organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(propan-2-yl) [(2S,3S)-2-hydr­­oxy-3-nitro­butan-2-yl]phospho­nate

aDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 December 2009; accepted 6 December 2009; online 12 December 2009)

In the title compound, C10H22NO6P, a staggered conformation is found when the mol­ecule is viewed down the central P—C bond, with the oxo and hydr­oxy groups gauche to each other. The crystal structure features supra­molecular chains of helical topology propagating along the b axis, mediated by O—H⋯O hydrogen bonds.

Related literature

For background to the enanti­oselective nitro­aldol reaction of α-ketophospho­nates and nitro­methane and for the synthesis, see: Mandal et al. (2007[Mandal, T., Samanta, S. & Zhao, C.-G. (2007). Org. Lett. 9, 943-945.]).

[Scheme 1]

Experimental

Crystal data
  • C10H22NO6P

  • Mr = 283.26

  • Orthorhombic, P 21 21 21

  • a = 7.8620 (16) Å

  • b = 11.369 (2) Å

  • c = 16.920 (3) Å

  • V = 1512.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.32 × 0.10 × 0.05 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.884, Tmax = 1

  • 13441 measured reflections

  • 3072 independent reflections

  • 3020 reflections with I > 2σ(I)

  • Rint = 0.089

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.07

  • 3072 reflections

  • 166 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1272 Friedel pairs

  • Flack parameter: 0.05 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4o⋯O1i 0.84 1.90 2.7289 (19) 172
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The title compound, (I), was investigated as a part of previous studies on the enantioselective nitroaldol reaction of α-ketophosphonates and nitromethane for the synthesis of optically active α-hydroxy-β-nitrophosphonates (Mandal et al., 2007). The crystal structure analysis of (I), Fig. 1, shows a staggered conformation when the molecule is viewed down the P–C7 axis in which the oxo and hydroxy groups are gauche to each other. The presence of O–H···O hydrogen bonding formed between the hydroxy-O4—H and OP atoms leads to the formation of supramolecular chains along the b axis, Fig. 2 and Table 1.

Related literature top

For background to the enantioselective nitroaldol reaction of α-ketophosphonates and nitromethane and for the synthesis, see: Mandal et al. (2007).

Experimental top

The title compound was prepared as described in the literature (Mandal et al., 2007).

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.98–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The methyl H-atoms were rotated to fit the electron density. The O–H H atom was located from a difference map and refined with O–H = 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Supramolecular chain along the b axis in (I) mediated by O–H···O (orange dashed lines) hydrogen bonding. Colour scheme: P, olive; O, red; N, blue; C, grey; and H, green.
Bis(propan-2-yl) [(2S,3S)-2-hydroxy-3-nitrobutan-2-yl]phosphonate top
Crystal data top
C10H22NO6PF(000) = 608
Mr = 283.26Dx = 1.244 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2308 reflections
a = 7.8620 (16) Åθ = 4.0–30.1°
b = 11.369 (2) ŵ = 0.20 mm1
c = 16.920 (3) ÅT = 173 K
V = 1512.4 (5) Å3Block, pale-yellow
Z = 40.32 × 0.10 × 0.05 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3072 independent reflections
Radiation source: fine-focus sealed tube3020 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ω scansθmax = 26.5°, θmin = 4.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 98
Tmin = 0.884, Tmax = 1k = 1314
13441 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2822P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3072 reflectionsΔρmax = 0.19 e Å3
166 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1272 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (11)
Crystal data top
C10H22NO6PV = 1512.4 (5) Å3
Mr = 283.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.8620 (16) ŵ = 0.20 mm1
b = 11.369 (2) ÅT = 173 K
c = 16.920 (3) Å0.32 × 0.10 × 0.05 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3072 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3020 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 1Rint = 0.089
13441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.19 e Å3
S = 1.07Δρmin = 0.25 e Å3
3072 reflectionsAbsolute structure: Flack (1983), 1272 Friedel pairs
166 parametersAbsolute structure parameter: 0.05 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.63065 (6)0.29509 (4)0.74005 (3)0.03236 (14)
O10.51586 (18)0.19464 (11)0.75316 (9)0.0416 (3)
O20.80539 (18)0.26553 (13)0.70112 (9)0.0415 (3)
O30.67933 (17)0.36408 (13)0.81677 (8)0.0383 (3)
O40.41385 (17)0.46364 (12)0.71762 (9)0.0400 (3)
H4O0.44480.53370.72410.060*
O50.3878 (4)0.49342 (19)0.51776 (13)0.0848 (7)
O60.1751 (3)0.4227 (2)0.58457 (14)0.0861 (7)
N10.3262 (3)0.4256 (2)0.56573 (14)0.0608 (6)
C10.9313 (3)0.18894 (18)0.74033 (13)0.0438 (5)
H10.87360.14120.78210.053*
C20.9985 (4)0.1089 (3)0.67718 (17)0.0706 (8)
H2A0.90510.06170.65560.106*
H2B1.08490.05670.69980.106*
H2C1.04950.15600.63480.106*
C31.0653 (3)0.2668 (2)0.7782 (2)0.0656 (8)
H3A1.01210.31620.81870.098*
H3B1.11730.31680.73770.098*
H3C1.15300.21750.80260.098*
C40.5800 (3)0.3614 (2)0.89018 (13)0.0551 (6)
H40.46590.32540.88030.066*
C50.5601 (6)0.4848 (3)0.91703 (18)0.0879 (11)
H5A0.49700.52950.87710.132*
H5B0.67260.52020.92460.132*
H5C0.49760.48620.96710.132*
C60.6764 (7)0.2898 (3)0.94900 (18)0.1056 (15)
H6A0.68740.20890.92960.158*
H6B0.61520.28960.99950.158*
H6C0.78970.32380.95650.158*
C70.5409 (2)0.40550 (16)0.67209 (11)0.0336 (4)
C80.4436 (3)0.33911 (18)0.60636 (12)0.0419 (5)
H80.37220.27700.63180.050*
C90.5556 (4)0.2804 (2)0.54440 (13)0.0558 (6)
H9A0.48380.24060.50530.084*
H9B0.62990.22270.57000.084*
H9C0.62510.34010.51790.084*
C100.6767 (3)0.49079 (18)0.64308 (14)0.0430 (5)
H10A0.73120.52870.68850.065*
H10B0.62390.55090.60950.065*
H10C0.76230.44770.61250.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0303 (2)0.0284 (2)0.0384 (2)0.00159 (18)0.00078 (17)0.00062 (19)
O10.0432 (7)0.0284 (6)0.0532 (8)0.0023 (5)0.0002 (6)0.0044 (7)
O20.0357 (7)0.0454 (8)0.0435 (7)0.0140 (6)0.0051 (6)0.0031 (6)
O30.0365 (7)0.0426 (7)0.0359 (7)0.0048 (6)0.0024 (5)0.0017 (6)
O40.0342 (7)0.0316 (7)0.0541 (8)0.0031 (6)0.0021 (6)0.0080 (6)
O50.1205 (19)0.0631 (12)0.0708 (13)0.0063 (14)0.0288 (14)0.0171 (10)
O60.0593 (13)0.1078 (17)0.0912 (16)0.0212 (13)0.0342 (12)0.0093 (14)
N10.0736 (16)0.0513 (12)0.0576 (12)0.0103 (11)0.0261 (11)0.0073 (11)
C10.0408 (10)0.0399 (11)0.0507 (11)0.0124 (8)0.0022 (9)0.0007 (10)
C20.0768 (19)0.0698 (17)0.0650 (16)0.0410 (16)0.0121 (14)0.0150 (14)
C30.0423 (12)0.0584 (15)0.096 (2)0.0113 (11)0.0130 (13)0.0103 (14)
C40.0576 (14)0.0725 (16)0.0351 (10)0.0157 (12)0.0104 (9)0.0010 (10)
C50.128 (3)0.085 (2)0.0507 (15)0.038 (2)0.0216 (17)0.0070 (15)
C60.189 (5)0.081 (2)0.0471 (15)0.029 (3)0.004 (2)0.0180 (16)
C70.0344 (9)0.0283 (8)0.0383 (9)0.0022 (7)0.0010 (8)0.0021 (8)
C80.0498 (12)0.0332 (9)0.0428 (10)0.0031 (9)0.0088 (9)0.0032 (9)
C90.0772 (17)0.0502 (13)0.0399 (11)0.0049 (13)0.0000 (11)0.0097 (10)
C100.0451 (11)0.0334 (10)0.0506 (12)0.0024 (9)0.0042 (9)0.0032 (9)
Geometric parameters (Å, º) top
P1—O11.4723 (14)C4—C51.483 (4)
P1—O21.5602 (14)C4—C61.492 (4)
P1—O31.5643 (15)C4—H41.0000
P1—C71.8428 (19)C5—H5A0.9800
O2—C11.476 (2)C5—H5B0.9800
O3—C41.467 (2)C5—H5C0.9800
O4—C71.424 (2)C6—H6A0.9800
O4—H4O0.8400C6—H6B0.9800
O5—N11.219 (3)C6—H6C0.9800
O6—N11.230 (4)C7—C101.524 (3)
N1—C81.514 (3)C7—C81.546 (3)
C1—C21.500 (3)C8—C91.523 (3)
C1—C31.517 (3)C8—H81.0000
C1—H11.0000C9—H9A0.9800
C2—H2A0.9800C9—H9B0.9800
C2—H2B0.9800C9—H9C0.9800
C2—H2C0.9800C10—H10A0.9800
C3—H3A0.9800C10—H10B0.9800
C3—H3B0.9800C10—H10C0.9800
C3—H3C0.9800
O1—P1—O2115.86 (9)C4—C5—H5A109.5
O1—P1—O3114.44 (9)C4—C5—H5B109.5
O2—P1—O3104.06 (8)H5A—C5—H5B109.5
O1—P1—C7112.80 (9)C4—C5—H5C109.5
O2—P1—C7102.75 (8)H5A—C5—H5C109.5
O3—P1—C7105.67 (8)H5B—C5—H5C109.5
C1—O2—P1121.86 (13)C4—C6—H6A109.5
C4—O3—P1124.17 (14)C4—C6—H6B109.5
C7—O4—H4O108.0H6A—C6—H6B109.5
O5—N1—O6124.9 (3)C4—C6—H6C109.5
O5—N1—C8118.1 (2)H6A—C6—H6C109.5
O6—N1—C8117.0 (2)H6B—C6—H6C109.5
O2—C1—C2105.91 (18)O4—C7—C10111.74 (15)
O2—C1—C3108.14 (17)O4—C7—C8105.60 (16)
C2—C1—C3114.2 (2)C10—C7—C8115.18 (18)
O2—C1—H1109.5O4—C7—P1104.31 (12)
C2—C1—H1109.5C10—C7—P1111.47 (14)
C3—C1—H1109.5C8—C7—P1107.80 (13)
C1—C2—H2A109.5N1—C8—C9108.94 (19)
C1—C2—H2B109.5N1—C8—C7108.11 (16)
H2A—C2—H2B109.5C9—C8—C7115.0 (2)
C1—C2—H2C109.5N1—C8—H8108.2
H2A—C2—H2C109.5C9—C8—H8108.2
H2B—C2—H2C109.5C7—C8—H8108.2
C1—C3—H3A109.5C8—C9—H9A109.5
C1—C3—H3B109.5C8—C9—H9B109.5
H3A—C3—H3B109.5H9A—C9—H9B109.5
C1—C3—H3C109.5C8—C9—H9C109.5
H3A—C3—H3C109.5H9A—C9—H9C109.5
H3B—C3—H3C109.5H9B—C9—H9C109.5
O3—C4—C5107.2 (2)C7—C10—H10A109.5
O3—C4—C6107.8 (2)C7—C10—H10B109.5
C5—C4—C6111.4 (3)H10A—C10—H10B109.5
O3—C4—H4110.1C7—C10—H10C109.5
C5—C4—H4110.1H10A—C10—H10C109.5
C6—C4—H4110.1H10B—C10—H10C109.5
O1—P1—O2—C163.20 (17)O3—P1—C7—C1068.93 (15)
O3—P1—O2—C163.34 (17)O1—P1—C7—C837.99 (17)
C7—P1—O2—C1173.35 (15)O2—P1—C7—C887.48 (15)
O1—P1—O3—C421.1 (2)O3—P1—C7—C8163.73 (13)
O2—P1—O3—C4148.58 (17)O5—N1—C8—C947.5 (3)
C7—P1—O3—C4103.58 (19)O6—N1—C8—C9133.2 (2)
P1—O2—C1—C2136.98 (19)O5—N1—C8—C778.1 (3)
P1—O2—C1—C3100.2 (2)O6—N1—C8—C7101.1 (3)
P1—O3—C4—C5132.8 (2)O4—C7—C8—N151.7 (2)
P1—O3—C4—C6107.1 (3)C10—C7—C8—N172.1 (2)
O1—P1—C7—O473.94 (14)P1—C7—C8—N1162.77 (16)
O2—P1—C7—O4160.59 (12)O4—C7—C8—C9173.70 (17)
O3—P1—C7—O451.80 (13)C10—C7—C8—C949.9 (2)
O1—P1—C7—C10165.33 (14)P1—C7—C8—C975.2 (2)
O2—P1—C7—C1039.85 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4o···O1i0.841.902.7289 (19)172
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H22NO6P
Mr283.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.8620 (16), 11.369 (2), 16.920 (3)
V3)1512.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.32 × 0.10 × 0.05
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.884, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
13441, 3072, 3020
Rint0.089
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.07
No. of reflections3072
No. of parameters166
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25
Absolute structureFlack (1983), 1272 Friedel pairs
Absolute structure parameter0.05 (11)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4o···O1i0.841.902.7289 (19)172
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: cong.zhao@utsa.edu.

Acknowledgements

CGZ thanks the Welch Foundation (grant No. AX-1593) and the NIH-MBRS program (S06 GM08194) for support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMandal, T., Samanta, S. & Zhao, C.-G. (2007). Org. Lett. 9, 943–945.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds