organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2H-Tetra­zol-5-yl)pyridinium perchlorate monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast UniVersity, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 30 November 2009; accepted 3 December 2009; online 9 December 2009)

In the cation of the title compound, C6H6N5+·ClO4·H2O, the pyridinium and tetra­zole rings are essentially coplanar, making a dihedral angle of 1.2 (2)°. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the cations, anions and water mol­ecules into a ribbon-like structure along the c axis. Adjacent ribbons are linked via ππ stacking inter­actions between the tetra­zole rings, with a centroid–centroid distance of 3.484 (2) Å.

Related literature

For applications of tetra­zole derivatives in coordination chemistry, see: Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]); Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]). For related structures, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N5+·ClO4·H2O

  • Mr = 265.62

  • Triclinic, [P \overline 1]

  • a = 7.9945 (16) Å

  • b = 8.8679 (18) Å

  • c = 9.4184 (19) Å

  • α = 78.28 (3)°

  • β = 70.20 (3)°

  • γ = 67.97 (3)°

  • V = 580.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 K

  • 0.40 × 0.35 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.881, Tmax = 0.940

  • 6033 measured reflections

  • 2661 independent reflections

  • 2081 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.195

  • S = 1.04

  • 2661 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4 0.90 1.76 2.640 (4) 166
N1—H1⋯O1Wi 0.86 1.79 2.633 (4) 166
O1W—H1WB⋯O3 0.72 2.06 2.778 (4) 172
O1W—H1WA⋯O2ii 0.78 1.99 2.771 (4) 174
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, more and more people have focused on the chemistry of tetrazole derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Zhao et al., 2008; Fu et al., 2008). As an extension of these work on the structure and properties (Fu et al., 2007; Fu & Xiong 2008), we report here the crystal structure of the title compound 2-(2H-tetrazol-5-yl)pyridinium perchlorate monohydrate.

In the title compound (Fig.1), the pyridine N atom is protonated. The pyridinium and tetrazole rings are essentially coplanar, with the dihedral angle between them being 1.2 (2)°. The geometric parameters of the tetrazole rings are comparable to those in related structures (Zhao et al., 2008; Fu et al., 2009).

The crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds. These hydrogen bonds link the ionic units and water molecules to form a ribbon like structure parallel to the c axis (Table 1 and Fig.2).

Related literature top

For applications of tetrazole derivatives in coordination chemistry, see: Zhao et al. (2008); Fu et al. (2008, 2009). For related structures, see: Fu et al. (2007); Fu & Xiong (2008).

Experimental top

Picolinonitrile (30 mmol), NaN3 (45 mmol), NH4Cl (33 mmol) and DMF (50 ml) were added in a flask under nitrogen atmosphere and the mixture was stirred at 110°C for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding HCl (6 M) till pH = 6. The precipitate was filtered and washed with distilled water. Colourless block-shaped crystals suitable for X-ray analysis were obtained from the crude product by slow evaporation of a water-HClO4 (50:1 v/v) solution.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic), N–H = 0.86 Å (pyridine N) and N–H = 0.90 Å (tetrazole N) with Uiso(H) =1.2Ueq(C,N). H atoms of the water molecule were located in difference Fourier maps and freely refined. In the last stage of the refinement they were treated as riding on the O atom, with Uĩso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing the two dimensionnal hydrogen-bonded network. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
2-(2H-Tetrazol-5-yl)pyridinium perchlorate monohydrate top
Crystal data top
C6H6N5+·ClO4·H2OZ = 2
Mr = 265.62F(000) = 272
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9945 (16) ÅCell parameters from 2081 reflections
b = 8.8679 (18) Åθ = 3.1–27.5°
c = 9.4184 (19) ŵ = 0.35 mm1
α = 78.28 (3)°T = 298 K
β = 70.20 (3)°Block, colourless
γ = 67.97 (3)°0.40 × 0.35 × 0.20 mm
V = 580.1 (2) Å3
Data collection top
Rigaku Mercury2
diffractometer
2661 independent reflections
Radiation source: fine-focus sealed tube2081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.881, Tmax = 0.940l = 1212
6033 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0988P)2 + 0.7631P]
where P = (Fo2 + 2Fc2)/3
2661 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C6H6N5+·ClO4·H2Oγ = 67.97 (3)°
Mr = 265.62V = 580.1 (2) Å3
Triclinic, P1Z = 2
a = 7.9945 (16) ÅMo Kα radiation
b = 8.8679 (18) ŵ = 0.35 mm1
c = 9.4184 (19) ÅT = 298 K
α = 78.28 (3)°0.40 × 0.35 × 0.20 mm
β = 70.20 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2661 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2081 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.940Rint = 0.026
6033 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
2661 reflectionsΔρmin = 0.61 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2411 (4)0.5225 (3)0.0449 (3)0.0337 (6)
H10.33050.43460.05900.040*
N20.3244 (4)0.4372 (3)0.3287 (3)0.0398 (7)
N30.3065 (4)0.4464 (3)0.4707 (3)0.0411 (7)
H30.38060.37540.52560.049*
N40.1668 (5)0.5728 (4)0.5322 (3)0.0459 (7)
N50.0848 (4)0.6535 (3)0.4264 (3)0.0412 (7)
C10.2097 (6)0.5603 (5)0.0901 (4)0.0445 (8)
H1A0.28570.49270.16760.053*
C20.0668 (6)0.6976 (5)0.1161 (4)0.0525 (10)
H2A0.04480.72390.21040.063*
C30.0443 (6)0.7964 (5)0.0006 (4)0.0517 (10)
H3A0.14310.88960.01440.062*
C40.0087 (5)0.7568 (4)0.1392 (4)0.0442 (8)
H4A0.08250.82330.21780.053*
C50.1372 (4)0.6176 (4)0.1602 (3)0.0330 (7)
C60.1842 (4)0.5680 (4)0.3032 (3)0.0323 (7)
Cl10.58684 (12)0.09352 (10)0.68911 (9)0.0393 (3)
O10.7478 (6)0.0326 (6)0.5118 (5)0.0995 (13)
O20.4562 (4)0.0041 (4)0.7313 (3)0.0565 (7)
O30.6963 (4)0.0591 (3)0.7938 (3)0.0557 (8)
O40.4923 (4)0.2690 (3)0.6656 (3)0.0501 (7)
O1W0.5256 (4)0.2475 (3)1.0393 (3)0.0483 (7)
H1WA0.52610.18151.10800.073*
H1WB0.57280.20540.97100.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0345 (14)0.0324 (13)0.0324 (13)0.0090 (11)0.0084 (11)0.0057 (10)
N20.0450 (16)0.0349 (14)0.0343 (14)0.0017 (12)0.0165 (12)0.0060 (11)
N30.0482 (16)0.0363 (15)0.0360 (14)0.0055 (13)0.0197 (13)0.0010 (11)
N40.0537 (18)0.0441 (16)0.0345 (15)0.0054 (14)0.0158 (13)0.0079 (12)
N50.0465 (16)0.0368 (15)0.0326 (14)0.0002 (12)0.0140 (12)0.0088 (11)
C10.055 (2)0.049 (2)0.0323 (17)0.0221 (18)0.0079 (15)0.0086 (14)
C20.062 (2)0.062 (2)0.0369 (18)0.019 (2)0.0240 (17)0.0028 (17)
C30.051 (2)0.049 (2)0.048 (2)0.0013 (17)0.0260 (18)0.0017 (17)
C40.0438 (19)0.0415 (19)0.0392 (18)0.0013 (15)0.0151 (15)0.0058 (14)
C50.0333 (15)0.0332 (15)0.0315 (15)0.0083 (13)0.0110 (12)0.0030 (12)
C60.0336 (15)0.0296 (15)0.0309 (15)0.0059 (12)0.0094 (12)0.0053 (12)
Cl10.0429 (5)0.0358 (4)0.0364 (4)0.0004 (3)0.0210 (3)0.0054 (3)
O10.086 (3)0.122 (3)0.083 (3)0.016 (3)0.014 (2)0.046 (2)
O20.0581 (17)0.0598 (17)0.0539 (16)0.0220 (14)0.0222 (13)0.0051 (13)
O30.0647 (17)0.0527 (16)0.0510 (15)0.0011 (13)0.0408 (14)0.0056 (12)
O40.0583 (16)0.0351 (13)0.0477 (14)0.0082 (11)0.0281 (12)0.0083 (11)
O1W0.0575 (16)0.0363 (13)0.0405 (13)0.0069 (12)0.0088 (11)0.0067 (10)
Geometric parameters (Å, º) top
N1—C11.331 (4)C2—H2A0.93
N1—C51.348 (4)C3—C41.378 (5)
N1—H10.86C3—H3A0.93
N2—N31.312 (4)C4—C51.378 (5)
N2—C61.324 (4)C4—H4A0.93
N3—N41.314 (4)C5—C61.458 (4)
N3—H30.90Cl1—O21.446 (3)
N4—N51.318 (4)Cl1—O31.447 (3)
N5—C61.354 (4)Cl1—O41.460 (3)
C1—C21.368 (6)Cl1—O11.768 (4)
C1—H1A0.93O1W—H1WA0.78
C2—C31.382 (6)O1W—H1WB0.72
C1—N1—C5122.0 (3)C2—C3—H3A120.0
C1—N1—H1119.0C3—C4—C5119.4 (3)
C5—N1—H1119.0C3—C4—H4A120.3
N3—N2—C6101.6 (3)C5—C4—H4A120.3
N2—N3—N4114.4 (3)N1—C5—C4119.2 (3)
N2—N3—H3125.6N1—C5—C6118.2 (3)
N4—N3—H3120.0C4—C5—C6122.6 (3)
N3—N4—N5106.4 (3)N2—C6—N5112.5 (3)
N4—N5—C6105.1 (3)N2—C6—C5125.1 (3)
N1—C1—C2120.7 (3)N5—C6—C5122.3 (3)
N1—C1—H1A119.7O2—Cl1—O3113.55 (17)
C2—C1—H1A119.7O2—Cl1—O4111.66 (17)
C1—C2—C3118.7 (3)O3—Cl1—O4110.80 (16)
C1—C2—H2A120.7O2—Cl1—O1107.3 (2)
C3—C2—H2A120.7O3—Cl1—O1107.05 (19)
C4—C3—C2120.0 (4)O4—Cl1—O1106.0 (2)
C4—C3—H3A120.0H1WA—O1W—H1WB107.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.901.762.640 (4)166
N1—H1···O1Wi0.861.792.633 (4)166
O1W—H1WB···O30.722.062.778 (4)172
O1W—H1WA···O2ii0.781.992.771 (4)174
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC6H6N5+·ClO4·H2O
Mr265.62
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.9945 (16), 8.8679 (18), 9.4184 (19)
α, β, γ (°)78.28 (3), 70.20 (3), 67.97 (3)
V3)580.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.40 × 0.35 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.881, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
6033, 2661, 2081
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.195, 1.04
No. of reflections2661
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.61

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.901.762.640 (4)166
N1—H1···O1Wi0.861.792.633 (4)166
O1W—H1WB···O30.722.062.778 (4)172
O1W—H1WA···O2ii0.781.992.771 (4)174
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds