organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

N,N′-Bis(phenyl­sulfon­yl)male­amide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 13 December 2009; accepted 14 December 2009; online 24 December 2009)

Mol­ecules of the title compound, C16H14N2O6S2, show crystallographic inversion symmetry: there is one half-mol­ecule in the asymmetric unit. The structure exhibits both intramolecular and inter­molecular N—H⋯O hydrogen bonds.

Related literature

For our studies of the effect of ring and the side-chain substituents on the solid-state structures of N-aromatic sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.], 2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o181.]), Suchetan et al. (2009[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O6S2

  • Mr = 394.41

  • Monoclinic, P 21 /c

  • a = 8.582 (1) Å

  • b = 5.1464 (6) Å

  • c = 19.691 (4) Å

  • β = 101.17 (2)°

  • V = 853.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 299 K

  • 0.48 × 0.28 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.850, Tmax = 0.927

  • 3236 measured reflections

  • 1720 independent reflections

  • 1500 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.07

  • 1720 reflections

  • 121 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (1) 2.35 (2) 3.0254 (19) 138 (2)
N1—H1N⋯O1ii 0.84 (1) 2.45 (2) 3.1335 (19) 139 (2)
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of a study of the effect of ring and the side chain substituents on the solid state structures of N-aromatic sulfonamides (Gowda et al., 2009, 2010; Suchetan et al., 2009), in the present work, the structure of N,N-(Diphenylsulfonyl)maleamide (I) has been determined (Fig. 1).

The conformations of N—H and C=O bonds in the amide fragments are trans to each other and the amide O atoms are anti to the H atoms attached to the adjacent C atoms, similar to that observed in N,N-(diphenylsulfonyl)succinamide (II)(Gowda et al., 2010). The molecule is bent at the S atoms with the C—SO2—NH—C(O) torsion angle of 66.1 (2)° in (II), compared to the value of 65.2 (2)°. The dihedral angle between the benzene ring and the SO2—NH—C(O)—C segment in the two halves of the molecule is 76.4 (1)°, compared to the corresponding angle of 77.4 (1)° in (II). The structure exhibits both the intramolecular and intermolecular hydrogen bonds. The series of N—H···O(S) hydrogen bonds (Table 1) link the molecules into column like infinite chains parallel to a-axis (Fig. 2).

Related literature top

For our studies of the effect of ring and the side-chain substituents on the solid-state structures of N-aromatic sulfonamides, see: Gowda et al. (2009, 2010), Suchetan et al. (2009).

Experimental top

N,N-(Diphenylsulfonyl)maleamide was prepared by refluxing a mixture of maleic anhydride (0.01 mol), benzenesulfonamide (0.02 mol) and POCl3 for 3hr on a water bath. The reaction mixture was allowed to cool. Ether was added to it. The solid product obtained was filtered off, washed thoroughly with ether and hot alcohol and recrystallized to the constant melting point of 255–259° C

Rod like single crystals used in the X-ray diffraction studies were obtained from a solution of the compound in DMF.

Refinement top

The H atom of the NH group was located in difference map and later restrained to N—H = 0.86 (1) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N,N'-Bis(phenylsulfonyl)maleamide top
Crystal data top
C16H14N2O6S2F(000) = 408
Mr = 394.41Dx = 1.535 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1915 reflections
a = 8.582 (1) Åθ = 2.8–27.7°
b = 5.1464 (6) ŵ = 0.35 mm1
c = 19.691 (4) ÅT = 299 K
β = 101.17 (2)°Rod, colourless
V = 853.2 (2) Å30.48 × 0.28 × 0.22 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1720 independent reflections
Radiation source: fine-focus sealed tube1500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 910
Tmin = 0.850, Tmax = 0.927k = 66
3236 measured reflectionsl = 2414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.3647P]
where P = (Fo2 + 2Fc2)/3
1720 reflections(Δ/σ)max = 0.004
121 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C16H14N2O6S2V = 853.2 (2) Å3
Mr = 394.41Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.582 (1) ŵ = 0.35 mm1
b = 5.1464 (6) ÅT = 299 K
c = 19.691 (4) Å0.48 × 0.28 × 0.22 mm
β = 101.17 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1720 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1500 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.927Rint = 0.009
3236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.25 e Å3
1720 reflectionsΔρmin = 0.32 e Å3
121 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81684 (18)0.2173 (3)0.31947 (8)0.0310 (3)
C20.7033 (2)0.0409 (3)0.28846 (9)0.0406 (4)
H20.67150.09470.31390.049*
C30.6381 (2)0.0704 (4)0.21881 (10)0.0539 (5)
H30.56180.04650.19710.065*
C40.6857 (3)0.2717 (4)0.18171 (10)0.0548 (5)
H40.64170.28940.13490.066*
C50.7979 (3)0.4475 (4)0.21310 (11)0.0539 (5)
H50.82870.58370.18760.065*
C60.8651 (2)0.4217 (4)0.28269 (10)0.0438 (4)
H60.94100.53930.30430.053*
C70.64152 (19)0.3130 (3)0.45450 (8)0.0351 (4)
C80.57352 (19)0.5096 (3)0.49559 (8)0.0370 (4)
H80.63600.64810.51530.044*
N10.79828 (16)0.3588 (3)0.45084 (8)0.0367 (3)
H1N0.842 (2)0.498 (3)0.4667 (10)0.044*
O11.05692 (13)0.3007 (3)0.42044 (7)0.0460 (3)
O20.88967 (16)0.0871 (2)0.42525 (7)0.0474 (3)
O30.56818 (16)0.1304 (3)0.42616 (7)0.0559 (4)
S10.90468 (4)0.17803 (8)0.40734 (2)0.03339 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (7)0.0305 (8)0.0315 (8)0.0033 (6)0.0056 (6)0.0026 (6)
C20.0435 (9)0.0360 (9)0.0399 (9)0.0037 (7)0.0019 (7)0.0043 (7)
C30.0564 (11)0.0548 (12)0.0431 (10)0.0011 (10)0.0087 (9)0.0103 (9)
C40.0620 (12)0.0657 (13)0.0339 (10)0.0213 (11)0.0023 (9)0.0009 (9)
C50.0598 (12)0.0549 (12)0.0502 (12)0.0122 (10)0.0184 (10)0.0169 (10)
C60.0421 (9)0.0382 (9)0.0514 (11)0.0007 (8)0.0100 (8)0.0044 (8)
C70.0379 (8)0.0382 (9)0.0295 (8)0.0074 (7)0.0070 (6)0.0050 (7)
C80.0398 (8)0.0395 (9)0.0315 (8)0.0077 (7)0.0061 (7)0.0077 (7)
N10.0354 (7)0.0335 (7)0.0412 (8)0.0081 (6)0.0077 (6)0.0133 (6)
O10.0306 (6)0.0568 (8)0.0481 (7)0.0031 (6)0.0013 (5)0.0122 (6)
O20.0653 (8)0.0329 (6)0.0403 (7)0.0037 (6)0.0008 (6)0.0023 (5)
O30.0493 (7)0.0586 (9)0.0639 (9)0.0232 (7)0.0212 (7)0.0315 (7)
S10.0335 (2)0.0318 (2)0.0329 (2)0.00033 (16)0.00156 (15)0.00477 (16)
Geometric parameters (Å, º) top
C1—C21.384 (2)C6—H60.9300
C1—C61.385 (2)C7—O31.206 (2)
C1—S11.7600 (16)C7—N11.381 (2)
C2—C31.386 (3)C7—C81.484 (2)
C2—H20.9300C8—C8i1.310 (3)
C3—C41.375 (3)C8—H80.9300
C3—H30.9300N1—S11.6541 (15)
C4—C51.378 (3)N1—H1N0.840 (9)
C4—H40.9300O1—S11.4288 (12)
C5—C61.386 (3)O2—S11.4215 (13)
C5—H50.9300
C2—C1—C6121.56 (16)C5—C6—H6120.6
C2—C1—S1119.29 (13)O3—C7—N1122.36 (16)
C6—C1—S1119.14 (13)O3—C7—C8123.95 (15)
C1—C2—C3118.68 (18)N1—C7—C8113.69 (14)
C1—C2—H2120.7C8i—C8—C7120.7 (2)
C3—C2—H2120.7C8i—C8—H8119.6
C4—C3—C2120.25 (19)C7—C8—H8119.6
C4—C3—H3119.9C7—N1—S1124.88 (11)
C2—C3—H3119.9C7—N1—H1N119.4 (13)
C3—C4—C5120.70 (18)S1—N1—H1N115.1 (13)
C3—C4—H4119.7O2—S1—O1120.19 (8)
C5—C4—H4119.7O2—S1—N1109.02 (8)
C4—C5—C6120.08 (19)O1—S1—N1103.61 (7)
C4—C5—H5120.0O2—S1—C1108.18 (8)
C6—C5—H5120.0O1—S1—C1109.22 (8)
C1—C6—C5118.74 (18)N1—S1—C1105.68 (7)
C1—C6—H6120.6
C6—C1—C2—C30.5 (3)C8—C7—N1—S1178.46 (12)
S1—C1—C2—C3178.39 (14)C7—N1—S1—O249.95 (17)
C1—C2—C3—C40.1 (3)C7—N1—S1—O1179.05 (14)
C2—C3—C4—C50.4 (3)C7—N1—S1—C166.13 (16)
C3—C4—C5—C60.5 (3)C2—C1—S1—O223.00 (16)
C2—C1—C6—C50.3 (3)C6—C1—S1—O2155.88 (14)
S1—C1—C6—C5178.50 (14)C2—C1—S1—O1155.46 (13)
C4—C5—C6—C10.1 (3)C6—C1—S1—O123.41 (16)
O3—C7—C8—C8i1.4 (3)C2—C1—S1—N193.64 (14)
N1—C7—C8—C8i179.2 (2)C6—C1—S1—N187.48 (14)
O3—C7—N1—S11.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2ii0.84 (1)2.35 (2)3.0254 (19)138 (2)
N1—H1N···O1iii0.84 (1)2.45 (2)3.1335 (19)139 (2)
Symmetry codes: (ii) x, y+1, z; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H14N2O6S2
Mr394.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)8.582 (1), 5.1464 (6), 19.691 (4)
β (°) 101.17 (2)
V3)853.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.48 × 0.28 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.850, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
3236, 1720, 1500
Rint0.009
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.07
No. of reflections1720
No. of parameters121
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.840 (9)2.350 (15)3.0254 (19)137.8 (17)
N1—H1N···O1ii0.840 (9)2.453 (15)3.1335 (19)138.7 (17)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

PA. thanks the Council of Scientific and Industrial Research, India, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds