organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2,2′-[butane-1,4-diylbis(sul­fanediyl)]dibenzoate

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta - Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta-Chile, cInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany, and dInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco, Sánchez N°2, La Laguna, Tenerife, Spain.
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 14 October 2009; accepted 18 October 2009; online 23 October 2009)

The title compound, C20H22O4S2, was synthesized by the reaction of 1,4-dibromo­butene with methyl thio­salicylate. The aliphatic segment of this ligand is in an all-trans conformation. The bridging chain, –S-(CH2)4-S–, is almost planar (r.m.s. deviation for all non-H atoms: 0.056 Å) and its mean plane forms dihedral angles of 16.60 (7) and 5.80 (2)° with the aromatic rings. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions into chains with graph-set notation C(14) along [0 0 1]. The crystal studied was a racemic twin, the ratio of the twin components being 0.27 (9):0.73 (9).

Related literature

For the potential of coordination polymers based on multi­topic bridging ligands and metal centers as functional mat­erials, see: Guo et al. (2002[Guo, D., Pang, K. L., Duan, C. Y., He, C. & Meng, Q. (2002). Inorg. Chem. 41, 5978-5985.]); Melcer et al. (2001[Melcer, N. J., Enright, G. D., Ripmeester, J. A. & Shimizu, G. K. H. (2001). Inorg. Chem. 40, 4641-4648.]). For the use of flexible ligands in such structures, see: Bu et al. (2001[Bu, X. H., Chen, W., Lu, S. L., Zhang, R. H., Liao, D. Z., Bu, W. M., Shionoya, M., Brisse, F. & Ribas, J. (2001). Angew. Chem. Int. Ed. 40, 3201-3203.]); Withersby et al. (1997[Withersby, M. A., Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S. & Schröder, M. (1997). Angew. Chem. Int. Ed. Engl. 36, 2327-2329.]). For our studies on the synthesis and structural characterization of divalent sulfur compounds, see: Brito et al. (2004[Brito, I., Vargas, D., León, Y., Cárdenas, A., López-Rodríguez, M. & Wittke, O. (2004). Acta Cryst. E60, o1668-o1670.], 2005[Brito, I., Vargas, D., Reyes, A., Cárdenas, A. & López-Rodríguez, M. (2005). Acta Cryst. C61, o234-o236.], 2006[Brito, I., López-Rodríguez, M., Vargas, D. & León, Y. (2006). Acta Cryst. E62, o914-o916.]). For a related compound, see: Awaleh et al. (2005[Awaleh, M. O., Badia, A. & Brisse, F. (2005). Acta Cryst. E61, o2476-o2478.]). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22O4S2

  • Mr = 390.5

  • Orthorhombic, P 21 21 21

  • a = 7.4027 (7) Å

  • b = 14.2976 (11) Å

  • c = 17.7396 (13) Å

  • V = 1877.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 173 K

  • 0.28 × 0.25 × 0.23 mm

Data collection
  • STOE IPDS II two-circle-diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.919, Tmax = 0.933

  • 8050 measured reflections

  • 3437 independent reflections

  • 2244 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.065

  • S = 0.73

  • 3437 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1430 Friedel pairs

  • Flack parameter: 0.27 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O3i 0.95 2.45 3.123 (5) 127
Symmetry code: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, the rational design of coordination polymers based on multitopic bridging ligands and metal centers represents one of the most rapidly developing fields owing to their potential as functional materials (Guo et al., 2002; Melcer et al., 2001). The use of flexible ligands in such studies has attracted increasing attention because the flexibility and conformational freedom of such ligands offer the possibility for the construction of diverse frameworks with tailored properties and functions (Bu et al., 2001; Withersby et al., 1997).

The structure of the title compound is described here as part of our work involving the study of the synthesis and structural characterization of divalent-sulfur compounds (Brito et al., 2004, 2005, 2006). The title compound is a longer analogue of 2,2'-dithiodibenzoate with the two benzoate units interconnected by a flexible –S-(CH2)4-S– bridge. The bridging chain moiety, –S-(CH2)4-S– is almost planar (r.m.s. deviation for all non-H atoms: 0.056 Å). Its mean plane forms a dihedral angle of 16.60 (7) and 5.80 (2)° with the aromatic rings. The C(sp2)-S bond lengths [1.780 (3), 1.773 (3) Å] are significantly shorter than the C(sp3)-S [1.821 (3), 1.822 (3) Å] bond lengths due to p-π conjugation, similar to that observed in 1,6-Bis(phenylsulfanyl)hexane (Awaleh et al., 2005). The torsion angles in the aliphatic segment of the title compound are all trans, indicating that the molecule is in the fully extended conformation. The supramolecular structure of the title compound depends solely upon C—H···O hydrogen bonds: there are no significant S···S nor S···O contacts present in the structure and C—H···π (arene) hydrogen bonds and aromatic π···π stacking interactions are also absent. Atom C15 in the molecule at (x,y,z) acts as a hydrogen-bond donor to the carbonyl O3 atom in the molecule at (-x + 1/2,-y,z - 1/2), thereby generating a C(14) chain (Bernstein et al., 1995) running in the [0 0 1] direction (Figure 2). The molecular stucture is stabilized by two C—H···O intramolecular hydrogen bonds (Table 1).

Related literature top

For the potential of coordination polymers based on

multitopic bridging ligands and metal centers as functional materials, see: Guo et al. (2002); Melcer et al. (2001). For the use of flexible ligands in such structures, see: Bu et al. (2001); Withersby et al. (1997). For our studies of the synthesis and structural characterization of divalent-sulfur compounds, see: Brito et al. (2004, 2005, 2006). For a related compound, see: Awaleh et al. (2005). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized as follows: a solution of 1,4-dibromobutene (1.08 g, 5 mmol) in ethanol (10 ml) was added dropwise to a mixture of methyl thiosalicylate (1.85 g, 11 mmol), KOH (0.617 g, 11 mmol) and ethanol (10 ml). The reaction mixture was stirred for 24 h at room temperature. The precipitate was filtered off, washed with water.Yield 80%; m.p. 393–396 K. FT—IR (KBr pellets, cm-1): ν (w, C—H of CH3 (asym.)) 2984, ν (w, C—H of CH3(sym.)) 2842, ν (w, C—H (aliphatic chain, sym) 2947, ν (w, C—H (chain aliphatic, asym)2919, ν (s, C=O) 1703, ν (s, C—H disubstitution 1,2) 1429, ν (s, O—C(CH3) 1252, ν (w, C—S) 749. Analysis calculated for C20H22O4S2, C 61.51, H 5.68, S 16.42%; found C 61.47, H, 5.72, S 15.32. Crystals suitable for single-crystals X-ray analysis were obtained by recrystallization from an acetonitrile solution.

Refinement top

Hydrogen atoms were located in a difference Fourier map but the were included in calculated positions [C—H = 0.95 - 0.99 Å] and refined as riding [Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl)]. The crystal was refined as an racemic twin with a ratio of the twin components of 0.27 (9)/0.73 (9).

Structure description top

In recent years, the rational design of coordination polymers based on multitopic bridging ligands and metal centers represents one of the most rapidly developing fields owing to their potential as functional materials (Guo et al., 2002; Melcer et al., 2001). The use of flexible ligands in such studies has attracted increasing attention because the flexibility and conformational freedom of such ligands offer the possibility for the construction of diverse frameworks with tailored properties and functions (Bu et al., 2001; Withersby et al., 1997).

The structure of the title compound is described here as part of our work involving the study of the synthesis and structural characterization of divalent-sulfur compounds (Brito et al., 2004, 2005, 2006). The title compound is a longer analogue of 2,2'-dithiodibenzoate with the two benzoate units interconnected by a flexible –S-(CH2)4-S– bridge. The bridging chain moiety, –S-(CH2)4-S– is almost planar (r.m.s. deviation for all non-H atoms: 0.056 Å). Its mean plane forms a dihedral angle of 16.60 (7) and 5.80 (2)° with the aromatic rings. The C(sp2)-S bond lengths [1.780 (3), 1.773 (3) Å] are significantly shorter than the C(sp3)-S [1.821 (3), 1.822 (3) Å] bond lengths due to p-π conjugation, similar to that observed in 1,6-Bis(phenylsulfanyl)hexane (Awaleh et al., 2005). The torsion angles in the aliphatic segment of the title compound are all trans, indicating that the molecule is in the fully extended conformation. The supramolecular structure of the title compound depends solely upon C—H···O hydrogen bonds: there are no significant S···S nor S···O contacts present in the structure and C—H···π (arene) hydrogen bonds and aromatic π···π stacking interactions are also absent. Atom C15 in the molecule at (x,y,z) acts as a hydrogen-bond donor to the carbonyl O3 atom in the molecule at (-x + 1/2,-y,z - 1/2), thereby generating a C(14) chain (Bernstein et al., 1995) running in the [0 0 1] direction (Figure 2). The molecular stucture is stabilized by two C—H···O intramolecular hydrogen bonds (Table 1).

For the potential of coordination polymers based on

multitopic bridging ligands and metal centers as functional materials, see: Guo et al. (2002); Melcer et al. (2001). For the use of flexible ligands in such structures, see: Bu et al. (2001); Withersby et al. (1997). For our studies of the synthesis and structural characterization of divalent-sulfur compounds, see: Brito et al. (2004, 2005, 2006). For a related compound, see: Awaleh et al. (2005). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and PLATON (Spek, 2003; software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound viewed along the a axis, showing the formation of a C(14) chain along the [0 0 1] direction. [Symmetry code for O3: 1/2 - x, -y, -1/2 + z.]
Dimethyl 2,2'-[butane-1,4-diylbis(sulfanediyl)]dibenzoate top
Crystal data top
C20H22O4S2F(000) = 824
Mr = 390.5Dx = 1.381 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4482 reflections
a = 7.4027 (7) Åθ = 3.4–25.9°
b = 14.2976 (11) ŵ = 0.31 mm1
c = 17.7396 (13) ÅT = 173 K
V = 1877.6 (3) Å3Block, colourless
Z = 40.28 × 0.25 × 0.23 mm
Data collection top
STOE IPDS II two-circle-
diffractometer
2244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω scansθmax = 25.6°, θmin = 3.3°
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
h = 87
Tmin = 0.919, Tmax = 0.933k = 1713
8050 measured reflectionsl = 2120
3437 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0001P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 0.73Δρmax = 0.16 e Å3
3437 reflectionsΔρmin = 0.27 e Å3
239 parametersExtinction correction: SHELXL
0 restraintsExtinction coefficient: 0.0030 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1430 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.27 (9)
Crystal data top
C20H22O4S2V = 1877.6 (3) Å3
Mr = 390.5Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4027 (7) ŵ = 0.31 mm1
b = 14.2976 (11) ÅT = 173 K
c = 17.7396 (13) Å0.28 × 0.25 × 0.23 mm
Data collection top
STOE IPDS II two-circle-
diffractometer
3437 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
2244 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.933Rint = 0.069
8050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.16 e Å3
S = 0.73Δρmin = 0.27 e Å3
3437 reflectionsAbsolute structure: Flack (1983), 1430 Friedel pairs
239 parametersAbsolute structure parameter: 0.27 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26565 (13)0.29690 (6)0.42902 (3)0.0257 (2)
S20.30831 (13)0.20540 (6)0.80343 (4)0.0292 (2)
O10.2673 (5)0.41362 (15)0.30785 (10)0.0449 (8)
O20.2727 (4)0.37231 (15)0.18638 (9)0.0340 (6)
O30.3720 (4)0.08601 (17)0.91935 (11)0.0359 (7)
O40.4816 (4)0.12269 (18)1.03289 (10)0.0369 (7)
C10.2650 (6)0.2191 (2)0.51027 (13)0.0249 (8)
H1A0.15540.17940.50990.03*
H1B0.37250.17790.50920.03*
C20.2678 (6)0.2809 (2)0.58124 (13)0.0264 (8)
H2A0.37540.3220.57990.032*
H2B0.15910.32110.58190.032*
C30.2725 (6)0.2212 (2)0.65279 (13)0.0261 (9)
H3A0.16070.18340.65610.031*
H3B0.37660.17790.65060.031*
C40.2885 (6)0.2832 (2)0.72250 (13)0.0280 (9)
H4A0.18030.32340.72760.034*
H4B0.39640.32380.71870.034*
C110.2723 (5)0.2174 (2)0.35190 (13)0.0232 (9)
C120.2798 (6)0.2517 (2)0.27679 (15)0.0244 (9)
C130.2887 (5)0.1872 (2)0.21715 (14)0.0288 (9)
H130.29570.20980.16690.035*
C140.2875 (6)0.0934 (2)0.22956 (15)0.0350 (10)
H140.29540.05110.18830.042*
C150.2747 (6)0.0593 (2)0.30303 (15)0.0339 (9)
H150.26960.00610.31210.041*
C160.2695 (6)0.1219 (2)0.36288 (14)0.0282 (9)
H160.26380.09830.41290.034*
C170.2741 (6)0.3527 (2)0.26050 (14)0.0276 (9)
C180.2495 (7)0.4698 (2)0.16715 (15)0.0389 (10)
H18A0.34720.50660.18970.058*
H18B0.13310.49190.18640.058*
H18C0.25250.4770.11220.058*
C210.3729 (5)0.2822 (3)0.87713 (15)0.0249 (9)
C220.4253 (6)0.2465 (3)0.94829 (16)0.0266 (9)
C230.4802 (5)0.3083 (3)1.00471 (16)0.0308 (9)
H230.51580.28411.05230.037*
C240.4840 (6)0.4036 (3)0.99282 (17)0.0349 (10)
H240.52170.44461.03190.042*
C250.4321 (5)0.4390 (2)0.92306 (17)0.0319 (9)
H250.4350.50450.9140.038*
C260.3758 (6)0.3778 (3)0.86655 (16)0.0294 (10)
H260.33850.40270.81940.035*
C270.4227 (5)0.1458 (3)0.96319 (16)0.0287 (9)
C280.4834 (6)0.0230 (3)1.04913 (17)0.0392 (11)
H28A0.55510.00951.01080.059*
H28B0.35940.0011.04850.059*
H28C0.53680.01251.0990.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0329 (6)0.0275 (4)0.0166 (3)0.0011 (5)0.0012 (4)0.0023 (3)
S20.0443 (6)0.0259 (5)0.0175 (3)0.0023 (5)0.0008 (3)0.0001 (4)
O10.084 (3)0.0299 (14)0.0212 (9)0.0002 (16)0.0042 (15)0.0037 (9)
O20.0500 (19)0.0330 (13)0.0189 (9)0.0006 (14)0.0028 (12)0.0030 (9)
O30.053 (2)0.0289 (15)0.0253 (11)0.0018 (13)0.0031 (12)0.0013 (10)
O40.047 (2)0.0387 (16)0.0253 (10)0.0049 (14)0.0123 (11)0.0070 (11)
C10.028 (2)0.0275 (19)0.0195 (12)0.0018 (19)0.0011 (14)0.0010 (12)
C20.033 (2)0.027 (2)0.0193 (12)0.0011 (19)0.0009 (16)0.0032 (12)
C30.029 (3)0.027 (2)0.0224 (14)0.002 (2)0.0004 (14)0.0007 (11)
C40.035 (2)0.031 (2)0.0182 (12)0.005 (2)0.0012 (14)0.0028 (13)
C110.019 (2)0.032 (2)0.0186 (13)0.001 (2)0.0006 (14)0.0067 (12)
C120.026 (2)0.0257 (18)0.0211 (13)0.0007 (18)0.0009 (15)0.0021 (12)
C130.033 (3)0.034 (2)0.0190 (12)0.001 (2)0.0014 (14)0.0066 (13)
C140.045 (3)0.034 (2)0.0265 (14)0.002 (2)0.0003 (18)0.0135 (14)
C150.039 (3)0.0284 (18)0.0339 (14)0.0011 (19)0.0039 (19)0.0061 (13)
C160.039 (3)0.0237 (19)0.0223 (13)0.000 (2)0.0014 (16)0.0005 (12)
C170.028 (3)0.034 (2)0.0207 (14)0.003 (2)0.0004 (16)0.0007 (13)
C180.049 (3)0.038 (2)0.0294 (14)0.002 (2)0.0001 (18)0.0080 (13)
C210.029 (2)0.027 (2)0.0190 (13)0.0006 (18)0.0024 (13)0.0059 (14)
C220.026 (3)0.030 (2)0.0235 (16)0.0050 (17)0.0031 (14)0.0010 (13)
C230.028 (2)0.036 (2)0.0275 (15)0.0040 (18)0.0051 (15)0.0031 (17)
C240.039 (3)0.036 (2)0.0298 (16)0.0001 (19)0.0028 (17)0.0144 (17)
C250.035 (3)0.026 (2)0.0343 (16)0.0007 (17)0.0052 (19)0.0028 (16)
C260.038 (3)0.029 (2)0.0214 (14)0.0001 (19)0.0012 (15)0.0031 (15)
C270.030 (3)0.036 (2)0.0202 (14)0.005 (2)0.0016 (15)0.0023 (15)
C280.050 (3)0.035 (2)0.0326 (18)0.005 (2)0.0053 (17)0.0124 (15)
Geometric parameters (Å, º) top
S1—C111.780 (3)C13—C141.360 (5)
S1—C11.821 (3)C13—H130.95
S2—C211.773 (3)C14—C151.395 (4)
S2—C41.822 (3)C14—H140.95
O1—C171.211 (4)C15—C161.389 (4)
O2—C171.344 (3)C15—H150.95
O2—C181.445 (4)C16—H160.95
O3—C271.215 (4)C18—H18A0.98
O4—C271.352 (4)C18—H18B0.98
O4—C281.454 (4)C18—H18C0.98
C1—C21.538 (4)C21—C261.380 (5)
C1—H1A0.99C21—C221.416 (4)
C1—H1B0.99C22—C231.395 (4)
C2—C31.529 (3)C22—C271.465 (5)
C2—H2A0.99C23—C241.379 (5)
C2—H2B0.99C23—H230.95
C3—C41.526 (4)C24—C251.392 (4)
C3—H3A0.99C24—H240.95
C3—H3B0.99C25—C261.395 (5)
C4—H4A0.99C25—H250.95
C4—H4B0.99C26—H260.95
C11—C161.379 (5)C28—H28A0.98
C11—C121.421 (4)C28—H28B0.98
C12—C131.404 (4)C28—H28C0.98
C12—C171.474 (4)
C11—S1—C1102.59 (14)C16—C15—H15120.3
C21—S2—C4102.96 (15)C14—C15—H15120.3
C17—O2—C18115.6 (2)C11—C16—C15122.0 (3)
C27—O4—C28115.1 (3)C11—C16—H16119
C2—C1—S1107.3 (2)C15—C16—H16119
C2—C1—H1A110.3O1—C17—O2121.9 (3)
S1—C1—H1A110.3O1—C17—C12124.8 (2)
C2—C1—H1B110.3O2—C17—C12113.3 (3)
S1—C1—H1B110.3O2—C18—H18A109.5
H1A—C1—H1B108.5O2—C18—H18B109.5
C3—C2—C1111.1 (2)H18A—C18—H18B109.5
C3—C2—H2A109.4O2—C18—H18C109.5
C1—C2—H2A109.4H18A—C18—H18C109.5
C3—C2—H2B109.4H18B—C18—H18C109.5
C1—C2—H2B109.4C26—C21—C22118.3 (3)
H2A—C2—H2B108C26—C21—S2121.2 (2)
C4—C3—C2110.5 (2)C22—C21—S2120.5 (3)
C4—C3—H3A109.5C23—C22—C21119.4 (3)
C2—C3—H3A109.5C23—C22—C27119.8 (3)
C4—C3—H3B109.5C21—C22—C27120.8 (3)
C2—C3—H3B109.5C24—C23—C22121.4 (3)
H3A—C3—H3B108.1C24—C23—H23119.3
C3—C4—S2106.9 (2)C22—C23—H23119.3
C3—C4—H4A110.3C23—C24—C25119.4 (3)
S2—C4—H4A110.3C23—C24—H24120.3
C3—C4—H4B110.3C25—C24—H24120.3
S2—C4—H4B110.3C24—C25—C26119.5 (3)
H4A—C4—H4B108.6C24—C25—H25120.2
C16—C11—C12118.3 (3)C26—C25—H25120.2
C16—C11—S1121.6 (2)C21—C26—C25121.9 (3)
C12—C11—S1120.1 (3)C21—C26—H26119
C13—C12—C11118.8 (3)C25—C26—H26119
C13—C12—C17119.8 (3)O3—C27—O4120.9 (3)
C11—C12—C17121.4 (3)O3—C27—C22125.5 (3)
C14—C13—C12121.7 (3)O4—C27—C22113.6 (3)
C14—C13—H13119.2O4—C28—H28A109.5
C12—C13—H13119.2O4—C28—H28B109.5
C13—C14—C15119.8 (3)H28A—C28—H28B109.5
C13—C14—H14120.1O4—C28—H28C109.5
C15—C14—H14120.1H28A—C28—H28C109.5
C16—C15—C14119.4 (3)H28B—C28—H28C109.5
C11—S1—C1—C2177.5 (3)C13—C12—C17—O22.0 (6)
S1—C1—C2—C3178.5 (3)C11—C12—C17—O2176.6 (4)
C1—C2—C3—C4176.1 (4)C4—S2—C21—C267.4 (4)
C2—C3—C4—S2176.2 (3)C4—S2—C21—C22171.7 (3)
C21—S2—C4—C3168.3 (3)C26—C21—C22—C230.9 (6)
C1—S1—C11—C162.2 (4)S2—C21—C22—C23178.2 (3)
C1—S1—C11—C12178.1 (4)C26—C21—C22—C27179.2 (4)
C16—C11—C12—C131.6 (7)S2—C21—C22—C271.6 (5)
S1—C11—C12—C13178.7 (3)C21—C22—C23—C240.3 (6)
C16—C11—C12—C17177.0 (4)C27—C22—C23—C24179.9 (4)
S1—C11—C12—C172.7 (6)C22—C23—C24—C250.1 (6)
C11—C12—C13—C141.0 (7)C23—C24—C25—C260.5 (6)
C17—C12—C13—C14177.6 (4)C22—C21—C26—C251.3 (6)
C12—C13—C14—C150.9 (7)S2—C21—C26—C25177.8 (3)
C13—C14—C15—C162.2 (7)C24—C25—C26—C211.2 (6)
C12—C11—C16—C150.3 (7)C28—O4—C27—O31.6 (5)
S1—C11—C16—C15180.0 (3)C28—O4—C27—C22179.1 (3)
C14—C15—C16—C111.6 (7)C23—C22—C27—O3177.5 (3)
C18—O2—C17—O14.3 (6)C21—C22—C27—O32.7 (7)
C18—O2—C17—C12174.2 (4)C23—C22—C27—O41.8 (6)
C13—C12—C17—O1179.6 (4)C21—C22—C27—O4178.1 (3)
C11—C12—C17—O11.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O20.952.362.705 (4)101
C23—H23···O40.952.352.701 (5)101
C15—H15···O3i0.952.453.123 (5)127
Symmetry code: (i) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC20H22O4S2
Mr390.5
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.4027 (7), 14.2976 (11), 17.7396 (13)
V3)1877.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.28 × 0.25 × 0.23
Data collection
DiffractometerSTOE IPDS II two-circle-
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2003; Blessing, 1995)
Tmin, Tmax0.919, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
8050, 3437, 2244
Rint0.069
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.065, 0.73
No. of reflections3437
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.27
Absolute structureFlack (1983), 1430 Friedel pairs
Absolute structure parameter0.27 (9)

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008) and PLATON (Spek, 2003, WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O20.952.362.705 (4)101
C23—H23···O40.952.352.701 (5)101
C15—H15···O3i0.952.453.123 (5)127
Symmetry code: (i) x+1/2, y, z1/2.
 

Acknowledgements

This work was supported by a grant from the Universidad de Antofagasta (DI-1324–06). We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. JA thanks the Universidad de Antofagasta for PhD fellowships.

References

First citationAwaleh, M. O., Badia, A. & Brisse, F. (2005). Acta Cryst. E61, o2476–o2478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrito, I., López-Rodríguez, M., Vargas, D. & León, Y. (2006). Acta Cryst. E62, o914–o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrito, I., Vargas, D., León, Y., Cárdenas, A., López-Rodríguez, M. & Wittke, O. (2004). Acta Cryst. E60, o1668–o1670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrito, I., Vargas, D., Reyes, A., Cárdenas, A. & López-Rodríguez, M. (2005). Acta Cryst. C61, o234–o236.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBu, X. H., Chen, W., Lu, S. L., Zhang, R. H., Liao, D. Z., Bu, W. M., Shionoya, M., Brisse, F. & Ribas, J. (2001). Angew. Chem. Int. Ed. 40, 3201–3203.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, D., Pang, K. L., Duan, C. Y., He, C. & Meng, Q. (2002). Inorg. Chem. 41, 5978–5985.  PubMed Google Scholar
First citationMelcer, N. J., Enright, G. D., Ripmeester, J. A. & Shimizu, G. K. H. (2001). Inorg. Chem. 40, 4641–4648.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWithersby, M. A., Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S. & Schröder, M. (1997). Angew. Chem. Int. Ed. Engl. 36, 2327–2329.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds