (2)0.003 (2)
C30.033 (3)0.060 (4)0.056 (4)0.016 (3)0.013 (3)0.002 (3)
C40.031 (3)0.049 (4)0.039 (3)0.014 (3)0.008 (2)0.002 (3)
C60.062 (4)0.028 (3)0.042 (3)0.016 (3)0.011 (3)0.005 (2)
C50.045 (4)0.047 (4)0.056 (4)0.027 (3)0.011 (3)0.002 (3)
N40.025 (2)0.021 (2)0.040 (2)0.0010 (18)0.0112 (17)0.0033 (17)
N30.030 (3)0.034 (3)0.042 (2)0.007 (2)0.0083 (19)0.0000 (19)
C130.031 (3)0.034 (3)0.054 (3)0.004 (3)0.007 (2)0.009 (3)
C230.034 (3)0.039 (4)0.029 (3)0.010 (2)0.007 (2)0.001 (2)
C220.021 (3)0.049 (4)0.052 (4)0.009 (3)0.011 (2)0.000 (3)
C240.038 (3)0.022 (3)0.033 (3)0.010 (2)0.010 (2)0.001 (2)
C160.071 (4)0.025 (3)0.032 (3)0.012 (3)0.013 (3)0.002 (2)
C170.081 (5)0.037 (3)0.036 (3)0.027 (4)0.016 (3)0.001 (2)
C150.073 (5)0.021 (3)0.049 (3)0.008 (3)0.016 (3)0.004 (2)
C180.066 (5)0.047 (4)0.050 (4)0.032 (4)0.015 (3)0.004 (3)
C140.047 (4)0.021 (3)0.059 (4)0.008 (3)0.012 (3)0.002 (2)
C190.045 (4)0.054 (4)0.034 (3)0.025 (3)0.009 (2)0.005 (3)
C200.031 (3)0.098 (6)0.059 (4)0.019 (4)0.012 (3)0.010 (4)
C210.022 (3)0.085 (6)0.074 (5)0.000 (4)0.015 (3)0.001 (4)
C90.042 (4)0.031 (3)0.070 (4)0.007 (3)0.017 (3)0.007 (3)
Geometric parameters (Å, º) top
Zn1—Cl12.2629 (16)C4—C51.406 (8)
Zn1—Cl22.2596 (15)C6—C51.318 (8)
Zn1—Cl32.7049 (14)C6—H60.9300
Zn1—N12.041 (4)C5—H50.9300
Zn1—N22.046 (4)N4—C131.332 (6)
Zn2—Cl22.8525 (15)N4—C241.338 (6)
Zn2—Cl32.2839 (14)N3—C221.305 (7)
Zn2—Cl42.2545 (14)N3—C231.387 (7)
Zn2—N32.031 (4)C13—C141.412 (7)
Zn2—N42.032 (4)C13—H130.9300
N1—C121.335 (6)C23—C191.395 (7)
N1—C11.341 (7)C23—C241.397 (7)
N2—C101.328 (6)C22—C211.380 (9)
N2—C111.376 (6)C22—H220.9300
C11—C71.388 (7)C24—C161.431 (7)
C11—C121.414 (7)C16—C171.413 (7)
C12—C41.423 (7)C16—C151.431 (8)
C1—C21.413 (8)C17—C181.345 (8)
C1—H10.9300C17—H170.9300
C2—C31.353 (8)C15—C141.294 (9)
C2—H20.9300C15—H150.9300
C8—C91.342 (8)C18—C191.443 (9)
C8—C71.393 (8)C18—H180.9300
C8—H80.9300C14—H140.9300
C7—C61.452 (7)C19—C201.416 (9)
C10—C91.386 (8)C20—C211.359 (10)
C10—H100.9300C20—H200.9300
C3—C41.424 (8)C21—H210.9300
C3—H30.9300C9—H90.9300
Cl1—Zn1—Cl293.58 (6)C5—C6—H6118.8
Cl1—Zn1—Cl3102.79 (5)C7—C6—H6118.8
Cl2—Zn1—Cl392.74 (5)C6—C5—C4120.8 (5)
N1—Zn1—Cl192.42 (13)C6—C5—H5119.6
N2—Zn1—Cl1163.25 (11)C4—C5—H5119.6
N1—Zn1—Cl2170.64 (13)C13—N4—C24118.5 (5)
N2—Zn1—Cl292.27 (12)C13—N4—Zn2128.7 (4)
N1—Zn1—Cl392.93 (11)C24—N4—Zn2112.8 (3)
N2—Zn1—Cl392.59 (11)C22—N3—C23118.8 (5)
N1—Zn1—N280.04 (17)C22—N3—Zn2129.3 (4)
Cl3—Zn2—Cl493.71 (6)C23—N3—Zn2111.8 (3)
N3—Zn2—Cl3172.83 (13)N4—C13—C14121.8 (5)
N4—Zn2—Cl392.09 (12)N4—C13—H13119.1
N3—Zn2—Cl493.28 (14)C14—C13—H13119.1
N4—Zn2—Cl4172.95 (12)N3—C23—C19122.5 (5)
N3—Zn2—N481.04 (16)N3—C23—C24116.4 (4)
Zn2—Cl3—Zn190.98 (4)C19—C23—C24121.1 (5)
C12—N1—C1118.3 (5)N3—C22—C21121.3 (6)
C12—N1—Zn1113.6 (3)N3—C22—H22119.4
C1—N1—Zn1128.0 (4)C21—C22—H22119.4
C10—N2—C11117.2 (4)N4—C24—C23117.9 (4)
C10—N2—Zn1129.8 (4)N4—C24—C16122.6 (5)
C11—N2—Zn1113.1 (3)C23—C24—C16119.4 (5)
N2—C11—C7122.6 (5)C17—C16—C15125.8 (5)
N2—C11—C12115.5 (4)C17—C16—C24118.5 (6)
C7—C11—C12122.0 (5)C15—C16—C24115.7 (5)
N1—C12—C11117.7 (4)C18—C17—C16121.9 (6)
N1—C12—C4124.2 (5)C18—C17—H17119.1
C11—C12—C4118.0 (5)C16—C17—H17119.1
N1—C1—C2122.5 (6)C14—C15—C16120.6 (5)
N1—C1—H1118.8C14—C15—H15119.7
C2—C1—H1118.8C16—C15—H15119.7
C3—C2—C1118.5 (6)C17—C18—C19120.4 (6)
C3—C2—H2120.7C17—C18—H18119.8
C1—C2—H2120.7C19—C18—H18119.8
C9—C8—C7120.8 (5)C15—C14—C13120.8 (6)
C9—C8—H8119.6C15—C14—H14119.6
C7—C8—H8119.6C13—C14—H14119.6
C11—C7—C8117.2 (5)C23—C19—C20117.0 (6)
C11—C7—C6116.8 (5)C23—C19—C18118.6 (6)
C8—C7—C6126.0 (5)C20—C19—C18124.4 (6)
N2—C10—C9123.2 (5)C21—C20—C19118.2 (6)
N2—C10—H10118.4C21—C20—H20120.9
C9—C10—H10118.4C19—C20—H20120.9
C2—C3—C4121.5 (5)C20—C21—C22122.2 (7)
C2—C3—H3119.3C20—C21—H21118.9
C4—C3—H3119.3C22—C21—H21118.9
C5—C4—C12119.9 (5)C8—C9—C10119.1 (6)
C5—C4—C3125.2 (5)C8—C9—H9120.5
C12—C4—C3114.9 (5)C10—C9—H9120.5
C5—C6—C7122.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.683.229 (7)118
C6—H6···Cl2i0.932.773.525 (6)139
C10—H10···Cl20.932.683.235 (6)119
C13—H13···Cl30.932.623.200 (6)121
C17—H17···Cl3ii0.932.673.500 (7)149
C18—H18···Cl4ii0.932.823.742 (7)173
C22—H22···Cl40.932.683.238 (6)119
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Zn2Cl4(C12H8N2)2]
Mr632.95
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)9.8537 (12), 17.873 (2), 13.3798 (12)
β (°) 106.502 (3)
V3)2259.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.62
Crystal size (mm)0.19 × 0.16 × 0.12
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000))
Tmin, Tmax0.636, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
7229, 4218, 3453
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.073, 1.00
No. of reflections4218
No. of parameters307
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.43
Absolute structureFlack (1983), 1983 Freidel pairs
Absolute structure parameter0.079 (12)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—Cl12.2629 (16)Zn2—Cl22.8525 (15)
Zn1—Cl22.2596 (15)Zn2—Cl32.2839 (14)
Zn1—Cl32.7049 (14)Zn2—Cl42.2545 (14)
Zn1—N12.041 (4)Zn2—N32.031 (4)
Zn1—N22.046 (4)Zn2—N42.032 (4)
Cl1—Zn1—Cl293.58 (6)N2—Zn1—Cl392.59 (11)
Cl1—Zn1—Cl3102.79 (5)N1—Zn1—N280.04 (17)
Cl2—Zn1—Cl392.74 (5)Cl3—Zn2—Cl493.71 (6)
N1—Zn1—Cl192.42 (13)N3—Zn2—Cl3172.83 (13)
N2—Zn1—Cl1163.25 (11)N4—Zn2—Cl392.09 (12)
N1—Zn1—Cl2170.64 (13)N3—Zn2—Cl493.28 (14)
N2—Zn1—Cl292.27 (12)N4—Zn2—Cl4172.95 (12)
N1—Zn1—Cl392.93 (11)N3—Zn2—N481.04 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.683.229 (7)118
C6—H6···Cl2i0.932.773.525 (6)139
C10—H10···Cl20.932.683.235 (6)119
C13—H13···Cl30.932.623.200 (6)121
C17—H17···Cl3ii0.932.673.500 (7)149
C18—H18···Cl4ii0.932.823.742 (7)173
C22—H22···Cl40.932.683.238 (6)119
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z.
 

Acknowledgements

We thank the Youth Program of Jiangxi University of Finance and Economics for financial support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710–4711.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809–m811.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds