inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages i38-i39

Potassium nickel(II) gallium phosphate hydrate, K[NiGa2(PO4)3(H2O)2]

aDepartment of Chemistry, University of Reading, Whiteknights, Reading, Berks RG6 6AD, England
*Correspondence e-mail: a.m.chippindale@rdg.ac.uk

(Received 30 March 2009; accepted 24 April 2009; online 30 April 2009)

The title compound, potassium nickel(II) digallium tris­(phosphate) dihydrate, K[NiGa2(PO4)3(H2O)2], was synthesized hydro­thermally. The structure is constructed from distorted trans-NiO4(H2O)2 octa­hedra linked through vertices and edges to GaO5 trigonal bipyramids and PO4 tetra­hedra, forming a three-dimensional framework of formula [NiGa2(PO4)3(H2O)2]. The K, Ni and one P atom lie on special positions (Wyckoff position 4e, site symmetry 2). There are two sets of channels within the framework, one running parallel to the [10[\overline{1}]] direction and the other parallel to [001]. These inter­sect, forming a three-dimensional pore network in which the water mol­ecules coordinated to the Ni atoms and the K+ ions required to charge balance the framework reside. The K+ ions lie in a highly distorted environment surrounded by ten O atoms, six of which are closer than 3.1Å. The coordinated water mol­ecules are within hydrogen-bonding distance to O atoms of bridging Ga—O—P groups.

Related literature

For reviews of open-framework phosphate materials, see: Cheetham et al. (1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]); Harrison (2002[Harrison, W. T. A. (2002). Curr. Opin. Solid State Mater. Sci. 6, 407-413.]); Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 6 770-818.]). For background to heterometal-substituted gallophosphates, MGaPOs, see: Baerlocher et al. (2001[Baerlocher, C., Meier, W. M. & Olson, D. H. (2001). Atlas of Zeolite Structure Types (updates at http://www.iza-structure.org/ ), 5th ed. London: Elsevier.]); Lin & Wang (2005[Lin, C.-H. & Wang, S. L. (2005). Inorg. Chem. 44, 251-257.]). For related octa­hedral-trigonal bipyramidal silicate structures, see: Rocha & Lin (2005[Rocha, J. & Lin, Z. (2005). Reviews in Mineralogy and Geochemistry 57: Micro- and Mesoporous Mineral Phases, edited by G. Ferraris & S. Merlino, pp. 173-201. Mineralogical Society of America.]). For ammonium gallophosphates isostructural to the title compound, see: Chippindale et al. (1996[Chippindale, A. M., Cowley, A. R. & Walton, R. I. (1996). J. Mater. Chem. 6, 611-614.], 1998[Chippindale, A. M., Cowley, A. R. & Bond, A. D. (1998). Acta Cryst. C54, IUC9800061.]); Bieniok et al. (2008[Bieniok, A., Brendel, U., Lottermoser, W. & Amthauer, G. (2008). Z. Kristallogr. 223, 186-194.]). For the aluminium analogue, K[NiAl2(PO4)3(H2O)2], see: Meyer & Haushalter (1994[Meyer, L. M. & Haushalter, R. C. (1994). Chem. Mater. 6, 349-350.]). The same structure type occurs in Cs[Fe3(PO4)3(H2O)2] (Lii & Huang, 1995[Lii, K.-H. & Huang, C.-Y. (1995). J. Chem. Soc. Dalton Trans. pp. 571-574.]) and NH4[CoAl2(PO4)3(H2O)2] (Panz et al., 1998[Panz, C., Polborn, K. & Behrens, P. (1998). Inorg. Chim. Acta, 269, 73-82.]) and is related to that of (NH4)3Ga2(PO4)3 (Lesage et al., 2004[Lesage, J., Guesdon, A., Raveau, B. & Petříček, V. (2004). J. Solid State Chem. 177, 3581-3589.]). For bond-valence sums, see: Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]); For the weighting scheme, see: Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

Experimental

Crystal data
  • K[NiGa2(PO4)3(H2O)2]

  • Mr = 558.17

  • Monoclinic, C 2/c

  • a = 13.2095 (13) Å

  • b = 10.1733 (9) Å

  • c = 8.8130 (9) Å

  • β = 107.680 (10)°

  • V = 1128.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.27 mm−1

  • T = 150 K

  • 0.09 × 0.08 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction, (2006). CrysAlis RED and CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England. ]) Tmin = 0.54, Tmax = 0.65

  • 3597 measured reflections

  • 1913 independent reflections

  • 1734 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.025

  • S = 1.04

  • 1667 reflections

  • 103 parameters

  • 3 restraints

  • Only H-atom coordinates refined

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ga1—O1 1.8556 (11)
Ga1—O3 1.9994 (11)
Ga1—O5 1.8541 (10)
Ga1—O6 1.9455 (11)
Ga1—O7 1.8357 (11)
Ni1—O2 1.9951 (11)
Ni1—O2i 1.9951 (11)
Ni1—O3 2.1374 (11)
Ni1—O3i 2.1374 (11)
Ni1—O4 2.1030 (12)
Ni1—O4i 2.1030 (12)
P1—O1ii 1.5279 (11)
P1—O1iii 1.5279 (11)
P1—O3 1.5452 (11)
P1—O3i 1.5452 (11)
P2—O2 1.5135 (11)
P2—O5iv 1.5510 (11)
P2—O6v 1.5348 (12)
P2—O7 1.5434 (12)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) -x, -y, -z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O5ii 0.85 (1) 1.896 (11) 2.741 (2) 172
O4—H2⋯O6iv 0.85 (1) 2.163 (17) 2.976 (2) 161
Symmetry codes: (ii) [x, -y, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2006[Oxford Diffraction, (2006). CrysAlis RED and CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England. ]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction, (2006). CrysAlis RED and CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England. ]); data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction, (2006). CrysAlis RED and CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England. ]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Although the majority of heterometal substituted gallophosphates, MeGaPOs, contain MO4 (M = Me or Ga) and PO4 units (Baerlocher et al., 2001), some are known in which the metal atoms have non-tetrahedral geometries. For example, NGP-1 (Lin & Wang, 2005), the only organically templated NiGaPO reported to date, contains Ni and Ga disordered over the same octahedral metal sites, together with GaO5 and PO4 units. K[NiGa2(PO4)3(H2O)2] is assembled from the same polyhedra as NGP-1 and is isostructural with a number of ammonium transition-metal gallophosphates, NH4[MeGa2(PO4)3(H2O)2] (Me = Mn (Chippindale et al., 1998), Fe, Ni (Bieniok et al., 2008), Co (Chippindale et al., 1996)) and has an aluminium analogue, K[NiAl2(PO4)3(H2O)2] (Meyer & Haushalter, 1994). The same structure type occurs in Cs[Fe3(PO4)3(H2O)2] (Lii & Huang, 1995) and NH4[CoAl2(PO4)3(H2O)2] (Panz et al., 1998) and is related to that of (NH4)3Ga2(PO4)3 (Lesage et al., 2004).

The two phosphorus atoms have tetrahedral geometry (P1, point symmetry C2v; P2,1). Unlike in NGP-1, the metal atoms are located in two distinct sites; Ga1 in a GaO5 trigonal bipyramid (1) and Ni1 in an NiO4(H2O)2 distorted octahedron (C2v), in which the terminal water molecules, H2O4, lie trans to each other (Fig. 1). Two of the other oxygen atoms in the NiO6 unit, O2 and O2i, are two coordinate whilst O3 and O3i are three coordinate. As expected, the M—O3 (M = Ni, Ga) and P1—O3 bond lengths are the longest M—O and P–O bond lengths observed in the structure. Bond-valence sums (Brese & OKeeffe, 1991) for P1, P2, Ga1 and Ni1 are 4.80, 4.81, 3.22 and 1.93. respectively, which together with the yellow colour of the crystals, confirm the presence of Ni2+ in the structure.

The GaO5, NiO6 and PO4 units link together through edge- and vertex-sharing arrangements to give a three-dimensional framework of composition [NiGa2(PO4)3(H2O)2]-. A set of approximately circular channels, running parallel to the [101] direction, contain the water molecules and potassium ions (Fig. 2). A second set of channels, elliptical in shape, run parallel to the c axis (Fig. 3) and intersect with the first set to generate a three-dimensional pore network.

The potassium atom lies in a very distorted coordination environment with six near oxygen atoms (K1···O in range 2.865 (1) to 3.072 (1) Å) with two additional O atoms at 3.397 (1) and two at 3.456 (1) Å). H2O4 is also involved in hydrogen bonding to Ga—O—P bridging oxygen atoms.

Related literature top

For reviews of open-framework phosphate materials, see: Cheetham et al. (1999); Harrison (2002); Maspoch et al. (2007). For background to heterometal-substituted gallophosphates, MeGaPOs, see: Baerlocher et al. (2001); Lin & Wang (2005). For related octahedral-trigonal bipyramidal silicate structures, see: Rocha & Lin (2005). For ammonium gallophosphates isostructural to the title compound, see: Chippindale et al. (1996, 1998); Bieniok et al. (2008). For the aluminium analogue, K[NiAl2(PO4)3(H2O)2], see: Meyer & Haushalter (1994). The same structure type occurs in Cs[Fe3(PO4)3(H2O)2] (Lii & Huang, 1995) and NH4[CoAl2(PO4)3(H2O)2] (Panz et al., 1998) and is related to that of (NH4)3Ga2(PO4)3 (Lesage et al., 2004). For bond-valence sums, see: Brese & OKeeffe (1991); For the weighting scheme, see: Prince (1982); Watkin (1994).

Experimental top

The title compound was prepared hydrothermally from a gel of composition Ga2O3: NiCl2.6H2O:10H3PO4:156H2O:0.1Si(OEt)4:5KH2PO4 which was heated at 433 K for 7 d in a Teflon-lined stainless steel autoclave. The solid product was collected by filtration, washed with deionized water and dried in air. The product consisted of large yellow faceted blocks of the title compound, which could be easily separated from unidentified white powder.

Refinement top

Prior to refinement, reflections with I<3σ(I) were omitted. The H atoms of the water molecule, H2O4, were located in a difference Fourier map. Their fractional coordinates were refined subject to bond length and angle restraints [O4–H = 0.85 (1) Å, H–O4–H = 109 (5) °] with isotropic displacement parameters fixed at 0.05 Å2.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Local coordination of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. [Symmetry codes: (i) -x, y, -z + 1/2; (ii) x, -y, z + 1/2; (iii) -x, -y, -z; (iv) -x + 1/2, y + 1/2, -z + 1/2; (v) -x + 1/2, -y + 1/2, -z; (viii) x - 1/2, 1/2 - y, 1/2 + z; (ix) -x + 1/2, y + 1/2, z].
[Figure 2] Fig. 2. View of the main channels running parallel to the [1 0 1] direction shown as (a) ball and stick and (b) polyhedral representation. The cross pore distance O1···O5x is 7.251 (1) Å. The colour of each polyhedron corresponds to the colour of the central atom as defined in Fig. 1. [Symmetry codes: (x) 1/2 - x, 1/2 - y, -z]
[Figure 3] Fig. 3. View along the c axis as (a) ball and stick and (b) polyhedral representation showing the elliptical channels bounded by eight membered rings. The shortest cross channel distances are 4.092 (2) and 4.360 (1) Å for O2···O2xi and O2···O6ix respectively. These channels intersect with the main channels shown in Fig.2 to form a 3-D pore network. [Symmetry codes: (ix) -x + 1/2, y + 1/2, z; (xi) -x, 1 - y, z].
potassium nickel(II) digallium tris(phosphate) dihydrate top
Crystal data top
K[NiGa2(PO4)3(H2O)2]F(000) = 1080
Mr = 558.17Dx = 3.286 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3597 reflections
a = 13.2095 (13) Åθ = 3–32.4°
b = 10.1733 (9) ŵ = 7.27 mm1
c = 8.8130 (9) ÅT = 150 K
β = 107.68 (1)°Block, yellow
V = 1128.4 (2) Å30.09 × 0.08 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1734 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω/2θ scansθmax = 32.6°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1519
Tmin = 0.54, Tmax = 0.65k = 1515
3597 measured reflectionsl = 1311
1913 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022Only H-atom coordinates refined
wR(F2) = 0.025 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 18.9 -12.3 16.6
S = 1.04(Δ/σ)max = 0.001
1667 reflectionsΔρmax = 0.84 e Å3
103 parametersΔρmin = 0.91 e Å3
3 restraints
Crystal data top
K[NiGa2(PO4)3(H2O)2]V = 1128.4 (2) Å3
Mr = 558.17Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.2095 (13) ŵ = 7.27 mm1
b = 10.1733 (9) ÅT = 150 K
c = 8.8130 (9) Å0.09 × 0.08 × 0.06 mm
β = 107.68 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1913 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1734 reflections with I > 2σ(I)
Tmin = 0.54, Tmax = 0.65Rint = 0.018
3597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0223 restraints
wR(F2) = 0.025Only H-atom coordinates refined
S = 1.04Δρmax = 0.84 e Å3
1667 reflectionsΔρmin = 0.91 e Å3
103 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ga10.172478 (11)0.075592 (15)0.069169 (16)0.0036
Ni10.00000.27385 (3)0.25000.0053
K10.00000.63513 (6)0.25000.0264
P10.00000.00118 (5)0.25000.0036
P20.20870 (3)0.37358 (4)0.17941 (4)0.0043
O10.05847 (8)0.09109 (11)0.11504 (12)0.0063
O20.09754 (9)0.39793 (11)0.18796 (14)0.0082
O30.07314 (9)0.09888 (11)0.19895 (13)0.0064
O40.09834 (9)0.29514 (12)0.48612 (14)0.0111
O50.20652 (8)0.08860 (10)0.16197 (12)0.0061
O60.27707 (8)0.04382 (11)0.04158 (13)0.0070
O70.23679 (8)0.22862 (11)0.15963 (13)0.0070
H10.135 (3)0.236 (3)0.547 (4)0.0500*
H20.136 (3)0.361 (3)0.481 (5)0.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.00279 (8)0.00233 (9)0.00525 (8)0.00019 (4)0.00068 (5)0.00009 (4)
Ni10.00413 (11)0.00400 (12)0.00818 (12)0.00000.00228 (8)0.0000
K10.0287 (3)0.0109 (2)0.0465 (4)0.00000.0215 (3)0.0000
P10.00246 (18)0.0030 (2)0.00514 (19)0.00000.00089 (14)0.0000
P20.00345 (15)0.00312 (15)0.00631 (14)0.00077 (10)0.00159 (11)0.00031 (10)
O10.0048 (4)0.0058 (4)0.0066 (4)0.0003 (3)0.0007 (3)0.0014 (3)
O20.0042 (4)0.0074 (4)0.0140 (4)0.0001 (3)0.0042 (3)0.0016 (4)
O30.0058 (4)0.0043 (4)0.0108 (4)0.0002 (3)0.0051 (3)0.0010 (3)
O40.0106 (5)0.0083 (4)0.0115 (5)0.0003 (4)0.0009 (4)0.0023 (4)
O50.0063 (4)0.0039 (4)0.0072 (4)0.0008 (3)0.0006 (3)0.0018 (3)
O60.0071 (4)0.0062 (4)0.0090 (4)0.0011 (3)0.0042 (3)0.0013 (3)
O70.0068 (4)0.0038 (4)0.0104 (4)0.0017 (3)0.0029 (3)0.0030 (3)
Geometric parameters (Å, º) top
Ga1—O11.8556 (11)P1—O1ii1.5279 (11)
Ga1—O31.9994 (11)P1—O1iii1.5279 (11)
Ga1—O51.8541 (10)P1—O31.5452 (11)
Ga1—O61.9455 (11)P1—O3i1.5452 (11)
Ga1—O71.8357 (11)P2—O21.5135 (11)
Ni1—O21.9951 (11)P2—O5iv1.5510 (11)
Ni1—O2i1.9951 (11)P2—O6v1.5348 (12)
Ni1—O32.1374 (11)P2—O71.5434 (12)
Ni1—O3i2.1374 (11)O4—H10.850 (10)
Ni1—O42.1030 (12)O4—H20.848 (10)
Ni1—O4i2.1030 (12)
O1—Ga1—O389.49 (5)O4i—Ni1—O4168.18 (7)
O1—Ga1—O5119.09 (5)O1ii—P1—O1iii104.18 (9)
O1—Ga1—O694.97 (5)O1ii—P1—O3114.14 (6)
O1—Ga1—O7116.97 (5)O1iii—P1—O3112.42 (6)
O3—Ga1—O588.16 (5)O3i—P1—O1ii112.42 (6)
O3—Ga1—O6174.93 (4)O3i—P1—O1iii114.14 (6)
O3—Ga1—O787.06 (5)O3i—P1—O399.94 (8)
O5—Ga1—O687.57 (5)O2—P2—O7115.61 (6)
O5—Ga1—O7123.66 (5)O5iv—P2—O2111.12 (6)
O6—Ga1—O793.05 (5)O5iv—P2—O6v110.43 (6)
O2i—Ni1—O2101.49 (7)O5iv—P2—O7101.91 (6)
O2—Ni1—O395.65 (4)O6v—P2—O2107.68 (6)
O2i—Ni1—O3162.84 (5)O6v—P2—O7110.02 (6)
O2—Ni1—O487.12 (5)Ga1—O1—P1iii135.47 (7)
O2i—Ni1—O485.41 (5)Ga1—O3—Ni1129.51 (5)
O3i—Ni1—O2162.84 (5)Ga1—O3—P1131.86 (7)
O3i—Ni1—O2i95.65 (4)Ni1—O2—P2128.84 (7)
O3i—Ni1—O367.23 (6)Ni1—O3—P196.42 (5)
O3i—Ni1—O493.46 (4)Ni1—O4—H1128 (3)
O3i—Ni1—O4i96.38 (5)Ni1—O4—H2103 (3)
O4i—Ni1—O285.41 (5)H1—O4—H2111 (3)
O4i—Ni1—O2i87.12 (5)Ga1—O5—P2vi129.28 (7)
O3—Ni1—O496.38 (5)Ga1—O6—P2v125.62 (7)
O4i—Ni1—O393.46 (4)Ga1—O7—P2139.82 (7)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2; (iii) x, y, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O5ii0.85 (1)1.90 (1)2.741 (2)172
O4—H2···O6iv0.85 (1)2.16 (2)2.976 (2)161
Symmetry codes: (ii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaK[NiGa2(PO4)3(H2O)2]
Mr558.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)13.2095 (13), 10.1733 (9), 8.8130 (9)
β (°) 107.68 (1)
V3)1128.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)7.27
Crystal size (mm)0.09 × 0.08 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.54, 0.65
No. of measured, independent and
observed [I > 2σ(I)] reflections
3597, 1913, 1734
Rint0.018
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.025, 1.04
No. of reflections1667
No. of parameters103
No. of restraints3
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.84, 0.91

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Selected geometric parameters (Å, º) top
Ga1—O11.8556 (11)Ni1—O4i2.1030 (12)
Ga1—O31.9994 (11)P1—O1ii1.5279 (11)
Ga1—O51.8541 (10)P1—O1iii1.5279 (11)
Ga1—O61.9455 (11)P1—O31.5452 (11)
Ga1—O71.8357 (11)P1—O3i1.5452 (11)
Ni1—O21.9951 (11)P2—O21.5135 (11)
Ni1—O2i1.9951 (11)P2—O5iv1.5510 (11)
Ni1—O32.1374 (11)P2—O6v1.5348 (12)
Ni1—O3i2.1374 (11)P2—O71.5434 (12)
Ni1—O42.1030 (12)
O1—Ga1—O389.49 (5)O4i—Ni1—O393.46 (4)
O1—Ga1—O5119.09 (5)O4i—Ni1—O4168.18 (7)
O1—Ga1—O694.97 (5)O1ii—P1—O1iii104.18 (9)
O1—Ga1—O7116.97 (5)O1ii—P1—O3114.14 (6)
O3—Ga1—O588.16 (5)O1iii—P1—O3112.42 (6)
O3—Ga1—O6174.93 (4)O3i—P1—O1ii112.42 (6)
O3—Ga1—O787.06 (5)O3i—P1—O1iii114.14 (6)
O5—Ga1—O687.57 (5)O3i—P1—O399.94 (8)
O5—Ga1—O7123.66 (5)O2—P2—O7115.61 (6)
O6—Ga1—O793.05 (5)O5iv—P2—O2111.12 (6)
O2i—Ni1—O2101.49 (7)O5iv—P2—O6v110.43 (6)
O2—Ni1—O395.65 (4)O5iv—P2—O7101.91 (6)
O2i—Ni1—O3162.84 (5)O6v—P2—O2107.68 (6)
O2—Ni1—O487.12 (5)O6v—P2—O7110.02 (6)
O2i—Ni1—O485.41 (5)Ga1—O1—P1iii135.47 (7)
O3i—Ni1—O2162.84 (5)Ga1—O3—Ni1129.51 (5)
O3i—Ni1—O2i95.65 (4)Ga1—O3—P1131.86 (7)
O3i—Ni1—O367.23 (6)Ni1—O2—P2128.84 (7)
O3i—Ni1—O493.46 (4)Ni1—O3—P196.42 (5)
O3i—Ni1—O4i96.38 (5)Ga1—O5—P2vi129.28 (7)
O4i—Ni1—O285.41 (5)Ga1—O6—P2v125.62 (7)
O4i—Ni1—O2i87.12 (5)Ga1—O7—P2139.82 (7)
O3—Ni1—O496.38 (5)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2; (iii) x, y, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O5ii0.85 (1)1.896 (11)2.741 (2)172
O4—H2···O6iv0.85 (1)2.163 (17)2.976 (2)161
Symmetry codes: (ii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the EPSRC for a grant in support of a single-crystal diffractometer.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaerlocher, C., Meier, W. M. & Olson, D. H. (2001). Atlas of Zeolite Structure Types (updates at http://www.iza-structure.org/ ), 5th ed. London: Elsevier.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBieniok, A., Brendel, U., Lottermoser, W. & Amthauer, G. (2008). Z. Kristallogr. 223, 186–194.  Web of Science CrossRef CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationChippindale, A. M., Cowley, A. R. & Bond, A. D. (1998). Acta Cryst. C54, IUC9800061.  CrossRef IUCr Journals Google Scholar
First citationChippindale, A. M., Cowley, A. R. & Walton, R. I. (1996). J. Mater. Chem. 6, 611–614.  CrossRef CAS Web of Science Google Scholar
First citationHarrison, W. T. A. (2002). Curr. Opin. Solid State Mater. Sci. 6, 407–413.  Web of Science CrossRef CAS Google Scholar
First citationLesage, J., Guesdon, A., Raveau, B. & Petříček, V. (2004). J. Solid State Chem. 177, 3581–3589.  Web of Science CrossRef CAS Google Scholar
First citationLii, K.-H. & Huang, C.-Y. (1995). J. Chem. Soc. Dalton Trans. pp. 571–574.  CrossRef Web of Science Google Scholar
First citationLin, C.-H. & Wang, S. L. (2005). Inorg. Chem. 44, 251–257.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 6 770–818.  Web of Science CrossRef Google Scholar
First citationMeyer, L. M. & Haushalter, R. C. (1994). Chem. Mater. 6, 349–350.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction, (2006). CrysAlis RED and CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPanz, C., Polborn, K. & Behrens, P. (1998). Inorg. Chim. Acta, 269, 73–82.  Web of Science CrossRef CAS Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationRocha, J. & Lin, Z. (2005). Reviews in Mineralogy and Geochemistry 57: Micro- and Mesoporous Mineral Phases, edited by G. Ferraris & S. Merlino, pp. 173–201. Mineralogical Society of America.  Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages i38-i39
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds