organic compounds
Dimethyl 2,2′-[butane-1,4-diylbis(sulfanediyl)]dibenzoate
aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta - Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta-Chile, cInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany, and dInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco, Sánchez N°2, La Laguna, Tenerife, Spain.
*Correspondence e-mail: ivanbritob@yahoo.com
The title compound, C20H22O4S2, was synthesized by the reaction of 1,4-dibromobutene with methyl thiosalicylate. The aliphatic segment of this ligand is in an all-trans conformation. The bridging chain, –S-(CH2)4-S–, is almost planar (r.m.s. deviation for all non-H atoms: 0.056 Å) and its mean plane forms dihedral angles of 16.60 (7) and 5.80 (2)° with the aromatic rings. In the crystal, the molecules are linked by weak C—H⋯O interactions into chains with graph-set notation C(14) along [0 0 1]. The crystal studied was a racemic twin, the ratio of the twin components being 0.27 (9):0.73 (9).
Related literature
For the potential of coordination polymers based on multitopic bridging ligands and metal centers as functional materials, see: Guo et al. (2002); Melcer et al. (2001). For the use of flexible ligands in such structures, see: Bu et al. (2001); Withersby et al. (1997). For our studies on the synthesis and structural characterization of divalent sulfur compounds, see: Brito et al. (2004, 2005, 2006). For a related compound, see: Awaleh et al. (2005). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2001); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and PLATON (Spek, 2003; software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536809042846/om2290sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809042846/om2290Isup2.hkl
The title compound was synthesized as follows: a solution of 1,4-dibromobutene (1.08 g, 5 mmol) in ethanol (10 ml) was added dropwise to a mixture of methyl thiosalicylate (1.85 g, 11 mmol), KOH (0.617 g, 11 mmol) and ethanol (10 ml). The reaction mixture was stirred for 24 h at room temperature. The precipitate was filtered off, washed with water.Yield 80%; m.p. 393–396 K. FT—IR (KBr pellets, cm-1): ν (w, C—H of CH3 (asym.)) 2984, ν (w, C—H of CH3(sym.)) 2842, ν (w, C—H (aliphatic chain, sym) 2947, ν (w, C—H (chain aliphatic, asym)2919, ν (s, C=O) 1703, ν (s, C—H disubstitution 1,2) 1429, ν (s, O—C(CH3) 1252, ν (w, C—S) 749. Analysis calculated for C20H22O4S2, C 61.51, H 5.68, S 16.42%; found C 61.47, H, 5.72, S 15.32. Crystals suitable for single-crystals X-ray analysis were obtained by recrystallization from an acetonitrile solution.
Hydrogen atoms were located in a difference Fourier map but the were included in calculated positions [C—H = 0.95 - 0.99 Å] and refined as riding [Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl)]. The crystal was refined as an racemic twin with a ratio of the twin components of 0.27 (9)/0.73 (9).
In recent years, the rational design of coordination polymers based on multitopic bridging ligands and metal centers represents one of the most rapidly developing fields owing to their potential as functional materials (Guo et al., 2002; Melcer et al., 2001). The use of flexible ligands in such studies has attracted increasing attention because the flexibility and conformational freedom of such ligands offer the possibility for the construction of diverse frameworks with tailored properties and functions (Bu et al., 2001; Withersby et al., 1997).
The structure of the title compound is described here as part of our work involving the study of the synthesis and structural characterization of divalent-sulfur compounds (Brito et al., 2004, 2005, 2006). The title compound is a longer analogue of 2,2'-dithiodibenzoate with the two benzoate units interconnected by a flexible –S-(CH2)4-S– bridge. The bridging chain moiety, –S-(CH2)4-S– is almost planar (r.m.s. deviation for all non-H atoms: 0.056 Å). Its mean plane forms a dihedral angle of 16.60 (7) and 5.80 (2)° with the aromatic rings. The C(sp2)-S bond lengths [1.780 (3), 1.773 (3) Å] are significantly shorter than the C(sp3)-S [1.821 (3), 1.822 (3) Å] bond lengths due to p-π conjugation, similar to that observed in 1,6-Bis(phenylsulfanyl)hexane (Awaleh et al., 2005). The torsion angles in the aliphatic segment of the title compound are all trans, indicating that the molecule is in the fully extended conformation. The supramolecular structure of the title compound depends solely upon C—H···O hydrogen bonds: there are no significant S···S nor S···O contacts present in the structure and C—H···π (arene) hydrogen bonds and aromatic π···π stacking interactions are also absent. Atom C15 in the molecule at (x,y,z) acts as a hydrogen-bond donor to the carbonyl O3 atom in the molecule at (-x + 1/2,-y,z - 1/2), thereby generating a C(14) chain (Bernstein et al., 1995) running in the [0 0 1] direction (Figure 2). The molecular stucture is stabilized by two C—H···O intramolecular hydrogen bonds (Table 1).
For the potential of coordination polymers based on
multitopic bridging ligands and metal centers as functional materials, see: Guo et al. (2002); Melcer et al. (2001). For the use of flexible ligands in such structures, see: Bu et al. (2001); Withersby et al. (1997). For our studies of the synthesis and structural characterization of divalent-sulfur compounds, see: Brito et al. (2004, 2005, 2006). For a related compound, see: Awaleh et al. (2005). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and PLATON (Spek, 2003; software used to prepare material for publication: WinGX (Farrugia, 1999).C20H22O4S2 | F(000) = 824 |
Mr = 390.5 | Dx = 1.381 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4482 reflections |
a = 7.4027 (7) Å | θ = 3.4–25.9° |
b = 14.2976 (11) Å | µ = 0.31 mm−1 |
c = 17.7396 (13) Å | T = 173 K |
V = 1877.6 (3) Å3 | Block, colourless |
Z = 4 | 0.28 × 0.25 × 0.23 mm |
STOE IPDS II two-circle- diffractometer | 2244 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
ω scans | θmax = 25.6°, θmin = 3.3° |
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995) | h = −8→7 |
Tmin = 0.919, Tmax = 0.933 | k = −17→13 |
8050 measured reflections | l = −21→20 |
3437 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0001P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.065 | (Δ/σ)max < 0.001 |
S = 0.73 | Δρmax = 0.16 e Å−3 |
3437 reflections | Δρmin = −0.27 e Å−3 |
239 parameters | Extinction correction: SHELXL |
0 restraints | Extinction coefficient: 0.0030 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1430 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.27 (9) |
C20H22O4S2 | V = 1877.6 (3) Å3 |
Mr = 390.5 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.4027 (7) Å | µ = 0.31 mm−1 |
b = 14.2976 (11) Å | T = 173 K |
c = 17.7396 (13) Å | 0.28 × 0.25 × 0.23 mm |
STOE IPDS II two-circle- diffractometer | 3437 independent reflections |
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995) | 2244 reflections with I > 2σ(I) |
Tmin = 0.919, Tmax = 0.933 | Rint = 0.069 |
8050 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.065 | Δρmax = 0.16 e Å−3 |
S = 0.73 | Δρmin = −0.27 e Å−3 |
3437 reflections | Absolute structure: Flack (1983), 1430 Friedel pairs |
239 parameters | Absolute structure parameter: 0.27 (9) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.26565 (13) | 0.29690 (6) | 0.42902 (3) | 0.0257 (2) | |
S2 | 0.30831 (13) | 0.20540 (6) | 0.80343 (4) | 0.0292 (2) | |
O1 | 0.2673 (5) | 0.41362 (15) | 0.30785 (10) | 0.0449 (8) | |
O2 | 0.2727 (4) | 0.37231 (15) | 0.18638 (9) | 0.0340 (6) | |
O3 | 0.3720 (4) | 0.08601 (17) | 0.91935 (11) | 0.0359 (7) | |
O4 | 0.4816 (4) | 0.12269 (18) | 1.03289 (10) | 0.0369 (7) | |
C1 | 0.2650 (6) | 0.2191 (2) | 0.51027 (13) | 0.0249 (8) | |
H1A | 0.1554 | 0.1794 | 0.5099 | 0.03* | |
H1B | 0.3725 | 0.1779 | 0.5092 | 0.03* | |
C2 | 0.2678 (6) | 0.2809 (2) | 0.58124 (13) | 0.0264 (8) | |
H2A | 0.3754 | 0.322 | 0.5799 | 0.032* | |
H2B | 0.1591 | 0.3211 | 0.5819 | 0.032* | |
C3 | 0.2725 (6) | 0.2212 (2) | 0.65279 (13) | 0.0261 (9) | |
H3A | 0.1607 | 0.1834 | 0.6561 | 0.031* | |
H3B | 0.3766 | 0.1779 | 0.6506 | 0.031* | |
C4 | 0.2885 (6) | 0.2832 (2) | 0.72250 (13) | 0.0280 (9) | |
H4A | 0.1803 | 0.3234 | 0.7276 | 0.034* | |
H4B | 0.3964 | 0.3238 | 0.7187 | 0.034* | |
C11 | 0.2723 (5) | 0.2174 (2) | 0.35190 (13) | 0.0232 (9) | |
C12 | 0.2798 (6) | 0.2517 (2) | 0.27679 (15) | 0.0244 (9) | |
C13 | 0.2887 (5) | 0.1872 (2) | 0.21715 (14) | 0.0288 (9) | |
H13 | 0.2957 | 0.2098 | 0.1669 | 0.035* | |
C14 | 0.2875 (6) | 0.0934 (2) | 0.22956 (15) | 0.0350 (10) | |
H14 | 0.2954 | 0.0511 | 0.1883 | 0.042* | |
C15 | 0.2747 (6) | 0.0593 (2) | 0.30303 (15) | 0.0339 (9) | |
H15 | 0.2696 | −0.0061 | 0.3121 | 0.041* | |
C16 | 0.2695 (6) | 0.1219 (2) | 0.36288 (14) | 0.0282 (9) | |
H16 | 0.2638 | 0.0983 | 0.4129 | 0.034* | |
C17 | 0.2741 (6) | 0.3527 (2) | 0.26050 (14) | 0.0276 (9) | |
C18 | 0.2495 (7) | 0.4698 (2) | 0.16715 (15) | 0.0389 (10) | |
H18A | 0.3472 | 0.5066 | 0.1897 | 0.058* | |
H18B | 0.1331 | 0.4919 | 0.1864 | 0.058* | |
H18C | 0.2525 | 0.477 | 0.1122 | 0.058* | |
C21 | 0.3729 (5) | 0.2822 (3) | 0.87713 (15) | 0.0249 (9) | |
C22 | 0.4253 (6) | 0.2465 (3) | 0.94829 (16) | 0.0266 (9) | |
C23 | 0.4802 (5) | 0.3083 (3) | 1.00471 (16) | 0.0308 (9) | |
H23 | 0.5158 | 0.2841 | 1.0523 | 0.037* | |
C24 | 0.4840 (6) | 0.4036 (3) | 0.99282 (17) | 0.0349 (10) | |
H24 | 0.5217 | 0.4446 | 1.0319 | 0.042* | |
C25 | 0.4321 (5) | 0.4390 (2) | 0.92306 (17) | 0.0319 (9) | |
H25 | 0.435 | 0.5045 | 0.914 | 0.038* | |
C26 | 0.3758 (6) | 0.3778 (3) | 0.86655 (16) | 0.0294 (10) | |
H26 | 0.3385 | 0.4027 | 0.8194 | 0.035* | |
C27 | 0.4227 (5) | 0.1458 (3) | 0.96319 (16) | 0.0287 (9) | |
C28 | 0.4834 (6) | 0.0230 (3) | 1.04913 (17) | 0.0392 (11) | |
H28A | 0.5551 | −0.0095 | 1.0108 | 0.059* | |
H28B | 0.3594 | −0.001 | 1.0485 | 0.059* | |
H28C | 0.5368 | 0.0125 | 1.099 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0329 (6) | 0.0275 (4) | 0.0166 (3) | −0.0011 (5) | −0.0012 (4) | −0.0023 (3) |
S2 | 0.0443 (6) | 0.0259 (5) | 0.0175 (3) | −0.0023 (5) | −0.0008 (3) | 0.0001 (4) |
O1 | 0.084 (3) | 0.0299 (14) | 0.0212 (9) | −0.0002 (16) | −0.0042 (15) | −0.0037 (9) |
O2 | 0.0500 (19) | 0.0330 (13) | 0.0189 (9) | 0.0006 (14) | 0.0028 (12) | 0.0030 (9) |
O3 | 0.053 (2) | 0.0289 (15) | 0.0253 (11) | −0.0018 (13) | −0.0031 (12) | −0.0013 (10) |
O4 | 0.047 (2) | 0.0387 (16) | 0.0253 (10) | 0.0049 (14) | −0.0123 (11) | 0.0070 (11) |
C1 | 0.028 (2) | 0.0275 (19) | 0.0195 (12) | −0.0018 (19) | 0.0011 (14) | 0.0010 (12) |
C2 | 0.033 (2) | 0.027 (2) | 0.0193 (12) | 0.0011 (19) | −0.0009 (16) | −0.0032 (12) |
C3 | 0.029 (3) | 0.027 (2) | 0.0224 (14) | −0.002 (2) | −0.0004 (14) | 0.0007 (11) |
C4 | 0.035 (2) | 0.031 (2) | 0.0182 (12) | 0.005 (2) | −0.0012 (14) | 0.0028 (13) |
C11 | 0.019 (2) | 0.032 (2) | 0.0186 (13) | 0.001 (2) | −0.0006 (14) | −0.0067 (12) |
C12 | 0.026 (2) | 0.0257 (18) | 0.0211 (13) | 0.0007 (18) | 0.0009 (15) | −0.0021 (12) |
C13 | 0.033 (3) | 0.034 (2) | 0.0190 (12) | 0.001 (2) | 0.0014 (14) | −0.0066 (13) |
C14 | 0.045 (3) | 0.034 (2) | 0.0265 (14) | 0.002 (2) | −0.0003 (18) | −0.0135 (14) |
C15 | 0.039 (3) | 0.0284 (18) | 0.0339 (14) | 0.0011 (19) | 0.0039 (19) | −0.0061 (13) |
C16 | 0.039 (3) | 0.0237 (19) | 0.0223 (13) | 0.000 (2) | −0.0014 (16) | 0.0005 (12) |
C17 | 0.028 (3) | 0.034 (2) | 0.0207 (14) | −0.003 (2) | −0.0004 (16) | 0.0007 (13) |
C18 | 0.049 (3) | 0.038 (2) | 0.0294 (14) | −0.002 (2) | −0.0001 (18) | 0.0080 (13) |
C21 | 0.029 (2) | 0.027 (2) | 0.0190 (13) | 0.0006 (18) | 0.0024 (13) | −0.0059 (14) |
C22 | 0.026 (3) | 0.030 (2) | 0.0235 (16) | 0.0050 (17) | 0.0031 (14) | 0.0010 (13) |
C23 | 0.028 (2) | 0.036 (2) | 0.0275 (15) | 0.0040 (18) | −0.0051 (15) | −0.0031 (17) |
C24 | 0.039 (3) | 0.036 (2) | 0.0298 (16) | −0.0001 (19) | −0.0028 (17) | −0.0144 (17) |
C25 | 0.035 (3) | 0.026 (2) | 0.0343 (16) | −0.0007 (17) | 0.0052 (19) | −0.0028 (16) |
C26 | 0.038 (3) | 0.029 (2) | 0.0214 (14) | −0.0001 (19) | 0.0012 (15) | 0.0031 (15) |
C27 | 0.030 (3) | 0.036 (2) | 0.0202 (14) | 0.005 (2) | 0.0016 (15) | 0.0023 (15) |
C28 | 0.050 (3) | 0.035 (2) | 0.0326 (18) | 0.005 (2) | −0.0053 (17) | 0.0124 (15) |
S1—C11 | 1.780 (3) | C13—C14 | 1.360 (5) |
S1—C1 | 1.821 (3) | C13—H13 | 0.95 |
S2—C21 | 1.773 (3) | C14—C15 | 1.395 (4) |
S2—C4 | 1.822 (3) | C14—H14 | 0.95 |
O1—C17 | 1.211 (4) | C15—C16 | 1.389 (4) |
O2—C17 | 1.344 (3) | C15—H15 | 0.95 |
O2—C18 | 1.445 (4) | C16—H16 | 0.95 |
O3—C27 | 1.215 (4) | C18—H18A | 0.98 |
O4—C27 | 1.352 (4) | C18—H18B | 0.98 |
O4—C28 | 1.454 (4) | C18—H18C | 0.98 |
C1—C2 | 1.538 (4) | C21—C26 | 1.380 (5) |
C1—H1A | 0.99 | C21—C22 | 1.416 (4) |
C1—H1B | 0.99 | C22—C23 | 1.395 (4) |
C2—C3 | 1.529 (3) | C22—C27 | 1.465 (5) |
C2—H2A | 0.99 | C23—C24 | 1.379 (5) |
C2—H2B | 0.99 | C23—H23 | 0.95 |
C3—C4 | 1.526 (4) | C24—C25 | 1.392 (4) |
C3—H3A | 0.99 | C24—H24 | 0.95 |
C3—H3B | 0.99 | C25—C26 | 1.395 (5) |
C4—H4A | 0.99 | C25—H25 | 0.95 |
C4—H4B | 0.99 | C26—H26 | 0.95 |
C11—C16 | 1.379 (5) | C28—H28A | 0.98 |
C11—C12 | 1.421 (4) | C28—H28B | 0.98 |
C12—C13 | 1.404 (4) | C28—H28C | 0.98 |
C12—C17 | 1.474 (4) | ||
C11—S1—C1 | 102.59 (14) | C16—C15—H15 | 120.3 |
C21—S2—C4 | 102.96 (15) | C14—C15—H15 | 120.3 |
C17—O2—C18 | 115.6 (2) | C11—C16—C15 | 122.0 (3) |
C27—O4—C28 | 115.1 (3) | C11—C16—H16 | 119 |
C2—C1—S1 | 107.3 (2) | C15—C16—H16 | 119 |
C2—C1—H1A | 110.3 | O1—C17—O2 | 121.9 (3) |
S1—C1—H1A | 110.3 | O1—C17—C12 | 124.8 (2) |
C2—C1—H1B | 110.3 | O2—C17—C12 | 113.3 (3) |
S1—C1—H1B | 110.3 | O2—C18—H18A | 109.5 |
H1A—C1—H1B | 108.5 | O2—C18—H18B | 109.5 |
C3—C2—C1 | 111.1 (2) | H18A—C18—H18B | 109.5 |
C3—C2—H2A | 109.4 | O2—C18—H18C | 109.5 |
C1—C2—H2A | 109.4 | H18A—C18—H18C | 109.5 |
C3—C2—H2B | 109.4 | H18B—C18—H18C | 109.5 |
C1—C2—H2B | 109.4 | C26—C21—C22 | 118.3 (3) |
H2A—C2—H2B | 108 | C26—C21—S2 | 121.2 (2) |
C4—C3—C2 | 110.5 (2) | C22—C21—S2 | 120.5 (3) |
C4—C3—H3A | 109.5 | C23—C22—C21 | 119.4 (3) |
C2—C3—H3A | 109.5 | C23—C22—C27 | 119.8 (3) |
C4—C3—H3B | 109.5 | C21—C22—C27 | 120.8 (3) |
C2—C3—H3B | 109.5 | C24—C23—C22 | 121.4 (3) |
H3A—C3—H3B | 108.1 | C24—C23—H23 | 119.3 |
C3—C4—S2 | 106.9 (2) | C22—C23—H23 | 119.3 |
C3—C4—H4A | 110.3 | C23—C24—C25 | 119.4 (3) |
S2—C4—H4A | 110.3 | C23—C24—H24 | 120.3 |
C3—C4—H4B | 110.3 | C25—C24—H24 | 120.3 |
S2—C4—H4B | 110.3 | C24—C25—C26 | 119.5 (3) |
H4A—C4—H4B | 108.6 | C24—C25—H25 | 120.2 |
C16—C11—C12 | 118.3 (3) | C26—C25—H25 | 120.2 |
C16—C11—S1 | 121.6 (2) | C21—C26—C25 | 121.9 (3) |
C12—C11—S1 | 120.1 (3) | C21—C26—H26 | 119 |
C13—C12—C11 | 118.8 (3) | C25—C26—H26 | 119 |
C13—C12—C17 | 119.8 (3) | O3—C27—O4 | 120.9 (3) |
C11—C12—C17 | 121.4 (3) | O3—C27—C22 | 125.5 (3) |
C14—C13—C12 | 121.7 (3) | O4—C27—C22 | 113.6 (3) |
C14—C13—H13 | 119.2 | O4—C28—H28A | 109.5 |
C12—C13—H13 | 119.2 | O4—C28—H28B | 109.5 |
C13—C14—C15 | 119.8 (3) | H28A—C28—H28B | 109.5 |
C13—C14—H14 | 120.1 | O4—C28—H28C | 109.5 |
C15—C14—H14 | 120.1 | H28A—C28—H28C | 109.5 |
C16—C15—C14 | 119.4 (3) | H28B—C28—H28C | 109.5 |
C11—S1—C1—C2 | 177.5 (3) | C13—C12—C17—O2 | 2.0 (6) |
S1—C1—C2—C3 | −178.5 (3) | C11—C12—C17—O2 | −176.6 (4) |
C1—C2—C3—C4 | 176.1 (4) | C4—S2—C21—C26 | 7.4 (4) |
C2—C3—C4—S2 | −176.2 (3) | C4—S2—C21—C22 | −171.7 (3) |
C21—S2—C4—C3 | 168.3 (3) | C26—C21—C22—C23 | −0.9 (6) |
C1—S1—C11—C16 | 2.2 (4) | S2—C21—C22—C23 | 178.2 (3) |
C1—S1—C11—C12 | −178.1 (4) | C26—C21—C22—C27 | 179.2 (4) |
C16—C11—C12—C13 | −1.6 (7) | S2—C21—C22—C27 | −1.6 (5) |
S1—C11—C12—C13 | 178.7 (3) | C21—C22—C23—C24 | 0.3 (6) |
C16—C11—C12—C17 | 177.0 (4) | C27—C22—C23—C24 | −179.9 (4) |
S1—C11—C12—C17 | −2.7 (6) | C22—C23—C24—C25 | −0.1 (6) |
C11—C12—C13—C14 | 1.0 (7) | C23—C24—C25—C26 | 0.5 (6) |
C17—C12—C13—C14 | −177.6 (4) | C22—C21—C26—C25 | 1.3 (6) |
C12—C13—C14—C15 | 0.9 (7) | S2—C21—C26—C25 | −177.8 (3) |
C13—C14—C15—C16 | −2.2 (7) | C24—C25—C26—C21 | −1.2 (6) |
C12—C11—C16—C15 | 0.3 (7) | C28—O4—C27—O3 | 1.6 (5) |
S1—C11—C16—C15 | −180.0 (3) | C28—O4—C27—C22 | −179.1 (3) |
C14—C15—C16—C11 | 1.6 (7) | C23—C22—C27—O3 | 177.5 (3) |
C18—O2—C17—O1 | −4.3 (6) | C21—C22—C27—O3 | −2.7 (7) |
C18—O2—C17—C12 | 174.2 (4) | C23—C22—C27—O4 | −1.8 (6) |
C13—C12—C17—O1 | −179.6 (4) | C21—C22—C27—O4 | 178.1 (3) |
C11—C12—C17—O1 | 1.8 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O2 | 0.95 | 2.36 | 2.705 (4) | 101 |
C23—H23···O4 | 0.95 | 2.35 | 2.701 (5) | 101 |
C15—H15···O3i | 0.95 | 2.45 | 3.123 (5) | 127 |
Symmetry code: (i) −x+1/2, −y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C20H22O4S2 |
Mr | 390.5 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 173 |
a, b, c (Å) | 7.4027 (7), 14.2976 (11), 17.7396 (13) |
V (Å3) | 1877.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.28 × 0.25 × 0.23 |
Data collection | |
Diffractometer | STOE IPDS II two-circle- diffractometer |
Absorption correction | Multi-scan (MULABS; Spek, 2003; Blessing, 1995) |
Tmin, Tmax | 0.919, 0.933 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8050, 3437, 2244 |
Rint | 0.069 |
(sin θ/λ)max (Å−1) | 0.608 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.065, 0.73 |
No. of reflections | 3437 |
No. of parameters | 239 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.27 |
Absolute structure | Flack (1983), 1430 Friedel pairs |
Absolute structure parameter | 0.27 (9) |
Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008) and PLATON (Spek, 2003, WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O2 | 0.95 | 2.36 | 2.705 (4) | 101 |
C23—H23···O4 | 0.95 | 2.35 | 2.701 (5) | 101 |
C15—H15···O3i | 0.95 | 2.45 | 3.123 (5) | 127 |
Symmetry code: (i) −x+1/2, −y, z−1/2. |
Acknowledgements
This work was supported by a grant from the Universidad de Antofagasta (DI-1324–06). We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. JA thanks the Universidad de Antofagasta for PhD fellowships.
References
Awaleh, M. O., Badia, A. & Brisse, F. (2005). Acta Cryst. E61, o2476–o2478. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brito, I., López-Rodríguez, M., Vargas, D. & León, Y. (2006). Acta Cryst. E62, o914–o916. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brito, I., Vargas, D., León, Y., Cárdenas, A., López-Rodríguez, M. & Wittke, O. (2004). Acta Cryst. E60, o1668–o1670. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brito, I., Vargas, D., Reyes, A., Cárdenas, A. & López-Rodríguez, M. (2005). Acta Cryst. C61, o234–o236. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bu, X. H., Chen, W., Lu, S. L., Zhang, R. H., Liao, D. Z., Bu, W. M., Shionoya, M., Brisse, F. & Ribas, J. (2001). Angew. Chem. Int. Ed. 40, 3201–3203. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Guo, D., Pang, K. L., Duan, C. Y., He, C. & Meng, Q. (2002). Inorg. Chem. 41, 5978–5985. PubMed Google Scholar
Melcer, N. J., Enright, G. D., Ripmeester, J. A. & Shimizu, G. K. H. (2001). Inorg. Chem. 40, 4641–4648. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Withersby, M. A., Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S. & Schröder, M. (1997). Angew. Chem. Int. Ed. Engl. 36, 2327–2329. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, the rational design of coordination polymers based on multitopic bridging ligands and metal centers represents one of the most rapidly developing fields owing to their potential as functional materials (Guo et al., 2002; Melcer et al., 2001). The use of flexible ligands in such studies has attracted increasing attention because the flexibility and conformational freedom of such ligands offer the possibility for the construction of diverse frameworks with tailored properties and functions (Bu et al., 2001; Withersby et al., 1997).
The structure of the title compound is described here as part of our work involving the study of the synthesis and structural characterization of divalent-sulfur compounds (Brito et al., 2004, 2005, 2006). The title compound is a longer analogue of 2,2'-dithiodibenzoate with the two benzoate units interconnected by a flexible –S-(CH2)4-S– bridge. The bridging chain moiety, –S-(CH2)4-S– is almost planar (r.m.s. deviation for all non-H atoms: 0.056 Å). Its mean plane forms a dihedral angle of 16.60 (7) and 5.80 (2)° with the aromatic rings. The C(sp2)-S bond lengths [1.780 (3), 1.773 (3) Å] are significantly shorter than the C(sp3)-S [1.821 (3), 1.822 (3) Å] bond lengths due to p-π conjugation, similar to that observed in 1,6-Bis(phenylsulfanyl)hexane (Awaleh et al., 2005). The torsion angles in the aliphatic segment of the title compound are all trans, indicating that the molecule is in the fully extended conformation. The supramolecular structure of the title compound depends solely upon C—H···O hydrogen bonds: there are no significant S···S nor S···O contacts present in the structure and C—H···π (arene) hydrogen bonds and aromatic π···π stacking interactions are also absent. Atom C15 in the molecule at (x,y,z) acts as a hydrogen-bond donor to the carbonyl O3 atom in the molecule at (-x + 1/2,-y,z - 1/2), thereby generating a C(14) chain (Bernstein et al., 1995) running in the [0 0 1] direction (Figure 2). The molecular stucture is stabilized by two C—H···O intramolecular hydrogen bonds (Table 1).