organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1136

Methyl 9H-carbazole-9-acetate

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: yongjunhe001@hotmail.com

(Received 21 April 2009; accepted 23 April 2009; online 25 April 2009)

The title compound, C15H13NO2, was synthesized by N-alkyl­ation of methyl bromo­acetate with 9H-carbazole. The carbazole ring system is essentially planar (mean atomic deviation = 0.0346 Å) and makes a dihedral angle of 86.5 (7)° with the methyl acetate group. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

The title compound is an inter­mediate in the synthesis of -(9-carbazole) acetyl chloride, a novel fluorescence derivatization reagent, see: Xie et al. (2006[Xie, M. H., Qiu, A. Y., He, Y. J., Wu, J., Zhou, X. Q., Zou, P., Liu, Y. L. & Luo, S. N. (2006). Chin. J. Anal. Chem. 34, S131-134.]); Bong et al. (1992[Bong, Y. Ch., Duck, J. B., Jung, J. J. & Seung, D. L. (1992). Korean J. Chem. Soc. 36, 603-605.]). For bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis, see: Xie et al. (2006[Xie, M. H., Qiu, A. Y., He, Y. J., Wu, J., Zhou, X. Q., Zou, P., Liu, Y. L. & Luo, S. N. (2006). Chin. J. Anal. Chem. 34, S131-134.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO2

  • Mr = 239.26

  • Monoclinic, P 21 /c

  • a = 10.875 (3) Å

  • b = 5.8773 (12) Å

  • c = 18.608 (4) Å

  • β = 103.599 (3)°

  • V = 1155.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 93 K

  • 0.43 × 0.33 × 0.27 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: none

  • 8735 measured reflections

  • 2615 independent reflections

  • 1587 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.143

  • S = 1.00

  • 2615 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯O2i 0.98 2.43 3.374 (3) 161
Symmetry code: (i) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is useful as an intermediate in the synthesis of 2-(9-carbazole) acetyl chloride, a novel fluorescence derivatization reagent (Xie et al., 2006; Bong et al., 1992). We report here the crystal structure of (I), which is of interest to us in the field. The molecular structure of(I) is showed in Fig.1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The carbazole ring system is essentially planar with mean deviation of 0.0346 Å. The methylacetate substituent adopts a fully extended conformation, and its mean plane forms a dihedral angle of 93.5 (7)° with the carbazole mean plane. In the crystal structure weak C—H···O hydrogen bonding in present (Table 1).

Related literature top

The title compound is an intermediate in the synthesis of

2-(9-carbazole) acetyl chloride, a novel fluorescence derivatization reagent, see: Xie et al. (2006); Bong et al. (1992). For bond distances, see: Allen et al. (1987). For the synthesis, see: Xie et al. (2006).

Experimental top

The title compound was prepared by the method reported in literature (Xie et al., 2006). The crystals were obtained by dissolving the title compound (0.1 g) in methanol (20 ml), and evaporating the solvent slowly at room temperature. Colorless prism-shaped crystals were formed after 3 d.

Refinement top

H atoms were placed in calculated positions and refined in ride mode with C—H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H atoms. Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Methyl 9H-carbazole-9-acetate top
Crystal data top
C15H13NO2F(000) = 504
Mr = 239.26Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3382 reflections
a = 10.875 (3) Åθ = 3.3–27.5°
b = 5.8773 (12) ŵ = 0.09 mm1
c = 18.608 (4) ÅT = 93 K
β = 103.599 (3)°Prism, colorless
V = 1155.9 (5) Å30.43 × 0.33 × 0.27 mm
Z = 4
Data collection top
Rigaku SPIDER
diffractometer
1587 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.041
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ω scansh = 1414
8735 measured reflectionsk = 77
2615 independent reflectionsl = 2420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0306P)2 + 1.86P]
where P = (Fo2 + 2Fc2)/3
2615 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H13NO2V = 1155.9 (5) Å3
Mr = 239.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.875 (3) ŵ = 0.09 mm1
b = 5.8773 (12) ÅT = 93 K
c = 18.608 (4) Å0.43 × 0.33 × 0.27 mm
β = 103.599 (3)°
Data collection top
Rigaku SPIDER
diffractometer
1587 reflections with I > 2σ(I)
8735 measured reflectionsRint = 0.041
2615 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
2615 reflectionsΔρmin = 0.36 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15039 (15)0.6886 (3)0.49433 (9)0.0250 (4)
O20.11310 (18)1.0517 (3)0.45700 (10)0.0349 (5)
N10.31648 (18)0.7955 (3)0.62011 (11)0.0239 (5)
C10.4231 (2)0.6749 (4)0.61296 (13)0.0242 (5)
C20.5141 (2)0.7323 (4)0.57434 (13)0.0272 (6)
H20.50810.86960.54680.033*
C30.6132 (2)0.5828 (5)0.57759 (13)0.0295 (6)
H30.67670.61910.55200.035*
C40.6228 (2)0.3793 (5)0.61751 (13)0.0290 (6)
H40.69120.27840.61790.035*
C50.5332 (2)0.3246 (4)0.65647 (13)0.0268 (6)
H50.54000.18720.68400.032*
C60.4324 (2)0.4737 (4)0.65483 (13)0.0234 (5)
C70.3267 (2)0.4732 (4)0.68959 (13)0.0237 (5)
C80.2899 (2)0.3290 (4)0.74042 (13)0.0276 (6)
H80.33640.19420.75680.033*
C90.1848 (2)0.3858 (5)0.76644 (14)0.0309 (6)
H90.16020.29140.80210.037*
C100.1143 (2)0.5807 (5)0.74077 (14)0.0304 (6)
H100.04120.61410.75850.036*
C110.1483 (2)0.7260 (5)0.69037 (14)0.0289 (6)
H110.09940.85740.67300.035*
C120.2565 (2)0.6735 (4)0.66592 (13)0.0247 (5)
C130.2590 (2)0.9803 (4)0.57265 (13)0.0263 (6)
H13A0.32731.07130.55970.032*
H13B0.21461.08020.60120.032*
C140.1662 (2)0.9128 (4)0.50173 (13)0.0230 (5)
C150.0599 (2)0.6135 (4)0.42803 (13)0.0284 (6)
H15A0.02520.66340.43010.034*
H15B0.06170.44710.42500.034*
H15C0.08210.67940.38440.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (9)0.0222 (9)0.0240 (9)0.0003 (7)0.0001 (7)0.0000 (7)
O20.0394 (11)0.0295 (10)0.0297 (10)0.0044 (8)0.0043 (8)0.0064 (8)
N10.0227 (10)0.0239 (11)0.0238 (10)0.0030 (8)0.0031 (8)0.0028 (9)
C10.0241 (12)0.0244 (13)0.0217 (12)0.0004 (10)0.0005 (9)0.0026 (10)
C20.0275 (13)0.0284 (13)0.0236 (12)0.0001 (11)0.0021 (10)0.0023 (10)
C30.0298 (13)0.0358 (15)0.0233 (12)0.0010 (11)0.0073 (10)0.0008 (11)
C40.0246 (12)0.0358 (14)0.0244 (12)0.0034 (11)0.0014 (10)0.0012 (11)
C50.0253 (12)0.0237 (13)0.0279 (13)0.0033 (10)0.0006 (10)0.0003 (11)
C60.0232 (12)0.0247 (12)0.0204 (11)0.0005 (10)0.0012 (9)0.0003 (10)
C70.0226 (12)0.0251 (12)0.0204 (11)0.0018 (10)0.0007 (9)0.0004 (10)
C80.0273 (13)0.0290 (13)0.0237 (12)0.0021 (11)0.0001 (10)0.0008 (11)
C90.0271 (13)0.0361 (15)0.0278 (13)0.0034 (12)0.0031 (10)0.0010 (12)
C100.0246 (12)0.0402 (16)0.0258 (13)0.0006 (11)0.0049 (10)0.0023 (12)
C110.0266 (13)0.0310 (14)0.0268 (13)0.0031 (11)0.0016 (10)0.0032 (11)
C120.0244 (12)0.0244 (13)0.0226 (12)0.0010 (10)0.0000 (10)0.0024 (10)
C130.0281 (13)0.0227 (13)0.0250 (12)0.0032 (10)0.0001 (10)0.0020 (10)
C140.0234 (12)0.0191 (12)0.0266 (12)0.0016 (10)0.0059 (10)0.0003 (10)
C150.0258 (12)0.0310 (13)0.0249 (12)0.0038 (11)0.0010 (10)0.0034 (11)
Geometric parameters (Å, º) top
O1—C141.332 (3)C7—C81.397 (3)
O1—C151.454 (3)C7—C121.416 (3)
O2—C141.211 (3)C8—C91.383 (3)
N1—C121.388 (3)C8—H80.9500
N1—C11.392 (3)C9—C101.399 (4)
N1—C131.446 (3)C9—H90.9500
C1—C21.394 (3)C10—C111.381 (4)
C1—C61.407 (3)C10—H100.9500
C2—C31.381 (4)C11—C121.393 (3)
C2—H20.9500C11—H110.9500
C3—C41.398 (4)C13—C141.514 (3)
C3—H30.9500C13—H13A0.9900
C4—C51.383 (3)C13—H13B0.9900
C4—H40.9500C15—H15A0.9800
C5—C61.398 (3)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
C6—C71.445 (3)
C14—O1—C15115.67 (18)C8—C9—C10120.7 (2)
C12—N1—C1108.52 (19)C8—C9—H9119.7
C12—N1—C13124.4 (2)C10—C9—H9119.7
C1—N1—C13125.0 (2)C11—C10—C9121.7 (2)
N1—C1—C2129.4 (2)C11—C10—H10119.1
N1—C1—C6109.1 (2)C9—C10—H10119.1
C2—C1—C6121.5 (2)C10—C11—C12117.8 (2)
C3—C2—C1117.7 (2)C10—C11—H11121.1
C3—C2—H2121.2C12—C11—H11121.1
C1—C2—H2121.2N1—C12—C11129.9 (2)
C2—C3—C4121.8 (2)N1—C12—C7108.9 (2)
C2—C3—H3119.1C11—C12—C7121.2 (2)
C4—C3—H3119.1N1—C13—C14116.1 (2)
C5—C4—C3120.2 (2)N1—C13—H13A108.3
C5—C4—H4119.9C14—C13—H13A108.3
C3—C4—H4119.9N1—C13—H13B108.3
C4—C5—C6119.3 (2)C14—C13—H13B108.3
C4—C5—H5120.4H13A—C13—H13B107.4
C6—C5—H5120.4O2—C14—O1124.5 (2)
C5—C6—C1119.5 (2)O2—C14—C13122.4 (2)
C5—C6—C7133.7 (2)O1—C14—C13113.1 (2)
C1—C6—C7106.8 (2)O1—C15—H15A109.5
C8—C7—C12119.8 (2)O1—C15—H15B109.5
C8—C7—C6133.5 (2)H15A—C15—H15B109.5
C12—C7—C6106.6 (2)O1—C15—H15C109.5
C9—C8—C7118.8 (2)H15A—C15—H15C109.5
C9—C8—H8120.6H15B—C15—H15C109.5
C7—C8—H8120.6
C12—N1—C1—C2178.1 (2)C6—C7—C8—C9176.1 (3)
C13—N1—C1—C217.5 (4)C7—C8—C9—C101.8 (4)
C12—N1—C1—C60.3 (3)C8—C9—C10—C111.6 (4)
C13—N1—C1—C6164.7 (2)C9—C10—C11—C120.5 (4)
N1—C1—C2—C3178.6 (2)C1—N1—C12—C11178.8 (2)
C6—C1—C2—C31.0 (4)C13—N1—C12—C1116.7 (4)
C1—C2—C3—C40.5 (4)C1—N1—C12—C71.0 (3)
C2—C3—C4—C51.3 (4)C13—N1—C12—C7165.5 (2)
C3—C4—C5—C60.6 (4)C10—C11—C12—N1175.1 (2)
C4—C5—C6—C10.8 (4)C10—C11—C12—C72.5 (4)
C4—C5—C6—C7178.1 (2)C8—C7—C12—N1175.7 (2)
N1—C1—C6—C5179.7 (2)C6—C7—C12—N11.2 (3)
C2—C1—C6—C51.6 (4)C8—C7—C12—C112.3 (3)
N1—C1—C6—C70.5 (3)C6—C7—C12—C11179.3 (2)
C2—C1—C6—C7177.6 (2)C12—N1—C13—C1477.4 (3)
C5—C6—C7—C83.7 (5)C1—N1—C13—C1484.6 (3)
C1—C6—C7—C8175.3 (3)C15—O1—C14—O21.6 (4)
C5—C6—C7—C12180.0 (3)C15—O1—C14—C13178.6 (2)
C1—C6—C7—C121.0 (3)N1—C13—C14—O2179.0 (2)
C12—C7—C8—C90.2 (3)N1—C13—C14—O10.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O2i0.982.433.374 (3)161
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H13NO2
Mr239.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)10.875 (3), 5.8773 (12), 18.608 (4)
β (°) 103.599 (3)
V3)1155.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.33 × 0.27
Data collection
DiffractometerRigaku SPIDER
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8735, 2615, 1587
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.143, 1.00
No. of reflections2615
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.36

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O2i0.982.433.374 (3)161
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors acknowledge financial support from the Jiangsu Institute of Nuclear Medicine, China.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBong, Y. Ch., Duck, J. B., Jung, J. J. & Seung, D. L. (1992). Korean J. Chem. Soc. 36, 603–605.  Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, M. H., Qiu, A. Y., He, Y. J., Wu, J., Zhou, X. Q., Zou, P., Liu, Y. L. & Luo, S. N. (2006). Chin. J. Anal. Chem. 34, S131–134.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1136
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds