metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m609-m610

Octa­methyldi-μ3-oxido-bis­­(μ2-thio­phene-3-acetato-κ2O:O′)(thio­phene-3-acetato-κO)tetra­tin(IV)

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 15 April 2009; accepted 25 April 2009; online 30 April 2009)

In the centrosymmetric title compound, [Sn4(CH3)8(C6H5O2S)4O2], the central four-membered planar ring (Sn2O2) makes dihedral angles of 66.28 (12) and 77.43 (11)° with the heterocyclic rings of the bridging and monodentate ligands, respectively. One SnIV atom adopts a distorted SnO3C2 trigonal-bipyramidal geometry, with both C atoms in equatorial sites and the other a grossly distorted SnO4C2 octa­hedral or irregular arrangement. In the crystal, the mol­ecules are connected into pillar-like polymeric units making R22(12) ring motifs due to inter­molecular C—H⋯O inter­actions. C–H⋯π inter­actions are also present. The O atoms of the chelating ligands and the S atom of the monodentate ligand are disordered over two sets of sites in a 0.65 (6):0.35 (6) ratio

Related literature

For related structures, see: Danish et al. (1995[Danish, M., Ali, S., Mazhar, M. & Badshah, A. (1995). Main Group Met. Chem. 18, 697-705.], 1996[Danish, M., Ali, S., Mazhar, M. & Badshah, A. (1996). Main Group Met. Chem. 19, 121-131.]); Ng et al. (2001[Ng, S. W., Chantrapromma, S., Razak, I. A. & Fun, H.-K. (2001). Acta Cryst. C57, 291-292.]); Tahir et al. (1997a[Tahir, M. N., Ülkü, D., Ali, S., Masood, T., Danish, M. & Mazhar, M. (1997a). Acta Cryst. C53, 1574-1576.],b[Tahir, M. N., Ülkü, D., Danish, M., Ali, S., Badshah, A. & Mazhar, M. (1997b). Acta Cryst. C53, 183-185.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(CH3)8(C6H5O2S)4O2]

  • Mr = 1191.79

  • Triclinic, [P \overline 1]

  • a = 9.7330 (5) Å

  • b = 9.7403 (5) Å

  • c = 12.0432 (6) Å

  • α = 85.407 (2)°

  • β = 85.259 (1)°

  • γ = 71.256 (2)°

  • V = 1075.74 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.54 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.13 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.637, Tmax = 0.719

  • 19310 measured reflections

  • 4012 independent reflections

  • 3441 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.04

  • 4012 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O1A 2.23 (2)
Sn1—O3 2.031 (2)
Sn1—O4 2.207 (3)
Sn1—C7 2.088 (5)
Sn1—C8 2.091 (4)
Sn2—O2A 2.312 (17)
Sn2—O3 2.0366 (19)
Sn2—C9 2.106 (5)
Sn2—C10 2.109 (4)
Sn2—O3i 2.127 (2)
Sn2—O4i 2.670 (3)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8C⋯O5ii 0.96 2.58 3.103 (6) 115
C5—H5⋯CgCiii 0.93 2.83 3.513 (5) 131
C10—H10C⋯CgCi 0.96 2.80 3.697 (5) 156
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y-1, z-1. CgC is the centriod of the heterocyclic ring (C13–C16/S2A or C13–C16/S2B).

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation to our interest with the tin chemistry in various forms (Danish et al., 1995, 1996), (Tahir et al., 1997a, 1997b), we report here the title compound (I), (Fig. 1).

The crystal structure of bis(dicyclohexylammonium 3-thienylacetate) (Ng et al., 2001) has been reported which shows disorder in the 3-thienylacetate unit. In our present complex the ligand is also in disorder. The O-atoms of chelating carboxylate are disordered over two sites with occupancy ratio of 0.65:0.35, whereas in other ligands the disorder is present at the S-atoms. In the title molecule symmetry related central four membered ring A (Sn2/O3/Sn2i/O3i; i = -x + 1, -y, -z + 1) is of course planar. The five membered rings B (C3—C5/S1/C6) and C (C13—C15/S2A/C16) are also planar. The dihedral angles between A/B, A/C and B/C are 66.28 (12)°, 77.43 (11)° and 71.23 (18)°, respectively. Due to intermolecular H-bonding, the stannoxanes are connected in pillar like polymeric form making R22(12) ring motifs (Bernstein et al., 1995), (Fig. 2). The molecules are also stabilized due to C–H···π interactions (Table 1).

Related literature top

For related structures, see: Danish et al. (1995, 1996); Ng et al. (2001); Tahir et al. (1997a,b). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The complex was synthesized by refluxing (CH3)2SnO (1.66 g, 0.01 mol) and 3-thiopheneacetic acid (1.42 g, 0.01 mol) under argon, in toluene for 4–6 h. Water formed during the reaction was continuously removed by the use of Dean-Stark apparatus. The reaction mixture was brought to room temperature and then boiled with anhydrous activated charcoal and filtered through alumina column. Toluene was removed completely from the filtrate under vacuum. The solid mass thus obtained was purified by repeated crystallization from chloroform-ethanol (8:2) mixture, to obtain colourless prisms of (I).

Refinement top

The H-atoms were positioned geometrically (C—H = 0.93–0.97Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H-atoms are not shown for clarity.
Octamethyldi-µ3-oxido-bis(µ2-thiophene-3-acetato- κ2O:O')(thiophene-3-acetato-κO)tetratin(IV) top
Crystal data top
[Sn4(CH3)8(C6H5O2S)4O2]Z = 1
Mr = 1191.79F(000) = 580
Triclinic, P1Dx = 1.840 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7330 (5) ÅCell parameters from 3441 reflections
b = 9.7403 (5) Åθ = 2.2–25.5°
c = 12.0432 (6) ŵ = 2.54 mm1
α = 85.407 (2)°T = 296 K
β = 85.259 (1)°Prism, colourless
γ = 71.256 (2)°0.20 × 0.15 × 0.13 mm
V = 1075.74 (10) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4012 independent reflections
Radiation source: fine-focus sealed tube3441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 7.80 pixels mm-1θmax = 25.5°, θmin = 2.2°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.637, Tmax = 0.719l = 1414
19310 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0219P)2 + 1.4193P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4012 reflectionsΔρmax = 0.84 e Å3
250 parametersΔρmin = 0.65 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00156 (19)
Crystal data top
[Sn4(CH3)8(C6H5O2S)4O2]γ = 71.256 (2)°
Mr = 1191.79V = 1075.74 (10) Å3
Triclinic, P1Z = 1
a = 9.7330 (5) ÅMo Kα radiation
b = 9.7403 (5) ŵ = 2.54 mm1
c = 12.0432 (6) ÅT = 296 K
α = 85.407 (2)°0.20 × 0.15 × 0.13 mm
β = 85.259 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4012 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3441 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.719Rint = 0.025
19310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.04Δρmax = 0.84 e Å3
4012 reflectionsΔρmin = 0.65 e Å3
250 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.18885 (2)0.25808 (2)0.45386 (2)0.0444 (1)
Sn20.48666 (2)0.09190 (2)0.39587 (2)0.0446 (1)
S10.27895 (18)0.25877 (16)0.05837 (11)0.0934 (5)
S2A0.3409 (3)0.25077 (19)0.99888 (15)0.1310 (8)0.635
O1A0.1177 (13)0.137 (3)0.333 (2)0.076 (4)0.65 (6)
O2A0.3179 (12)0.023 (3)0.2610 (14)0.065 (4)0.65 (6)
O30.3779 (2)0.0937 (2)0.47382 (18)0.0410 (7)
O40.2813 (3)0.3298 (3)0.5913 (2)0.0584 (9)
O50.0925 (4)0.5232 (4)0.5897 (3)0.1044 (16)
C10.1856 (4)0.0434 (4)0.2645 (3)0.0497 (12)
C20.0913 (4)0.0161 (4)0.1808 (3)0.0562 (12)
C30.1613 (4)0.1092 (4)0.1087 (3)0.0532 (12)
C40.1850 (5)0.2556 (5)0.1418 (4)0.0771 (19)
C50.2468 (5)0.3522 (5)0.0595 (4)0.0719 (16)
C60.2094 (6)0.0968 (5)0.0020 (4)0.0756 (19)
C70.2415 (5)0.4034 (5)0.3342 (4)0.0789 (17)
C80.0351 (4)0.1981 (5)0.5611 (4)0.0822 (18)
C90.3936 (5)0.2493 (5)0.4656 (5)0.089 (2)
C100.6134 (5)0.0291 (5)0.2633 (3)0.0712 (16)
C110.2064 (5)0.4535 (4)0.6276 (3)0.0628 (14)
C120.2698 (6)0.5070 (5)0.7194 (4)0.0832 (19)
C130.2700 (5)0.4165 (4)0.8259 (3)0.0607 (14)
C140.1451 (6)0.4020 (6)0.8834 (4)0.0840 (19)
C150.1689 (6)0.3121 (5)0.9827 (4)0.0761 (19)
C160.3894 (5)0.3378 (6)0.8800 (4)0.0839 (19)
S2B0.3409 (3)0.25077 (19)0.99888 (15)0.1310 (8)0.365
O2B0.283 (5)0.0624 (18)0.299 (4)0.065 (7)0.35 (6)
O1B0.156 (5)0.168 (2)0.296 (3)0.062 (7)0.35 (6)
H2A0.006680.000140.221010.0672*
H40.160910.285750.213940.0921*
H50.267180.452410.067910.0864*
H7A0.192350.406490.267650.1183*
H7B0.344580.372120.317120.1183*
H6A0.205040.008260.035330.0906*
H2B0.057050.103290.132560.0672*
H8B0.059880.094190.566720.1230*
H8C0.059340.239700.532090.1230*
H9A0.302620.202160.504800.1329*
H9B0.458260.314490.516610.1329*
H9C0.377450.302850.407210.1329*
H10A0.673820.018930.292100.1063*
H10B0.550610.035940.211060.1063*
H10C0.673350.113580.226490.1063*
H12A0.368570.503900.696440.0997*
H12B0.213270.607100.731880.0997*
H140.052710.448120.858380.1013*
H150.097080.291761.030710.0912*
H16A0.484400.331810.856010.1007*
H7C0.211670.498490.362720.1183*
H8A0.034090.232800.633610.1230*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0437 (1)0.0386 (1)0.0463 (2)0.0034 (1)0.0056 (1)0.0128 (1)
Sn20.0470 (1)0.0397 (1)0.0452 (2)0.0066 (1)0.0063 (1)0.0177 (1)
S10.1234 (11)0.0908 (9)0.0681 (8)0.0294 (8)0.0098 (7)0.0323 (7)
S2A0.206 (2)0.0932 (11)0.0868 (11)0.0321 (12)0.0320 (12)0.0049 (9)
O1A0.058 (4)0.088 (8)0.084 (8)0.016 (4)0.007 (4)0.050 (7)
O2A0.054 (4)0.091 (10)0.051 (5)0.015 (4)0.010 (3)0.032 (5)
O30.0391 (11)0.0368 (12)0.0424 (12)0.0025 (9)0.0042 (9)0.0133 (9)
O40.0644 (16)0.0503 (14)0.0575 (16)0.0070 (12)0.0136 (12)0.0216 (12)
O50.099 (3)0.078 (2)0.108 (3)0.0243 (19)0.031 (2)0.036 (2)
C10.056 (2)0.051 (2)0.047 (2)0.0207 (18)0.0110 (17)0.0073 (17)
C20.063 (2)0.057 (2)0.052 (2)0.0193 (18)0.0162 (18)0.0092 (17)
C30.061 (2)0.057 (2)0.049 (2)0.0237 (18)0.0167 (17)0.0112 (17)
C40.103 (4)0.065 (3)0.073 (3)0.041 (3)0.002 (3)0.008 (2)
C50.095 (3)0.052 (2)0.077 (3)0.033 (2)0.002 (2)0.019 (2)
C60.116 (4)0.063 (3)0.052 (3)0.030 (3)0.016 (2)0.010 (2)
C70.099 (3)0.062 (3)0.059 (3)0.006 (2)0.000 (2)0.008 (2)
C80.051 (2)0.075 (3)0.117 (4)0.019 (2)0.014 (2)0.008 (3)
C90.066 (3)0.067 (3)0.143 (5)0.033 (2)0.002 (3)0.016 (3)
C100.088 (3)0.065 (3)0.047 (2)0.008 (2)0.007 (2)0.0032 (19)
C110.083 (3)0.049 (2)0.054 (2)0.013 (2)0.009 (2)0.0174 (18)
C120.137 (4)0.069 (3)0.058 (3)0.047 (3)0.012 (3)0.021 (2)
C130.077 (3)0.059 (2)0.052 (2)0.024 (2)0.005 (2)0.0255 (19)
C140.076 (3)0.085 (3)0.095 (4)0.028 (3)0.009 (3)0.032 (3)
C150.095 (4)0.067 (3)0.072 (3)0.037 (3)0.017 (3)0.013 (2)
C160.076 (3)0.098 (4)0.079 (3)0.022 (3)0.008 (2)0.032 (3)
S2B0.206 (2)0.0932 (11)0.0868 (11)0.0321 (12)0.0320 (12)0.0049 (9)
O2B0.075 (12)0.052 (7)0.076 (15)0.021 (5)0.033 (12)0.012 (7)
O1B0.076 (15)0.047 (7)0.062 (11)0.011 (6)0.025 (9)0.021 (6)
Geometric parameters (Å, º) top
Sn1—O1A2.23 (2)C3—C61.341 (6)
Sn1—O32.031 (2)C4—C51.384 (7)
Sn1—O42.207 (3)C11—C121.512 (7)
Sn1—C72.088 (5)C12—C131.497 (6)
Sn1—C82.091 (4)C13—C161.355 (7)
Sn1—O1B2.24 (4)C13—C141.390 (8)
Sn2—O2A2.312 (17)C14—C151.414 (7)
Sn2—O32.0366 (19)C2—H2A0.9700
Sn2—C92.106 (5)C2—H2B0.9700
Sn2—C102.109 (4)C4—H40.9300
Sn2—O3i2.127 (2)C5—H50.9300
Sn2—O4i2.670 (3)C6—H6A0.9300
Sn2—O2B2.31 (5)C7—H7A0.9600
Sn2—Sn2i3.2694 (4)C7—H7B0.9600
S1—C51.686 (5)C7—H7C0.9600
S1—C61.701 (5)C8—H8A0.9600
S2A—C151.609 (7)C8—H8B0.9600
S2A—C161.715 (5)C8—H8C0.9600
S2B—C161.715 (5)C9—H9A0.9600
S2B—C151.609 (7)C9—H9B0.9600
O1A—C11.26 (3)C9—H9C0.9600
O1B—C11.24 (2)C10—H10A0.9600
O2A—C11.240 (19)C10—H10B0.9600
O2B—C11.23 (3)C10—H10C0.9600
O4—C111.281 (5)C12—H12A0.9700
O5—C111.204 (6)C12—H12B0.9700
C1—C21.511 (5)C14—H140.9300
C2—C31.498 (5)C15—H150.9300
C3—C41.399 (6)C16—H16A0.9300
O1A—Sn1—O391.9 (6)C3—C4—C5115.2 (4)
O1A—Sn1—O4167.3 (7)S1—C5—C4109.0 (3)
O1A—Sn1—C795.5 (6)S1—C6—C3113.4 (3)
O1A—Sn1—C882.7 (5)O4—C11—C12116.3 (4)
O3—Sn1—O477.69 (9)O4—C11—O5121.5 (4)
O3—Sn1—C7104.94 (15)O5—C11—C12122.2 (4)
O3—Sn1—C8104.92 (14)C11—C12—C13111.4 (4)
O1B—Sn1—O390.8 (9)C12—C13—C14124.0 (5)
O4—Sn1—C794.25 (15)C12—C13—C16125.7 (5)
O4—Sn1—C892.93 (15)C14—C13—C16110.4 (4)
O1B—Sn1—O4164.9 (12)C13—C14—C15115.1 (5)
C7—Sn1—C8150.12 (18)S2A—C15—C14108.6 (4)
O1B—Sn1—C779.1 (9)S2B—C15—C14108.6 (4)
O1B—Sn1—C899.6 (11)S2A—C16—C13110.5 (4)
O2A—Sn2—O389.1 (6)S2B—C16—C13110.5 (4)
O2A—Sn2—C990.5 (6)C1—C2—H2A108.00
O2A—Sn2—C1080.5 (4)C1—C2—H2B108.00
Sn2i—Sn2—O2A128.1 (6)C3—C2—H2A108.00
O2A—Sn2—O3i164.4 (7)C3—C2—H2B108.00
O2A—Sn2—O4i128.2 (6)H2A—C2—H2B107.00
O3—Sn2—C9105.78 (15)C3—C4—H4122.00
O3—Sn2—C10105.39 (14)C5—C4—H4122.00
O2B—Sn2—O389.1 (7)S1—C5—H5126.00
Sn2i—Sn2—O339.25 (6)C4—C5—H5125.00
O3—Sn2—O3i76.53 (8)S1—C6—H6A123.00
O3—Sn2—O4i142.67 (8)C3—C6—H6A123.00
C9—Sn2—C10147.33 (19)Sn1—C7—H7A109.00
O2B—Sn2—C973.5 (9)Sn1—C7—H7B110.00
Sn2i—Sn2—C9105.84 (16)Sn1—C7—H7C109.00
O3i—Sn2—C999.16 (16)H7A—C7—H7B109.00
O4i—Sn2—C978.01 (15)H7A—C7—H7C109.00
O2B—Sn2—C1097.5 (12)H7B—C7—H7C109.00
Sn2i—Sn2—C10104.38 (12)Sn1—C8—H8A109.00
O3i—Sn2—C1097.34 (14)Sn1—C8—H8B109.00
O4i—Sn2—C1083.18 (14)Sn1—C8—H8C109.00
Sn2i—Sn2—O2B127.4 (8)H8A—C8—H8B110.00
O2B—Sn2—O3i161.6 (11)H8A—C8—H8C109.00
O2B—Sn2—O4i126.4 (5)H8B—C8—H8C109.00
Sn2i—Sn2—O3i37.29 (5)Sn2—C9—H9A109.00
Sn2i—Sn2—O4i103.52 (6)Sn2—C9—H9B109.00
O3i—Sn2—O4i66.28 (8)Sn2—C9—H9C109.00
C5—S1—C692.5 (2)H9A—C9—H9B109.00
C15—S2A—C1695.4 (3)H9A—C9—H9C109.00
C15—S2B—C1695.4 (3)H9B—C9—H9C110.00
Sn1—O1A—C1133.2 (11)Sn2—C10—H10A109.00
Sn1—O1B—C1134 (2)Sn2—C10—H10B109.00
Sn2—O2A—C1132.8 (12)Sn2—C10—H10C109.00
Sn2—O2B—C1134 (2)H10A—C10—H10B109.00
Sn2—O3—Sn2i103.47 (9)H10A—C10—H10C110.00
Sn1—O3—Sn2i120.70 (10)H10B—C10—H10C110.00
Sn1—O3—Sn2135.83 (11)C11—C12—H12A109.00
Sn2i—O4—C11149.5 (3)C11—C12—H12B109.00
Sn1—O4—Sn2i95.14 (9)C13—C12—H12A109.00
Sn1—O4—C11115.4 (3)C13—C12—H12B109.00
O1A—C1—O2A125.9 (13)H12A—C12—H12B108.00
O1A—C1—C2114.1 (9)C13—C14—H14122.00
O2A—C1—C2120.0 (10)C15—C14—H14122.00
O1B—C1—O2B125 (3)S2A—C15—H15126.00
O1B—C1—C2118 (2)C14—C15—H15126.00
O2B—C1—C2116.6 (18)S2B—C15—H15126.00
C1—C2—C3116.3 (3)S2A—C16—H16A125.00
C2—C3—C4125.4 (4)C13—C16—H16A125.00
C2—C3—C6124.6 (4)S2B—C16—H16A125.00
C4—C3—C6110.0 (4)
O3—Sn1—O1A—C129 (2)C10—Sn2—Sn2i—O2Ai90.9 (6)
C7—Sn1—O1A—C176 (2)C10—Sn2—Sn2i—O3i83.16 (16)
C8—Sn1—O1A—C1134 (2)C10—Sn2—Sn2i—C9i12.55 (19)
O1A—Sn1—O3—Sn211.1 (6)C10—Sn2—Sn2i—C10i180.0 (2)
O1A—Sn1—O3—Sn2i168.5 (6)O3i—Sn2—Sn2i—O3180.00 (14)
O4—Sn1—O3—Sn2176.29 (17)O3i—Sn2—Sn2i—O4176.85 (11)
O4—Sn1—O3—Sn2i4.13 (11)O4i—Sn2—Sn2i—O3176.85 (11)
C7—Sn1—O3—Sn285.1 (2)O4i—Sn2—Sn2i—O4180.00 (8)
C7—Sn1—O3—Sn2i95.29 (17)O3—Sn2—O3i—Sn1i179.70 (13)
C8—Sn1—O3—Sn294.0 (2)O3—Sn2—O3i—Sn2i0.00 (10)
C8—Sn1—O3—Sn2i85.63 (17)C9—Sn2—O3i—Sn1i76.14 (17)
O3—Sn1—O4—C11178.3 (3)C9—Sn2—O3i—Sn2i104.16 (16)
O3—Sn1—O4—Sn2i2.84 (8)C10—Sn2—O3i—Sn1i75.56 (16)
C7—Sn1—O4—C1173.9 (3)C10—Sn2—O3i—Sn2i104.14 (15)
C7—Sn1—O4—Sn2i107.23 (15)O2A—Sn2—O4i—Sn1i170.4 (6)
C8—Sn1—O4—C1177.1 (3)O2A—Sn2—O4i—C11i7.7 (8)
C8—Sn1—O4—Sn2i101.80 (14)O3—Sn2—O4i—Sn1i8.27 (18)
O3—Sn2—O2A—C135 (2)O3—Sn2—O4i—C11i173.7 (5)
C9—Sn2—O2A—C171 (2)C9—Sn2—O4i—Sn1i108.63 (18)
C10—Sn2—O2A—C1140 (2)C9—Sn2—O4i—C11i73.3 (5)
Sn2i—Sn2—O2A—C139 (2)C10—Sn2—O4i—Sn1i98.23 (15)
O4i—Sn2—O2A—C1146.3 (19)C10—Sn2—O4i—C11i79.9 (5)
O2A—Sn2—O3—Sn16.5 (5)C6—S1—C5—C40.7 (4)
O2A—Sn2—O3—Sn2i173.9 (5)C5—S1—C6—C30.3 (5)
C9—Sn2—O3—Sn183.8 (2)C16—S2A—C15—C140.2 (4)
C9—Sn2—O3—Sn2i95.88 (17)C15—S2A—C16—C130.0 (4)
C10—Sn2—O3—Sn186.34 (19)Sn1—O1A—C1—O2A13 (3)
C10—Sn2—O3—Sn2i94.03 (15)Sn1—O1A—C1—C2166.7 (15)
Sn2i—Sn2—O3—Sn1179.6 (2)Sn2—O2A—C1—O1A29 (3)
O3i—Sn2—O3—Sn1179.63 (17)Sn2—O2A—C1—C2152.2 (14)
O3i—Sn2—O3—Sn2i0.00 (8)Sn1—O4—C11—O51.2 (5)
O4i—Sn2—O3—Sn1174.57 (12)Sn1—O4—C11—C12178.2 (3)
O4i—Sn2—O3—Sn2i5.06 (18)Sn2i—O4—C11—O5176.6 (3)
O2A—Sn2—Sn2i—O37.8 (6)Sn2i—O4—C11—C124.0 (7)
O2A—Sn2—Sn2i—O44.6 (6)O1A—C1—C2—C3171.2 (13)
O2A—Sn2—Sn2i—O2Ai180.0 (8)O2A—C1—C2—C39.5 (13)
O2A—Sn2—Sn2i—O3i172.2 (6)C1—C2—C3—C478.1 (5)
O2A—Sn2—Sn2i—C9i76.5 (6)C1—C2—C3—C6102.5 (5)
O2A—Sn2—Sn2i—C10i90.9 (6)C2—C3—C4—C5177.7 (4)
O3—Sn2—Sn2i—O43.15 (11)C6—C3—C4—C51.7 (6)
O3—Sn2—Sn2i—O2Ai172.2 (6)C2—C3—C6—S1178.3 (3)
O3—Sn2—Sn2i—O3i180.00 (14)C4—C3—C6—S11.2 (6)
O3—Sn2—Sn2i—C9i84.29 (17)C3—C4—C5—S11.5 (6)
O3—Sn2—Sn2i—C10i83.16 (16)O4—C11—C12—C1368.4 (5)
C9—Sn2—Sn2i—O395.71 (17)O5—C11—C12—C13112.2 (5)
C9—Sn2—Sn2i—O498.86 (15)C11—C12—C13—C1461.4 (6)
C9—Sn2—Sn2i—O2Ai76.5 (6)C11—C12—C13—C16118.7 (5)
C9—Sn2—Sn2i—O3i84.29 (17)C12—C13—C14—C15179.6 (4)
C9—Sn2—Sn2i—C9i180.0 (2)C16—C13—C14—C150.3 (6)
C9—Sn2—Sn2i—C10i12.55 (19)C12—C13—C16—S2A179.8 (4)
C10—Sn2—Sn2i—O396.85 (16)C14—C13—C16—S2A0.2 (5)
C10—Sn2—Sn2i—O493.70 (15)C13—C14—C15—S2A0.4 (6)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O5ii0.962.583.103 (6)115
C5—H5···CgCiii0.932.833.513 (5)131
C10—H10C···CgCi0.962.803.697 (5)156
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x, y1, z1.

Experimental details

Crystal data
Chemical formula[Sn4(CH3)8(C6H5O2S)4O2]
Mr1191.79
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.7330 (5), 9.7403 (5), 12.0432 (6)
α, β, γ (°)85.407 (2), 85.259 (1), 71.256 (2)
V3)1075.74 (10)
Z1
Radiation typeMo Kα
µ (mm1)2.54
Crystal size (mm)0.20 × 0.15 × 0.13
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.637, 0.719
No. of measured, independent and
observed [I > 2σ(I)] reflections
19310, 4012, 3441
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.04
No. of reflections4012
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.65

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Sn1—O1A2.23 (2)Sn2—O32.0366 (19)
Sn1—O32.031 (2)Sn2—C92.106 (5)
Sn1—O42.207 (3)Sn2—C102.109 (4)
Sn1—C72.088 (5)Sn2—O3i2.127 (2)
Sn1—C82.091 (4)Sn2—O4i2.670 (3)
Sn2—O2A2.312 (17)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O5ii0.962.583.103 (6)115
C5—H5···CgCiii0.932.833.513 (5)131
C10—H10C···CgCi0.962.803.697 (5)156
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x, y1, z1.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer and for technical support, respectively.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanish, M., Ali, S., Mazhar, M. & Badshah, A. (1995). Main Group Met. Chem. 18, 697–705.  CAS Google Scholar
First citationDanish, M., Ali, S., Mazhar, M. & Badshah, A. (1996). Main Group Met. Chem. 19, 121–131.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W., Chantrapromma, S., Razak, I. A. & Fun, H.-K. (2001). Acta Cryst. C57, 291–292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D., Ali, S., Masood, T., Danish, M. & Mazhar, M. (1997a). Acta Cryst. C53, 1574–1576.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D., Danish, M., Ali, S., Badshah, A. & Mazhar, M. (1997b). Acta Cryst. C53, 183–185.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m609-m610
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds