metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(5-carb­­oxy-2-propyl-1H-imidazole-4-carboxyl­ato-κ2N3,O4)manganese(II) N,N-di­methyl­formamide disolvate

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 14 December 2009; accepted 18 December 2009; online 24 December 2009)

In the title complex, [Mn(C8H9N2O4)2(H2O)2]·2C3H7NO, the MnII atom, lying on an inversion centre, is six-coordinated by two N,O-bidentate 5-carb­oxy-2-propyl-1H-imidazole-4-carb­oxyl­ate ligands and two water mol­ecules in a distorted octa­hedral environment. In the crystal structure, the complex mol­ecules and dimethyl­formamide solvent mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds into a two-dimensional supra­molecular network parallel to (001).

Related literature

For the potential uses and diverse structural types of complexes containing metals and N-heterocyclic carboxylic acids, see: Liang et al. (2002[Liang, Y. C., Cao, R. & Hong, M. C. (2002). Inorg. Chem. Commun. 5, 366-368.]); Net et al. (1989[Net, G., Bayon, J. C., Butler, W. M. & Rasmussen, P. (1989). J. Chem. Soc. Chem. Commun. pp. 1022-1023.]); Nie et al. (2007[Nie, X.-L., Wen, H.-L., Wu, Z.-S., Liu, D.-B. & Liu, C.-B. (2007). Acta Cryst. E63, m753-m755.]); Song et al. (2010[Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H9N2O4)2(H2O)2]·2C3H7NO

  • Mr = 631.51

  • Triclinic, [P \overline 1]

  • a = 7.3992 (8) Å

  • b = 9.4429 (11) Å

  • c = 11.1978 (13) Å

  • α = 76.591 (1)°

  • β = 87.927 (1)°

  • γ = 68.863 (1)°

  • V = 708.89 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 273 K

  • 0.32 × 0.25 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])) Tmin = 0.847, Tmax = 0.896

  • 3653 measured reflections

  • 2508 independent reflections

  • 2131 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.05

  • 2508 reflections

  • 191 parameters

  • 27 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N1 2.1960 (18)
Mn1—O1W 2.2036 (17)
Mn1—O1 2.2530 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O9i 0.86 1.84 2.682 (3) 165
O3—H3⋯O2 0.82 1.65 2.471 (2) 176
O1W—H1W⋯O4ii 0.85 1.92 2.764 (2) 170
O1W—H2W⋯O4iii 0.84 2.11 2.927 (2) 164
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z; (iii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Structures of complexes containing metals and N-heterocyclic carboxylic acids have attracted much attention. The N-heterocyclic carboxylic acids can function as multidentate ligands, exhibiting diverse structrual types, and their metal complexes can be potentially used as functional materials (Liang et al., 2002; Net et al., 1989; Nie et al., 2007). Recently, we have reported a new complex, poly[diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- κ3N3,O4:O5)calcium(II)] (Song et al., 2010). In this paper, we report the synthesis and structure of a MnII complex obtained under hydrothermal conditions.

As illustrated in Fig. 1, the title complex molecule contains one MnII atom, lying on an inversion centre, one mono-deprotonated 5-carboxy-2-propyl-1H-imidazole-4-carboxylate ligand, one coordinated water molecule and one dimethylformamide solvent molecule in the asymmetric unit. The MnII atom is six-coordinated by two N,O-bidentate ligands and two water molecules in a distorted octahedral environment (Table 1). In the crystal structure, a two-dimensional supramolecular network is formed by N—H···O and O—H···O hydrogen bonds (Table 2 and Fig. 2).

Related literature top

For the potential uses and diverse structural types of complexes containing metals and N-heterocyclic carboxylic acids, see: Liang et al. (2002); Net et al. (1989); Nie et al. (2007); Song et al. (2010).

Experimental top

A mixture of MnCl2 (0.5 mmol, 0.06 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.99 g) in 15 ml of dimethylformamide solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433 K for 4 d. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

C– and N-bound H atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å and N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N). H atoms of water and carboxyl group were located in a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (i) -x, 2 - y, -z.]
[Figure 2] Fig. 2. A view of the two-dimensional network constructed by O—H···O and N—H···O hydrogen bonds (dashed lines).
Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N3,O4)manganese(II) N,N-dimethylformamide disolvate top
Crystal data top
[Mn(C8H9N2O4)2H2O)2]·2C3H7NOZ = 1
Mr = 631.51F(000) = 331
Triclinic, P1Dx = 1.479 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3992 (8) ÅCell parameters from 3600 reflections
b = 9.4429 (11) Åθ = 1.4–28°
c = 11.1978 (13) ŵ = 0.54 mm1
α = 76.591 (1)°T = 273 K
β = 87.927 (1)°Block, colourless
γ = 68.863 (1)°0.32 × 0.25 × 0.21 mm
V = 708.89 (14) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2131 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
ϕ and ω scanθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996))
h = 88
Tmin = 0.847, Tmax = 0.896k = 911
3653 measured reflectionsl = 1312
2508 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.120P]
where P = (Fo2 + 2Fc2)/3
2508 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.34 e Å3
27 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Mn(C8H9N2O4)2H2O)2]·2C3H7NOγ = 68.863 (1)°
Mr = 631.51V = 708.89 (14) Å3
Triclinic, P1Z = 1
a = 7.3992 (8) ÅMo Kα radiation
b = 9.4429 (11) ŵ = 0.54 mm1
c = 11.1978 (13) ÅT = 273 K
α = 76.591 (1)°0.32 × 0.25 × 0.21 mm
β = 87.927 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2508 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996))
2131 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.896Rint = 0.025
3653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04127 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
2508 reflectionsΔρmin = 0.32 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00001.00000.00000.03110 (18)
O10.0548 (3)0.92199 (19)0.16620 (15)0.0379 (4)
O1W0.2795 (2)0.9893 (2)0.06711 (17)0.0434 (4)
H1W0.29330.91130.04840.065*
H2W0.36721.07430.03290.065*
O20.0012 (3)0.7160 (2)0.24509 (15)0.0424 (4)
O30.1886 (3)0.4324 (2)0.18355 (17)0.0469 (5)
H30.12940.52710.20210.070*
O40.3630 (3)0.25664 (19)0.02155 (18)0.0456 (5)
N10.1434 (3)0.7447 (2)0.04969 (16)0.0279 (4)
N20.3073 (3)0.4924 (2)0.10599 (17)0.0312 (4)
H20.37820.40300.15040.037*
C10.1335 (3)0.6770 (2)0.0454 (2)0.0261 (5)
C20.2340 (3)0.5196 (3)0.0111 (2)0.0285 (5)
C30.2498 (3)0.6292 (3)0.1400 (2)0.0303 (5)
C40.0194 (3)0.7798 (3)0.1592 (2)0.0306 (5)
C50.2661 (3)0.3927 (3)0.0755 (2)0.0337 (5)
C60.2933 (4)0.6449 (3)0.2642 (2)0.0410 (6)
H6A0.25840.75480.26250.049*
H6B0.43170.59390.28400.049*
C70.1855 (5)0.5745 (4)0.3637 (3)0.0616 (8)
H7A0.04770.62060.34090.074*
H7B0.22680.46330.36880.074*
C80.2178 (5)0.5986 (4)0.4887 (3)0.0648 (9)
H8A0.34570.53070.52170.097*
H8B0.12340.57530.54270.097*
H8C0.20490.70520.48110.097*
O90.4607 (3)0.2429 (2)0.7294 (2)0.0626 (6)
N50.3789 (3)0.0120 (3)0.6354 (2)0.0470 (6)
C170.4889 (4)0.1190 (4)0.7092 (3)0.0501 (7)
H170.59620.11810.74920.060*
C180.2038 (5)0.0185 (4)0.5761 (3)0.0702 (10)
H18A0.09370.06410.62120.105*
H18B0.21380.08520.57450.105*
H18C0.18800.08100.49360.105*
C190.4104 (7)0.1561 (4)0.6248 (4)0.0879 (12)
H19A0.53090.13530.66730.132*
H19B0.30610.22590.66040.132*
H19C0.41510.20330.53960.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0369 (3)0.0180 (3)0.0364 (3)0.0063 (2)0.0014 (2)0.0080 (2)
O10.0483 (10)0.0222 (9)0.0367 (9)0.0057 (8)0.0087 (7)0.0043 (7)
O1W0.0411 (10)0.0287 (9)0.0616 (12)0.0120 (8)0.0038 (8)0.0142 (8)
O20.0568 (11)0.0346 (10)0.0329 (9)0.0101 (9)0.0099 (8)0.0112 (8)
O30.0609 (12)0.0307 (10)0.0473 (11)0.0079 (9)0.0035 (9)0.0189 (8)
O40.0465 (10)0.0218 (9)0.0645 (12)0.0044 (8)0.0026 (9)0.0145 (8)
N10.0344 (10)0.0210 (10)0.0277 (10)0.0092 (8)0.0017 (8)0.0055 (8)
N20.0332 (10)0.0188 (9)0.0351 (11)0.0048 (8)0.0052 (8)0.0002 (8)
C10.0279 (11)0.0210 (11)0.0294 (11)0.0085 (9)0.0007 (9)0.0064 (9)
C20.0288 (11)0.0228 (12)0.0341 (12)0.0087 (9)0.0016 (9)0.0083 (9)
C30.0340 (12)0.0234 (12)0.0328 (12)0.0106 (10)0.0036 (9)0.0040 (9)
C40.0330 (12)0.0272 (12)0.0295 (12)0.0087 (10)0.0024 (9)0.0055 (10)
C50.0326 (12)0.0267 (13)0.0440 (14)0.0105 (10)0.0066 (10)0.0138 (11)
C60.0512 (15)0.0365 (14)0.0354 (13)0.0164 (12)0.0098 (11)0.0062 (11)
C70.072 (2)0.076 (2)0.0455 (16)0.0325 (18)0.0089 (15)0.0238 (15)
C80.069 (2)0.077 (2)0.0424 (16)0.0168 (19)0.0026 (15)0.0191 (16)
O90.0712 (14)0.0298 (11)0.0699 (14)0.0062 (10)0.0216 (11)0.0047 (10)
N50.0535 (13)0.0309 (12)0.0502 (13)0.0098 (11)0.0019 (11)0.0065 (10)
C170.0472 (15)0.0471 (18)0.0500 (16)0.0084 (14)0.0051 (13)0.0129 (13)
C180.0575 (19)0.058 (2)0.073 (2)0.0073 (16)0.0120 (16)0.0061 (17)
C190.134 (4)0.050 (2)0.089 (3)0.044 (2)0.019 (3)0.0182 (19)
Geometric parameters (Å, º) top
Mn1—N12.1960 (18)C6—H6A0.9700
Mn1—O1W2.2036 (17)C6—H6B0.9700
Mn1—O12.2530 (17)C7—C81.509 (4)
O1—C41.238 (3)C7—H7A0.9700
O1W—H1W0.8509C7—H7B0.9700
O1W—H2W0.8436C8—H8A0.9600
O2—C41.282 (3)C8—H8B0.9600
O3—C51.272 (3)C8—H8C0.9600
O3—H30.8200O9—C171.229 (4)
O4—C51.240 (3)N5—C171.313 (4)
N1—C31.326 (3)N5—C191.440 (4)
N1—C11.379 (3)N5—C181.452 (4)
N2—C31.347 (3)C17—H170.9300
N2—C21.369 (3)C18—H18A0.9600
N2—H20.8600C18—H18B0.9600
C1—C21.367 (3)C18—H18C0.9600
C1—C41.480 (3)C19—H19A0.9600
C2—C51.481 (3)C19—H19B0.9600
C3—C61.491 (3)C19—H19C0.9600
C6—C71.516 (4)
N1i—Mn1—N1180.0O4—C5—C2118.9 (2)
N1i—Mn1—O1W87.40 (7)O3—C5—C2116.6 (2)
N1—Mn1—O1W92.60 (6)C3—C6—C7112.7 (2)
N1i—Mn1—O1Wi92.60 (6)C3—C6—H6A109.1
N1—Mn1—O1Wi87.40 (7)C7—C6—H6A109.1
O1W—Mn1—O1Wi180.0C3—C6—H6B109.1
N1i—Mn1—O1i75.41 (6)C7—C6—H6B109.1
N1—Mn1—O1i104.59 (6)H6A—C6—H6B107.8
O1W—Mn1—O1i91.40 (6)C8—C7—C6113.4 (3)
O1Wi—Mn1—O1i88.60 (6)C8—C7—H7A108.9
N1i—Mn1—O1104.59 (6)C6—C7—H7A108.9
N1—Mn1—O175.41 (6)C8—C7—H7B108.9
O1W—Mn1—O188.60 (6)C6—C7—H7B108.9
O1Wi—Mn1—O191.40 (6)H7A—C7—H7B107.7
O1i—Mn1—O1180.0C7—C8—H8A109.5
C4—O1—Mn1115.45 (14)C7—C8—H8B109.5
Mn1—O1W—H1W107.7H8A—C8—H8B109.5
Mn1—O1W—H2W107.5C7—C8—H8C109.5
H1W—O1W—H2W112.0H8A—C8—H8C109.5
C5—O3—H3109.5H8B—C8—H8C109.5
C3—N1—C1105.96 (18)C17—N5—C19121.9 (3)
C3—N1—Mn1141.35 (15)C17—N5—C18119.5 (3)
C1—N1—Mn1112.53 (13)C19—N5—C18118.0 (3)
C3—N2—C2108.51 (18)O9—C17—N5125.0 (3)
C3—N2—H2125.7O9—C17—H17117.5
C2—N2—H2125.7N5—C17—H17117.5
C2—C1—N1109.72 (19)N5—C18—H18A109.5
C2—C1—C4132.5 (2)N5—C18—H18B109.5
N1—C1—C4117.81 (19)H18A—C18—H18B109.5
C1—C2—N2105.37 (19)N5—C18—H18C109.5
C1—C2—C5132.1 (2)H18A—C18—H18C109.5
N2—C2—C5122.5 (2)H18B—C18—H18C109.5
N1—C3—N2110.44 (19)N5—C19—H19A109.5
N1—C3—C6125.5 (2)N5—C19—H19B109.5
N2—C3—C6124.0 (2)H19A—C19—H19B109.5
O1—C4—O2123.4 (2)N5—C19—H19C109.5
O1—C4—C1118.6 (2)H19A—C19—H19C109.5
O2—C4—C1117.9 (2)H19B—C19—H19C109.5
O4—C5—O3124.4 (2)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O9ii0.861.842.682 (3)165
O3—H3···O20.821.652.471 (2)176
O1W—H1W···O4iii0.851.922.764 (2)170
O1W—H2W···O4iv0.842.112.927 (2)164
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C8H9N2O4)2H2O)2]·2C3H7NO
Mr631.51
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.3992 (8), 9.4429 (11), 11.1978 (13)
α, β, γ (°)76.591 (1), 87.927 (1), 68.863 (1)
V3)708.89 (14)
Z1
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.32 × 0.25 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996))
Tmin, Tmax0.847, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
3653, 2508, 2131
Rint0.025
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.05
No. of reflections2508
No. of parameters191
No. of restraints27
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—N12.1960 (18)Mn1—O12.2530 (17)
Mn1—O1W2.2036 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O9i0.861.842.682 (3)165
O3—H3···O20.821.652.471 (2)176
O1W—H1W···O4ii0.851.922.764 (2)170
O1W—H2W···O4iii0.842.112.927 (2)164
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x1, y+1, z.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiang, Y. C., Cao, R. & Hong, M. C. (2002). Inorg. Chem. Commun. 5, 366–368.  Web of Science CSD CrossRef CAS Google Scholar
First citationNet, G., Bayon, J. C., Butler, W. M. & Rasmussen, P. (1989). J. Chem. Soc. Chem. Commun. pp. 1022–1023.  CrossRef Web of Science Google Scholar
First citationNie, X.-L., Wen, H.-L., Wu, Z.-S., Liu, D.-B. & Liu, C.-B. (2007). Acta Cryst. E63, m753–m755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds