organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-3-hy­droxy­methyl-6-meth­oxy­quinoline

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 December 2009; accepted 15 December 2009; online 19 December 2009)

All the non-H atoms of the title compound, C11H10ClNO2, are roughly coplanar (r.m.s. deviation = 0.058 Å). In the crystal, adjacent mol­ecules are linked by an O—H⋯N hydrogen bond, generating chains running along the a axis.

Related literature

Substituted quinoline-3-carbaldehydes are inter­mediates for annelation and functional group modification; for a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993[Meth-Cohn, O. (1993). Heterocycles, 35, 539-557.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10ClNO2

  • Mr = 223.65

  • Monoclinic, P 21 /n

  • a = 6.9738 (3) Å

  • b = 21.4668 (9) Å

  • c = 7.3479 (4) Å

  • β = 108.220 (5)°

  • V = 1044.87 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.28 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.910, Tmax = 0.935

  • 11517 measured reflections

  • 2348 independent reflections

  • 1487 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 0.97

  • 2348 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.16 2.913 (2) 153
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

Substituted quinoline-3-carbaldehydes are intermediates for annelation and functional group modification; for a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Experimental top

2-Chloro-8-methoxyquinoline-3-carbaldehyde (220 mg, 1 mmol), sodium borohydride (38 mg, 1 mmol) and a catalytic amount of montmorillonite K-10 were placed in a beaker. The contents were irradiated at 500 W for 5 min. The product was dissolved in ethyl acetate and the residue removed by filtration. The filtrate was subjected to column chromatography on silica, and ethyl acetate/petroleum ether was used as the eluant. The solvent was evaporated and the residue recrystallized from chloroform to give colorless crystals.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.97, O–H 0.82 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C11H10ClNO2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Chloro-3-hydroxymethyl-6-methoxyquinoline top
Crystal data top
C11H10ClNO2F(000) = 464
Mr = 223.65Dx = 1.422 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1941 reflections
a = 6.9738 (3) Åθ = 3.1–25.5°
b = 21.4668 (9) ŵ = 0.34 mm1
c = 7.3479 (4) ÅT = 293 K
β = 108.220 (5)°Block, colorless
V = 1044.87 (8) Å30.28 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
2348 independent reflections
Radiation source: fine-focus sealed tube1487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.910, Tmax = 0.935k = 2627
11517 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
2348 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H10ClNO2V = 1044.87 (8) Å3
Mr = 223.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9738 (3) ŵ = 0.34 mm1
b = 21.4668 (9) ÅT = 293 K
c = 7.3479 (4) Å0.28 × 0.21 × 0.20 mm
β = 108.220 (5)°
Data collection top
Bruker SMART area-detector
diffractometer
2348 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1487 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.935Rint = 0.035
11517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 0.97Δρmax = 0.21 e Å3
2348 reflectionsΔρmin = 0.25 e Å3
138 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33210 (8)0.65210 (2)0.10064 (7)0.0648 (2)
O10.97027 (18)0.59162 (7)0.33602 (19)0.0672 (4)
H11.02000.57900.25540.101*
O20.4314 (2)0.29302 (7)0.3876 (2)0.0766 (5)
N10.2607 (2)0.53770 (7)0.16969 (18)0.0446 (4)
C10.4061 (3)0.57605 (8)0.1763 (2)0.0430 (4)
C20.6156 (2)0.56246 (8)0.2401 (2)0.0408 (4)
C30.6650 (2)0.50291 (8)0.2994 (2)0.0437 (4)
H30.80040.49160.34610.052*
C40.5149 (2)0.45775 (8)0.2917 (2)0.0390 (4)
C50.5600 (3)0.39542 (9)0.3483 (2)0.0494 (5)
H50.69350.38210.39260.059*
C60.4070 (3)0.35449 (9)0.3379 (2)0.0526 (5)
C70.2053 (3)0.37443 (9)0.2741 (2)0.0546 (5)
H70.10270.34630.26980.065*
C80.1583 (3)0.43397 (9)0.2189 (2)0.0507 (5)
H80.02380.44630.17580.061*
C90.3120 (2)0.47761 (8)0.2261 (2)0.0405 (4)
C100.7702 (3)0.61178 (9)0.2442 (3)0.0528 (5)
H10A0.75750.62400.11380.063*
H10B0.74300.64820.31030.063*
C110.6296 (4)0.26820 (11)0.4324 (4)0.0912 (8)
H11A0.67990.27470.32630.137*
H11B0.62640.22440.45730.137*
H11C0.71630.28870.54390.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0574 (3)0.0603 (3)0.0736 (4)0.0151 (2)0.0158 (3)0.0111 (3)
O10.0365 (8)0.0931 (11)0.0762 (9)0.0030 (7)0.0235 (7)0.0079 (8)
O20.0887 (12)0.0522 (9)0.0807 (10)0.0010 (8)0.0147 (8)0.0016 (7)
N10.0306 (8)0.0591 (9)0.0412 (8)0.0057 (7)0.0069 (6)0.0035 (7)
C10.0389 (10)0.0539 (10)0.0365 (9)0.0122 (8)0.0123 (8)0.0006 (8)
C20.0347 (9)0.0573 (11)0.0341 (8)0.0033 (8)0.0161 (7)0.0036 (8)
C30.0277 (9)0.0628 (11)0.0403 (9)0.0106 (8)0.0103 (7)0.0021 (8)
C40.0328 (9)0.0524 (10)0.0307 (8)0.0059 (8)0.0083 (7)0.0051 (7)
C50.0420 (11)0.0593 (12)0.0428 (10)0.0127 (9)0.0076 (8)0.0032 (9)
C60.0589 (13)0.0534 (12)0.0427 (10)0.0005 (9)0.0119 (9)0.0073 (9)
C70.0504 (12)0.0631 (13)0.0476 (10)0.0115 (10)0.0115 (9)0.0095 (9)
C80.0334 (10)0.0698 (13)0.0443 (10)0.0022 (9)0.0056 (8)0.0093 (9)
C90.0334 (9)0.0559 (11)0.0304 (8)0.0047 (8)0.0070 (7)0.0069 (8)
C100.0433 (11)0.0653 (12)0.0547 (11)0.0001 (9)0.0223 (9)0.0013 (10)
C110.113 (2)0.0600 (14)0.1016 (18)0.0275 (14)0.0342 (16)0.0121 (13)
Geometric parameters (Å, º) top
Cl1—C11.7496 (18)C4—C91.411 (2)
O1—C101.414 (2)C5—C61.366 (2)
O1—H10.8200C5—H50.9300
O2—C61.366 (2)C6—C71.403 (3)
O2—C111.421 (3)C7—C81.350 (3)
N1—C11.295 (2)C7—H70.9300
N1—C91.368 (2)C8—C91.412 (2)
C1—C21.418 (2)C8—H80.9300
C2—C31.360 (2)C10—H10A0.9700
C2—C101.505 (2)C10—H10B0.9700
C3—C41.415 (2)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.407 (2)C11—H11C0.9600
C10—O1—H1109.5C8—C7—C6120.86 (18)
C6—O2—C11117.08 (18)C8—C7—H7119.6
C1—N1—C9117.42 (14)C6—C7—H7119.6
N1—C1—C2126.53 (16)C7—C8—C9120.44 (17)
N1—C1—Cl1115.57 (13)C7—C8—H8119.8
C2—C1—Cl1117.90 (14)C9—C8—H8119.8
C3—C2—C1115.52 (16)N1—C9—C4121.87 (16)
C3—C2—C10123.17 (16)N1—C9—C8119.38 (15)
C1—C2—C10121.30 (16)C4—C9—C8118.75 (16)
C2—C3—C4121.42 (16)O1—C10—C2112.82 (16)
C2—C3—H3119.3O1—C10—H10A109.0
C4—C3—H3119.3C2—C10—H10A109.0
C5—C4—C9119.71 (16)O1—C10—H10B109.0
C5—C4—C3123.07 (16)C2—C10—H10B109.0
C9—C4—C3117.21 (15)H10A—C10—H10B107.8
C6—C5—C4119.79 (17)O2—C11—H11A109.5
C6—C5—H5120.1O2—C11—H11B109.5
C4—C5—H5120.1H11A—C11—H11B109.5
O2—C6—C5125.23 (18)O2—C11—H11C109.5
O2—C6—C7114.34 (18)H11A—C11—H11C109.5
C5—C6—C7120.43 (18)H11B—C11—H11C109.5
C9—N1—C1—C21.4 (2)C4—C5—C6—C71.1 (3)
C9—N1—C1—Cl1179.45 (10)O2—C6—C7—C8179.55 (16)
N1—C1—C2—C30.1 (2)C5—C6—C7—C81.1 (3)
Cl1—C1—C2—C3179.24 (12)C6—C7—C8—C90.6 (3)
N1—C1—C2—C10178.78 (16)C1—N1—C9—C40.9 (2)
Cl1—C1—C2—C100.4 (2)C1—N1—C9—C8179.17 (15)
C1—C2—C3—C41.7 (2)C5—C4—C9—N1179.93 (14)
C10—C2—C3—C4179.43 (15)C3—C4—C9—N10.8 (2)
C2—C3—C4—C5178.76 (15)C5—C4—C9—C80.0 (2)
C2—C3—C4—C92.1 (2)C3—C4—C9—C8179.16 (14)
C9—C4—C5—C60.5 (2)C7—C8—C9—N1179.89 (15)
C3—C4—C5—C6179.60 (16)C7—C8—C9—C40.1 (2)
C11—O2—C6—C57.7 (3)C3—C2—C10—O16.8 (2)
C11—O2—C6—C7173.00 (17)C1—C2—C10—O1171.94 (14)
C4—C5—C6—O2179.68 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.162.913 (2)153
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H10ClNO2
Mr223.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.9738 (3), 21.4668 (9), 7.3479 (4)
β (°) 108.220 (5)
V3)1044.87 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.28 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.910, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
11517, 2348, 1487
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 0.97
No. of reflections2348
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.162.913 (2)153
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the diffraction facility at IISc under the IRHPA–DST program. FNK thanks the DST for Fast Track Proposal funding. We thank VIT University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMeth-Cohn, O. (1993). Heterocycles, 35, 539–557.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds