organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Bromo-2,7-di-tert-butyl­pyrene

aSchool of Chemistry and Chemical Engineering, University of Jinan, Ji'nan 250022, People's Republic of China, bState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, TaiShan Medical University, Tai'an 271016, People's Republic of China
*Correspondence e-mail: chm_xiagm@ujn.edu.cn

(Received 7 December 2009; accepted 16 December 2009; online 19 December 2009)

In the title mol­ecule, C24H25Br, one of two tert-butyl groups is rotationally disordered between two orientations in a 0.59 (3):0.41 (3) ratio. The crystal packing exhibits no ππ inter­actions; however, relatively short inter­molecular Br⋯Br contacts of 3.654 (1) Å are observed.

Related literature

For the synthesis, see: Yamato et al. (1997[Yamato, T., Fujimoto, M., Miyazawa, A. & Matsuo, K. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1201-1207.]). For a related structure, see: Hazell & Lomborg (1972[Hazell, A. C. & Lomborg, J. G. (1972). Acta Cryst. B28, 1059-1064.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25Br

  • Mr = 393.35

  • Orthorhombic, P c a 21

  • a = 21.4678 (4) Å

  • b = 14.5221 (2) Å

  • c = 6.2436 (1) Å

  • V = 1946.49 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.12 mm−1

  • T = 293 K

  • 0.32 × 0.21 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.643, Tmax = 0.651

  • 15786 measured reflections

  • 4402 independent reflections

  • 2741 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.090

  • wR(F2) = 0.281

  • S = 1.00

  • 4402 reflections

  • 263 parameters

  • 67 restraints

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.84 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1930 Friedel pairs

  • Flack parameter: 0.05 (3)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyrene and its derivatives are often used as fluorescent chromophores. Normally, the electrophilic substitution of pyrene occurred at positions 1, 3, 6 or 8 position, but not at other positions (2,4,5,7,9 and 10). However, the orientation in friedel-crafts tert-butylation of pyrene have been proved at positions 2 and 7. Yamato and co workers had reported that the bromination of 2,7-di-tert-butylpyrene with 1 mol equiv of bromine in carbon tetrachloride solution afford 1-bromo-2,7-di-tert-butylpyrene in high yield (Yamato et al., 1997). However, no crystal data were given as a proof. Herein, we report the crystal structure of 1-bromo-2,7-di-tert-butylpyrene, (I), which support the conclusion of Yamato.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable to those reported for close compound (Hazell et al., 1972). One of two tert-butyl groups (attached to pyrene at position 7) is rotationally disordered between two orientations in a ratio 0.59 (3):0.41 (3). The crystal packing exhibits no π-π interactions, however, relatively short intermolecular Br···Br contacts of 3.654 (1) are observed.

Related literature top

For the synthesis, see: Yamato et al. (1997). For a related structure, see: Hazell et al. (1972).

Experimental top

The title compound was synthesized by the bromination of 2,7-di-tert-butylpyrene. To a solution of 2,7-di-tert-butylpyrene(314 mg, 1.0 mmol) in 30 ml CCl4, a solution of Br2 (200 mg, 1.1 mmol) in 10 ml CCl4 was added at 0°C. After the reaction mixture had been stirred for 1 h at room temperature, it was poured into water and the organic layer was extracted with CH2Cl2 and washed with solution of sodium thiosulfate and water, dried over MgSO4 and concentrated. The residue was purified by silica gel column chromatography with hexane as eluent t o afford a solid. Recrystallization from ethanol gave the 1-bromo-2,7-di-tert-butylpyrene(yield: 290 mg, 75%) as colorless prism crystals.

Refinement top

All H atoms were geometrically fixed and allowed to ride on their attached atoms, which C—H = 0.93 Å and Uiso(H)= 1.2 Ueq(C) for the H-atom bonded to thiophene ring, N—H= 0.86Å and Uiso(H)= 1.2 Ueq(C) and the other C—H = 0.93 Å and Uiso(H)= 1.5 Ueq(C). Tert-butyl group (attached to C20) is disordered between two orientations. Three methyl groups - C22, C23, C24 - were refined to a rigid model around the bond C20—C21 with methyl groups C22', C23' and C24', with the occupancies refined to 0.41 (3) and 0.59 (3), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids. Only major parts of disordered atoms are shown. H atoms omitted for clarity.
1-Bromo-2,7-di-tert-butylpyrene top
Crystal data top
C24H25BrF(000) = 816
Mr = 393.35Dx = 1.342 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3661 reflections
a = 21.4678 (4) Åθ = 2.8–21.3°
b = 14.5221 (2) ŵ = 2.12 mm1
c = 6.2436 (1) ÅT = 293 K
V = 1946.49 (5) Å3Prism, colourless
Z = 40.32 × 0.21 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4402 independent reflections
Radiation source: fine-focus sealed tube2741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 2527
Tmin = 0.643, Tmax = 0.651k = 1818
15786 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.090H-atom parameters constrained
wR(F2) = 0.281 w = 1/[σ2(Fo2) + (0.1998P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4402 reflectionsΔρmax = 1.01 e Å3
263 parametersΔρmin = 0.84 e Å3
67 restraintsAbsolute structure: Flack (1983), 1930 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
C24H25BrV = 1946.49 (5) Å3
Mr = 393.35Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 21.4678 (4) ŵ = 2.12 mm1
b = 14.5221 (2) ÅT = 293 K
c = 6.2436 (1) Å0.32 × 0.21 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4402 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
2741 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.651Rint = 0.037
15786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.090H-atom parameters constrained
wR(F2) = 0.281Δρmax = 1.01 e Å3
S = 1.00Δρmin = 0.84 e Å3
4402 reflectionsAbsolute structure: Flack (1983), 1930 Friedel pairs
263 parametersAbsolute structure parameter: 0.05 (3)
67 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.70576 (5)0.22447 (6)0.7036 (4)0.0927 (5)
C10.5691 (4)0.0248 (5)0.2951 (17)0.080 (2)
H1A0.58610.01220.15590.119*
H1B0.53180.06050.28020.119*
H1C0.55960.03220.36590.119*
C20.5941 (4)0.0721 (5)0.6628 (15)0.078 (2)
H2A0.58540.00880.69600.116*
H2B0.55680.10780.67900.116*
H2C0.62550.09500.75830.116*
C30.6796 (4)0.0348 (5)0.386 (2)0.090 (3)
H3A0.71200.06900.45600.134*
H3B0.68720.03420.23400.134*
H3C0.67930.02730.43850.134*
C40.6175 (3)0.0794 (4)0.4297 (12)0.0541 (16)
C50.6193 (3)0.1826 (4)0.3626 (10)0.0430 (13)
C60.6535 (3)0.2502 (4)0.4644 (11)0.0481 (15)
C70.6560 (3)0.3424 (4)0.3944 (11)0.0445 (13)
C80.5863 (3)0.2102 (4)0.1850 (14)0.0542 (16)
H80.56320.16570.11310.065*
C90.5847 (3)0.2997 (4)0.1046 (11)0.0470 (14)
C100.6206 (2)0.3676 (4)0.2096 (10)0.0412 (12)
C110.6917 (3)0.4127 (5)0.4975 (12)0.0518 (16)
H110.71520.39760.61770.062*
C120.6924 (3)0.5025 (5)0.4239 (12)0.0534 (16)
H120.71520.54710.49670.064*
C130.6581 (3)0.5270 (4)0.2360 (11)0.0444 (13)
C140.6213 (3)0.4595 (4)0.1356 (9)0.0412 (12)
C150.5488 (4)0.3282 (5)0.0776 (13)0.070 (2)
H150.52430.28500.14800.084*
C160.5495 (4)0.4147 (5)0.1491 (14)0.068 (2)
H160.52600.42930.26960.081*
C170.5850 (3)0.4861 (5)0.0475 (11)0.0513 (15)
C180.5874 (3)0.5748 (4)0.1191 (11)0.0519 (15)
H180.56380.59040.23860.062*
C190.6590 (3)0.6164 (4)0.1567 (11)0.0503 (14)
H190.68400.65990.22440.060*
C200.6236 (3)0.6438 (4)0.0222 (11)0.0502 (15)
C210.6244 (3)0.7430 (5)0.1038 (9)0.0588 (18)
C220.6781 (6)0.7999 (9)0.009 (3)0.067 (5)0.59 (3)
H22A0.67050.81070.14000.100*0.59 (3)
H22B0.68090.85770.08320.100*0.59 (3)
H22C0.71650.76670.02610.100*0.59 (3)
C230.5639 (5)0.7879 (9)0.031 (3)0.064 (4)0.59 (3)
H23A0.52980.74660.05580.096*0.59 (3)
H23B0.55730.84380.10960.096*0.59 (3)
H23C0.56640.80170.11940.096*0.59 (3)
C240.6287 (9)0.7500 (11)0.3457 (14)0.073 (5)0.59 (3)
H24A0.66560.71910.39420.109*0.59 (3)
H24B0.63050.81370.38680.109*0.59 (3)
H24C0.59270.72180.40920.109*0.59 (3)
C22'0.6879 (9)0.790 (3)0.103 (6)0.20 (3)0.41 (3)
H22D0.71750.75110.03050.299*0.41 (3)
H22E0.68500.84770.03000.299*0.41 (3)
H22F0.70140.79970.24770.299*0.41 (3)
C23'0.5813 (12)0.7978 (15)0.043 (3)0.070 (7)0.41 (3)
H23D0.54190.76690.05410.106*0.41 (3)
H23E0.57510.85830.01490.106*0.41 (3)
H23F0.59980.80250.18280.106*0.41 (3)
C24'0.5979 (14)0.7505 (15)0.331 (2)0.073 (7)0.41 (3)
H24D0.61860.70720.42240.110*0.41 (3)
H24E0.60440.81180.38410.110*0.41 (3)
H24F0.55410.73740.32800.110*0.41 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1018 (8)0.0731 (6)0.1033 (8)0.0084 (4)0.0434 (7)0.0225 (5)
C10.100 (6)0.045 (4)0.094 (6)0.017 (4)0.011 (5)0.001 (4)
C20.104 (6)0.059 (4)0.070 (5)0.016 (4)0.009 (5)0.023 (4)
C30.070 (5)0.044 (4)0.155 (10)0.013 (4)0.019 (6)0.014 (5)
C40.062 (4)0.038 (3)0.062 (4)0.003 (3)0.006 (3)0.007 (3)
C50.047 (3)0.043 (3)0.039 (3)0.005 (2)0.002 (3)0.005 (2)
C60.052 (3)0.042 (3)0.050 (4)0.006 (3)0.012 (3)0.006 (3)
C70.045 (3)0.039 (3)0.049 (3)0.006 (2)0.002 (3)0.007 (3)
C80.070 (4)0.039 (3)0.054 (4)0.008 (3)0.009 (4)0.005 (3)
C90.054 (3)0.042 (3)0.045 (3)0.000 (3)0.009 (3)0.002 (3)
C100.042 (3)0.041 (3)0.041 (3)0.007 (2)0.002 (2)0.005 (3)
C110.063 (4)0.042 (3)0.051 (4)0.002 (3)0.022 (3)0.004 (3)
C120.065 (4)0.043 (3)0.053 (4)0.001 (3)0.013 (3)0.003 (3)
C130.045 (3)0.039 (3)0.049 (3)0.007 (2)0.002 (3)0.005 (3)
C140.046 (3)0.043 (3)0.035 (3)0.006 (2)0.004 (2)0.000 (2)
C150.100 (6)0.061 (4)0.050 (4)0.018 (4)0.027 (4)0.002 (4)
C160.081 (5)0.059 (4)0.062 (4)0.008 (4)0.032 (4)0.004 (3)
C170.054 (4)0.056 (4)0.045 (3)0.004 (3)0.006 (3)0.002 (3)
C180.056 (4)0.050 (4)0.050 (4)0.009 (3)0.006 (3)0.010 (3)
C190.057 (3)0.037 (3)0.057 (4)0.002 (2)0.006 (3)0.001 (3)
C200.055 (4)0.048 (3)0.048 (4)0.011 (3)0.011 (3)0.003 (3)
C210.074 (5)0.037 (3)0.065 (5)0.006 (3)0.009 (4)0.002 (3)
C220.067 (6)0.060 (6)0.073 (6)0.006 (4)0.002 (4)0.007 (4)
C230.061 (5)0.061 (5)0.070 (6)0.003 (4)0.005 (4)0.003 (4)
C240.079 (6)0.069 (6)0.071 (6)0.007 (4)0.009 (4)0.002 (4)
C22'0.20 (3)0.20 (3)0.20 (3)0.000 (5)0.000 (5)0.002 (5)
C23'0.074 (8)0.068 (8)0.070 (8)0.000 (5)0.001 (5)0.000 (5)
C24'0.077 (8)0.071 (7)0.071 (8)0.001 (5)0.004 (5)0.008 (5)
Geometric parameters (Å, º) top
Br1—C61.905 (6)C16—C171.435 (10)
C1—C41.553 (11)C16—H160.9300
C1—H1A0.9600C17—C181.363 (9)
C1—H1B0.9600C18—C201.405 (10)
C1—H1C0.9600C18—H180.9300
C2—C41.543 (12)C19—C201.409 (10)
C2—H2A0.9600C19—H190.9300
C2—H2B0.9600C20—C211.529 (9)
C2—H2C0.9600C21—C241.516 (9)
C3—C41.509 (10)C21—C231.524 (8)
C3—H3A0.9600C21—C22'1.524 (9)
C3—H3B0.9600C21—C23'1.526 (9)
C3—H3C0.9600C21—C24'1.530 (9)
C4—C51.556 (9)C21—C221.536 (8)
C5—C81.376 (10)C22—H22A0.9600
C5—C61.382 (9)C22—H22B0.9600
C6—C71.409 (8)C22—H22C0.9600
C7—C111.430 (9)C23—H23A0.9600
C7—C101.430 (9)C23—H23B0.9600
C8—C91.394 (9)C23—H23C0.9600
C8—H80.9300C24—H24A0.9600
C9—C101.412 (8)C24—H24B0.9600
C9—C151.436 (10)C24—H24C0.9600
C10—C141.413 (8)C22'—H22D0.9600
C11—C121.383 (10)C22'—H22E0.9600
C11—H110.9300C22'—H22F0.9600
C12—C131.431 (10)C23'—H23D0.9600
C12—H120.9300C23'—H23E0.9600
C13—C191.390 (8)C23'—H23F0.9600
C13—C141.407 (8)C24'—H24D0.9600
C14—C171.437 (9)C24'—H24E0.9600
C15—C161.333 (11)C24'—H24F0.9600
C15—H150.9300
C4—C1—H1A109.5C18—C17—C16123.9 (6)
C4—C1—H1B109.5C18—C17—C14119.6 (6)
H1A—C1—H1B109.5C16—C17—C14116.4 (6)
C4—C1—H1C109.5C17—C18—C20123.6 (6)
H1A—C1—H1C109.5C17—C18—H18118.2
H1B—C1—H1C109.5C20—C18—H18118.2
C4—C2—H2A109.5C13—C19—C20122.5 (6)
C4—C2—H2B109.5C13—C19—H19118.7
H2A—C2—H2B109.5C20—C19—H19118.7
C4—C2—H2C109.5C18—C20—C19116.1 (6)
H2A—C2—H2C109.5C18—C20—C21122.3 (6)
H2B—C2—H2C109.5C19—C20—C21121.6 (6)
C4—C3—H3A109.5C24—C21—C23108.8 (6)
C4—C3—H3B109.5C24—C21—C22'85.3 (11)
H3A—C3—H3B109.5C23—C21—C22'124.9 (16)
C4—C3—H3C109.5C24—C21—C23'126.9 (11)
H3A—C3—H3C109.5C23—C21—C23'23.1 (9)
H3B—C3—H3C109.5C22'—C21—C23'108.0 (8)
C3—C4—C2115.5 (8)C24—C21—C20113.3 (8)
C3—C4—C1105.8 (7)C23—C21—C20107.2 (7)
C2—C4—C1104.9 (7)C22'—C21—C20115.3 (16)
C3—C4—C5110.0 (6)C23'—C21—C20106.5 (10)
C2—C4—C5109.2 (6)C24—C21—C24'25.3 (8)
C1—C4—C5111.3 (6)C23—C21—C24'86.0 (9)
C8—C5—C6116.0 (5)C22'—C21—C24'107.7 (8)
C8—C5—C4119.0 (5)C23'—C21—C24'107.1 (7)
C6—C5—C4125.0 (6)C20—C21—C24'111.8 (10)
C5—C6—C7123.6 (6)C24—C21—C22107.4 (6)
C5—C6—Br1122.3 (5)C23—C21—C22107.1 (6)
C7—C6—Br1114.0 (5)C22'—C21—C2224.1 (11)
C6—C7—C11124.0 (6)C23'—C21—C2286.8 (11)
C6—C7—C10118.2 (5)C20—C21—C22112.8 (7)
C11—C7—C10117.8 (5)C24'—C21—C22126.5 (11)
C5—C8—C9125.0 (6)C21—C22—H22A109.5
C5—C8—H8117.5C21—C22—H22B109.5
C9—C8—H8117.5C21—C22—H22C109.5
C8—C9—C10118.1 (6)C21—C23—H23A109.5
C8—C9—C15124.6 (6)C21—C23—H23B109.5
C10—C9—C15117.3 (6)C21—C23—H23C109.5
C9—C10—C14120.9 (5)C21—C24—H24A109.5
C9—C10—C7119.1 (5)C21—C24—H24B109.5
C14—C10—C7120.0 (5)C21—C24—H24C109.5
C12—C11—C7122.0 (6)C21—C22'—H22D109.5
C12—C11—H11119.0C21—C22'—H22E109.5
C7—C11—H11119.0H22D—C22'—H22E109.5
C11—C12—C13120.1 (6)C21—C22'—H22F109.5
C11—C12—H12119.9H22D—C22'—H22F109.5
C13—C12—H12119.9H22E—C22'—H22F109.5
C19—C13—C14120.1 (6)C21—C23'—H23D109.5
C19—C13—C12121.1 (6)C21—C23'—H23E109.5
C14—C13—C12118.8 (5)H23D—C23'—H23E109.5
C13—C14—C10121.2 (5)C21—C23'—H23F109.5
C13—C14—C17118.1 (5)H23D—C23'—H23F109.5
C10—C14—C17120.6 (5)H23E—C23'—H23F109.5
C16—C15—C9122.1 (7)C21—C24'—H24D109.5
C16—C15—H15118.9C21—C24'—H24E109.5
C9—C15—H15118.9H24D—C24'—H24E109.5
C15—C16—C17122.6 (7)C21—C24'—H24F109.5
C15—C16—H16118.7H24D—C24'—H24F109.5
C17—C16—H16118.7H24E—C24'—H24F109.5

Experimental details

Crystal data
Chemical formulaC24H25Br
Mr393.35
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)21.4678 (4), 14.5221 (2), 6.2436 (1)
V3)1946.49 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.12
Crystal size (mm)0.32 × 0.21 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.643, 0.651
No. of measured, independent and
observed [I > 2σ(I)] reflections
15786, 4402, 2741
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.281, 1.00
No. of reflections4402
No. of parameters263
No. of restraints67
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.84
Absolute structureFlack (1983), 1930 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by the Shandong Key Scientific and Technological Project (grant No. 2008 GG30002014)

References

First citationAltomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHazell, A. C. & Lomborg, J. G. (1972). Acta Cryst. B28, 1059–1064.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamato, T., Fujimoto, M., Miyazawa, A. & Matsuo, K. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1201–1207.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds