organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Hy­droxy­benzyl­­idene)-2-(4-iso­butyl­phen­yl)propanohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 25 November 2009; accepted 26 November 2009; online 4 December 2009)

The title hydrazide compound, C20H24N2O2, exists in a trans configuration with respect to the acyclic C=N bond and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. The mean plane through the formohydrazide unit is essentially planar [maximum deviation = 0.025 (2) Å], and forms dihedral angles of 24.45 (16) and 87.14 (16)° with the two benzene rings. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link neighbouring mol­ecules into extended chains along the c axis, which incorporate R22(16) ring motifs. An inter­molecular C—H⋯π inter­action is also observed.

Related literature

For the metal coordination and pharmacological activity of the title compound, see: Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Rodrìguez-Argüelles et al. (2004[Rodrìguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313-321.]); Rollas et al. (2002[Rollas, S., Gulerman, N. & Erdeniz, H. (2002). Il Farmaco, 57, 171-174.]); Terzioglu & Gürsoy (2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2009a[Fun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1591-o1592.],b[Fun, H.-K., Goh, J. H., Vinayaka, A. C. & Kalluraya, B. (2009b). Acta Cryst. E65, o2094.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2O2

  • Mr = 324.41

  • Monoclinic, P 21 /c

  • a = 5.5017 (2) Å

  • b = 33.0204 (14) Å

  • c = 9.7279 (4) Å

  • β = 91.731 (3)°

  • V = 1766.45 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.39 × 0.24 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.985

  • 18817 measured reflections

  • 4059 independent reflections

  • 3190 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.181

  • S = 1.18

  • 4059 reflections

  • 228 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2i 0.87 (3) 1.96 (3) 2.790 (2) 159 (3)
O1—H1O1⋯N1 0.90 (4) 1.83 (4) 2.626 (3) 147 (4)
C14—H14A⋯O1i 0.93 2.51 3.272 (4) 139
C20—H20CCg1ii 0.96 2.80 3.722 (3) 161
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z. Cg1 is the centroid of the C10–C15 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazone compounds are obtained by the reaction of aromatic and heterocyclic hydrazides with mono- and di-aldehydes or ketones and they have revealed very versatile behaviour in metal coordination (Rodrìguez-Argüelles et al., 2004). Hydrazones have been demonstrated to possess a variety of pharmacological activities (Bedia et al., 2006; Rollas et al., 2002; Terzioglu & Gürsoy, 2003). These observations have been the guidelines for the development of new hydrazone incorporating ibuprofen. Prompted by these observations and in continuation of our work (Fun et al., 2009b), we herein report the structure of this new hydrazone.

The title hydrazide compound (Fig. 1) exists in a trans configuration with respect to the acyclic C7N1 bond. An intramolecular O1—H1O1···N1 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The mean plane through the formohydrazide unit (N1/N2/C8/O2) is essentially planar, with maximum deviation of 0.025 (2) Å for atom C8. This plane is inclined to the C1-C6 benzene ring at a dihedral angle of 24.45 (16)°, and almost perpendicular to the C10-C15 benzene ring, as indicated by the dihedral angle of 87.14 (16)°. The bond lengths and angles are within normal ranges and comparable to those closely related structures (Fun et al., 2009a,b).

In the crystal packing (Fig. 2), intermolecular N2—H1N2···O2 and C14—H14A···O1 hydrogen bonds (Table 1) link neighbouring molecules into one-dimensional infinite chains of R22(16) hydrogen bond ring motifs (Bernstein et al., 1995) along the c axis. An intermolecular C—H···π interaction (Table 1) involving the C10-C15 benzene ring is also observed.

Related literature top

For the metal coordination and pharmacological activity of the title compound, see: Bedia et al. (2006); Rodrìguez-Argüelles et al. (2004); Rollas et al. (2002); Terzioglu & Gürsoy (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2009a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the C10–C15 benzene ring.

Experimental top

The title compound was obtained by refluxing for 1 h salicylaldehyde (0.01 mol), 2-(4-isobutylphenyl)propanehydrazide (0.01 mol) and ethanol (30 ml) with the addition of three drops of concentrated sulphuric acid. The solid product obtained was filtered, washed with ethanol and dried. Colourless blocks of (I) were obtained by slow evaporation from ethanol. Yield was 74 %. M.p. 426 K.

Refinement top

The H atoms bound to atoms O1 and N2 were located from the difference Fourier map and allowed to refine freely. All the other H atoms were placed in calculated positions, with C—H = 0.93 – 0.97 Å, and as riding, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups. The reflection (020) was omitted from the refinement as the intensity was affected by the beam backstop.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the a axis, showing one-dimensional extended chains of R22(16) ring motif along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
(E)-N'-(2-Hydroxybenzylidene)-2-(4-isobutylphenyl)propanohydrazide top
Crystal data top
C20H24N2O2F(000) = 696
Mr = 324.41Dx = 1.220 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7778 reflections
a = 5.5017 (2) Åθ = 2.4–30.0°
b = 33.0204 (14) ŵ = 0.08 mm1
c = 9.7279 (4) ÅT = 100 K
β = 91.731 (3)°Block, colourless
V = 1766.45 (12) Å30.39 × 0.24 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4059 independent reflections
Radiation source: fine-focus sealed tube3190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.970, Tmax = 0.985k = 3842
18817 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0443P)2 + 2.5698P]
where P = (Fo2 + 2Fc2)/3
4059 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H24N2O2V = 1766.45 (12) Å3
Mr = 324.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.5017 (2) ŵ = 0.08 mm1
b = 33.0204 (14) ÅT = 100 K
c = 9.7279 (4) Å0.39 × 0.24 × 0.19 mm
β = 91.731 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4059 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3190 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.985Rint = 0.042
18817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.26 e Å3
4059 reflectionsΔρmin = 0.28 e Å3
228 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2604 (4)0.18426 (6)0.5584 (2)0.0358 (5)
O20.3223 (3)0.25847 (5)0.60286 (15)0.0209 (4)
N10.1237 (4)0.20555 (6)0.4218 (2)0.0199 (5)
N20.3012 (4)0.23282 (6)0.3875 (2)0.0210 (5)
C10.1353 (6)0.11240 (9)0.2812 (3)0.0364 (7)
H1A0.02860.10870.20990.044*
C20.3138 (6)0.08401 (9)0.3013 (3)0.0367 (8)
H2A0.32680.06140.24480.044*
C30.4735 (6)0.08962 (9)0.4065 (4)0.0385 (8)
H3A0.59520.07060.42050.046*
C40.4540 (5)0.12339 (9)0.4918 (4)0.0382 (7)
H4A0.56250.12680.56240.046*
C50.2736 (5)0.15194 (8)0.4721 (3)0.0285 (6)
C60.1095 (5)0.14680 (8)0.3650 (3)0.0269 (6)
C70.0819 (5)0.17603 (8)0.3390 (3)0.0276 (6)
H7A0.17480.17320.26130.033*
C80.3850 (4)0.25968 (7)0.4827 (2)0.0156 (5)
C90.5550 (5)0.29208 (8)0.4303 (3)0.0235 (5)
H9A0.61700.28340.34170.028*
C100.4016 (5)0.33029 (8)0.4081 (3)0.0235 (5)
C110.4132 (5)0.36299 (8)0.4983 (3)0.0310 (6)
H11A0.52600.36280.57150.037*
C120.2587 (5)0.39598 (8)0.4807 (3)0.0277 (6)
H12A0.27350.41770.54110.033*
C130.0842 (6)0.39741 (8)0.3763 (3)0.0277 (6)
C140.0756 (8)0.36506 (9)0.2855 (3)0.0518 (11)
H14A0.03890.36520.21310.062*
C150.2335 (7)0.33241 (9)0.2998 (3)0.0438 (9)
H15A0.22590.31160.23540.053*
C160.0929 (6)0.43214 (8)0.3616 (3)0.0319 (7)
H16A0.14840.43920.45220.038*
H16B0.23340.42300.30750.038*
C170.0063 (6)0.47049 (8)0.2944 (3)0.0331 (7)
H17A0.13930.48090.35370.040*
C180.1918 (7)0.50278 (9)0.2851 (3)0.0435 (8)
H18A0.12640.52720.24720.065*
H18B0.24990.50820.37540.065*
H18C0.32390.49330.22700.065*
C190.1076 (7)0.46188 (9)0.1530 (3)0.0402 (8)
H19A0.15580.48690.11140.060*
H19B0.01520.44910.09600.060*
H19C0.24600.44430.16280.060*
C200.7674 (5)0.29712 (9)0.5318 (4)0.0423 (8)
H20A0.86360.27290.53350.063*
H20B0.70740.30220.62180.063*
H20C0.86580.31950.50430.063*
H1N20.346 (6)0.2342 (9)0.303 (3)0.034 (9)*
H1O10.127 (8)0.1984 (12)0.539 (4)0.064 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0260 (11)0.0248 (10)0.0569 (14)0.0014 (8)0.0068 (10)0.0075 (9)
O20.0300 (10)0.0253 (9)0.0074 (7)0.0012 (7)0.0012 (7)0.0001 (7)
N10.0248 (11)0.0194 (10)0.0150 (9)0.0027 (8)0.0055 (8)0.0027 (8)
N20.0329 (12)0.0221 (11)0.0083 (9)0.0060 (9)0.0021 (8)0.0006 (8)
C10.060 (2)0.0304 (15)0.0184 (13)0.0137 (14)0.0084 (13)0.0022 (11)
C20.057 (2)0.0258 (15)0.0268 (14)0.0115 (13)0.0136 (14)0.0030 (12)
C30.0319 (16)0.0256 (15)0.057 (2)0.0059 (12)0.0153 (15)0.0061 (14)
C40.0206 (14)0.0292 (15)0.065 (2)0.0004 (11)0.0005 (14)0.0014 (14)
C50.0243 (13)0.0198 (13)0.0409 (16)0.0032 (10)0.0087 (12)0.0015 (11)
C60.0379 (15)0.0226 (13)0.0192 (12)0.0055 (11)0.0128 (11)0.0059 (10)
C70.0434 (16)0.0256 (14)0.0134 (11)0.0049 (12)0.0048 (11)0.0025 (10)
C80.0146 (11)0.0190 (11)0.0132 (10)0.0031 (9)0.0001 (8)0.0004 (9)
C90.0239 (13)0.0202 (12)0.0272 (13)0.0009 (10)0.0118 (10)0.0033 (10)
C100.0311 (14)0.0191 (12)0.0212 (12)0.0024 (10)0.0130 (10)0.0016 (10)
C110.0232 (14)0.0261 (14)0.0435 (16)0.0025 (11)0.0013 (12)0.0117 (12)
C120.0255 (14)0.0239 (13)0.0339 (15)0.0010 (11)0.0057 (11)0.0101 (11)
C130.0454 (17)0.0201 (13)0.0181 (12)0.0021 (11)0.0076 (11)0.0042 (10)
C140.105 (3)0.0295 (16)0.0196 (14)0.0204 (18)0.0219 (17)0.0017 (12)
C150.095 (3)0.0228 (14)0.0131 (12)0.0159 (16)0.0038 (15)0.0027 (11)
C160.0447 (18)0.0244 (14)0.0265 (14)0.0061 (12)0.0002 (12)0.0016 (11)
C170.0498 (19)0.0229 (14)0.0262 (14)0.0030 (12)0.0069 (13)0.0019 (11)
C180.062 (2)0.0271 (15)0.0413 (18)0.0081 (15)0.0068 (16)0.0036 (13)
C190.057 (2)0.0328 (16)0.0305 (16)0.0008 (14)0.0011 (14)0.0074 (13)
C200.0220 (14)0.0266 (15)0.078 (2)0.0012 (11)0.0006 (15)0.0134 (15)
Geometric parameters (Å, º) top
O1—C51.359 (3)C11—C121.389 (4)
O1—H1O10.89 (4)C11—H11A0.9300
O2—C81.229 (3)C12—C131.377 (4)
N1—C71.281 (3)C12—H12A0.9300
N1—N21.377 (3)C13—C141.386 (4)
N2—C81.354 (3)C13—C161.509 (4)
N2—H1N20.86 (3)C14—C151.389 (4)
C1—C21.376 (4)C14—H14A0.9300
C1—C61.403 (4)C15—H15A0.9300
C1—H1A0.9300C16—C171.533 (4)
C2—C31.382 (5)C16—H16A0.9700
C2—H2A0.9300C16—H16B0.9700
C3—C41.392 (4)C17—C181.526 (4)
C3—H3A0.9300C17—C191.526 (4)
C4—C51.387 (4)C17—H17A0.9800
C4—H4A0.9300C18—H18A0.9600
C5—C61.409 (4)C18—H18B0.9600
C6—C71.456 (4)C18—H18C0.9600
C7—H7A0.9300C19—H19A0.9600
C8—C91.519 (3)C19—H19B0.9600
C9—C201.516 (4)C19—H19C0.9600
C9—C101.530 (4)C20—H20A0.9600
C9—H9A0.9800C20—H20B0.9600
C10—C151.382 (4)C20—H20C0.9600
C10—C111.392 (4)
C5—O1—H1O1108 (3)C13—C12—H12A119.1
C7—N1—N2117.4 (2)C11—C12—H12A119.1
C8—N2—N1119.4 (2)C12—C13—C14117.0 (3)
C8—N2—H1N2121 (2)C12—C13—C16122.0 (2)
N1—N2—H1N2119 (2)C14—C13—C16121.0 (3)
C2—C1—C6122.0 (3)C13—C14—C15121.6 (3)
C2—C1—H1A119.0C13—C14—H14A119.2
C6—C1—H1A119.0C15—C14—H14A119.2
C1—C2—C3119.1 (3)C10—C15—C14121.2 (3)
C1—C2—H2A120.4C10—C15—H15A119.4
C3—C2—H2A120.4C14—C15—H15A119.4
C2—C3—C4120.6 (3)C13—C16—C17115.5 (3)
C2—C3—H3A119.7C13—C16—H16A108.4
C4—C3—H3A119.7C17—C16—H16A108.4
C5—C4—C3120.3 (3)C13—C16—H16B108.4
C5—C4—H4A119.8C17—C16—H16B108.4
C3—C4—H4A119.8H16A—C16—H16B107.5
O1—C5—C4118.3 (3)C18—C17—C19110.9 (2)
O1—C5—C6121.9 (2)C18—C17—C16109.8 (3)
C4—C5—C6119.8 (3)C19—C17—C16112.0 (2)
C1—C6—C5118.1 (3)C18—C17—H17A108.0
C1—C6—C7119.8 (3)C19—C17—H17A108.0
C5—C6—C7122.1 (2)C16—C17—H17A108.0
N1—C7—C6120.8 (3)C17—C18—H18A109.5
N1—C7—H7A119.6C17—C18—H18B109.5
C6—C7—H7A119.6H18A—C18—H18B109.5
O2—C8—N2122.0 (2)C17—C18—H18C109.5
O2—C8—C9122.4 (2)H18A—C18—H18C109.5
N2—C8—C9115.6 (2)H18B—C18—H18C109.5
C20—C9—C8109.2 (2)C17—C19—H19A109.5
C20—C9—C10114.4 (2)C17—C19—H19B109.5
C8—C9—C10106.6 (2)H19A—C19—H19B109.5
C20—C9—H9A108.8C17—C19—H19C109.5
C8—C9—H9A108.8H19A—C19—H19C109.5
C10—C9—H9A108.8H19B—C19—H19C109.5
C15—C10—C11117.3 (3)C9—C20—H20A109.5
C15—C10—C9120.2 (2)C9—C20—H20B109.5
C11—C10—C9122.4 (2)H20A—C20—H20B109.5
C12—C11—C10120.9 (3)C9—C20—H20C109.5
C12—C11—H11A119.5H20A—C20—H20C109.5
C10—C11—H11A119.5H20B—C20—H20C109.5
C13—C12—C11121.9 (3)
C7—N1—N2—C8167.2 (2)N2—C8—C9—C1099.7 (2)
C6—C1—C2—C30.4 (4)C20—C9—C10—C15167.3 (3)
C1—C2—C3—C40.3 (4)C8—C9—C10—C1571.9 (3)
C2—C3—C4—C50.0 (4)C20—C9—C10—C1116.6 (4)
C3—C4—C5—O1179.5 (3)C8—C9—C10—C11104.2 (3)
C3—C4—C5—C60.1 (4)C15—C10—C11—C121.0 (4)
C2—C1—C6—C50.2 (4)C9—C10—C11—C12175.2 (3)
C2—C1—C6—C7179.7 (3)C10—C11—C12—C131.7 (4)
O1—C5—C6—C1179.6 (2)C11—C12—C13—C142.5 (5)
C4—C5—C6—C10.0 (4)C11—C12—C13—C16176.6 (3)
O1—C5—C6—C70.9 (4)C12—C13—C14—C150.7 (5)
C4—C5—C6—C7179.4 (3)C16—C13—C14—C15178.4 (3)
N2—N1—C7—C6177.5 (2)C11—C10—C15—C142.8 (5)
C1—C6—C7—N1173.3 (2)C9—C10—C15—C14173.5 (3)
C5—C6—C7—N17.3 (4)C13—C14—C15—C102.0 (6)
N1—N2—C8—O26.1 (3)C12—C13—C16—C1779.8 (3)
N1—N2—C8—C9172.1 (2)C14—C13—C16—C17101.1 (3)
O2—C8—C9—C2045.5 (3)C13—C16—C17—C18179.5 (2)
N2—C8—C9—C20136.3 (2)C13—C16—C17—C1955.8 (3)
O2—C8—C9—C1078.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.87 (3)1.96 (3)2.790 (2)159 (3)
O1—H1O1···N10.90 (4)1.83 (4)2.626 (3)147 (4)
C14—H14A···O1i0.932.513.272 (4)139
C20—H20C···Cg1ii0.962.803.722 (3)161
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H24N2O2
Mr324.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.5017 (2), 33.0204 (14), 9.7279 (4)
β (°) 91.731 (3)
V3)1766.45 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.39 × 0.24 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.970, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
18817, 4059, 3190
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.181, 1.18
No. of reflections4059
No. of parameters228
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.87 (3)1.96 (3)2.790 (2)159 (3)
O1—H1O1···N10.90 (4)1.83 (4)2.626 (3)147 (4)
C14—H14A···O1i0.932.513.272 (4)139
C20—H20C···Cg1ii0.962.803.722 (3)161
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1591–o1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Vinayaka, A. C. & Kalluraya, B. (2009b). Acta Cryst. E65, o2094.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodrìguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313–321.  Web of Science PubMed Google Scholar
First citationRollas, S., Gulerman, N. & Erdeniz, H. (2002). Il Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds