organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o165-o166

2,4-Di­chloro-1-[1-(2,4-di­chloro­benz­yl­­oxy)eth­yl]benzene

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 7 December 2009; accepted 11 December 2009; online 16 December 2009)

In the title compound, C15H12Cl4O, the dihedral angle between the least-squares planes of the two benzene rings is 82.6 (9)°. The dihedral angles between the COC mean plane of the ­oxy group and the two benzene rings are 84.3 (5) and 10.8 (5)°. In the crystal, two weak ππ inter­actions [centroid–centroid distances = 3.9989 (8) and 3.7912 (8) Å] and a C—H⋯π inter­action are observed.

Related literature

For related structures, see: Yan et al. (2007[Yan, L.-Z., Bi, S. & Ren, R. (2007). Acta Cryst. E63, o775-o776.]); Cui et al. (2005[Cui, Y., Liu, H.-M. & Zhang, W.-Q. (2005). Acta Cryst. E61, o685-o686.]); Moratti et al. (2007[Moratti, S. C., Simpson, J. & Tierney, S. M. (2007). Acta Cryst. E63, o3954.]); Kotila et al. (1996[Kotila, S., Jäntti, A., Penttinen, S. & Bach, T. (1996). Acta Cryst. C52, 1722-1725.]). For compounds related to bis-lactim ethers of cyclic dipeptides, see: Bolte et al. (1999[Bolte, M., Benecke, B. & Egert, E. (1999). Acta Cryst. C55, 964-968.]). For catalytic transfer hydrogeno­lysis of benzyl ethers, see: Brigas et al. (1999[Brigas, A. F., Clegg, W., Johnstone, R. A. W. & Mendonca, R. F. (1999). Acta Cryst. C55, 778-781.]). For details of theoretical calculations, see: Becke (1988[Becke, A. D. (1988). Phys. Rev. A38, 3098-100.], 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]); Frisch et al. (2004[Frisch, M. J. et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]); Hehre et al. (1986[Hehre, W. J., Random, L., Schleyer, P. R. & Pople, J. A. (1986). In Ab Initio Molecular Orbital Theory. New York: Wiley.]); Lee et al. (1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]); Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Cl4O

  • Mr = 350.05

  • Triclinic, [P \overline 1]

  • a = 9.3755 (4) Å

  • b = 9.9229 (4) Å

  • c = 9.9667 (4) Å

  • α = 62.313 (3)°

  • β = 70.246 (4)°

  • γ = 71.467 (4)°

  • V = 758.22 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 200 K

  • 0.47 × 0.42 × 0.27 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.638, Tmax = 0.812

  • 10547 measured reflections

  • 4961 independent reflections

  • 3334 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.086

  • S = 1.02

  • 4961 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12ACg1i 0.95 2.97 3.8888 (15) 162
Symmetry code: (i) x, y-1, z+1. Cg1 is the centroid of the C1–C6 ring.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ether is a class of chemical compounds which contain an ether group — an oxygen atom connected to two (substituted) alkyl or aryl groups — of general formula R–O–R'. Ethers, with their characteristic solvation abilities, excel as inert reaction media in numerous synthetic procedures. However, in practice this usefulness is often tempered by an unfortunate proclivity to facile air oxidation at ambient temperatures which leads to peroxide formation. The structures of the few related compounds viz., 4-(benzyloxy)-2-fluorobenzonitrile (Yan et al., 2007), 2-benzyloxy-3-nitropyridine (Cui et al., 2005), 2,6-bis[2-(4-benzyloxyphenyl)ethyl]biphenyl (Moratti et al., 2007), 3-tert-butyl-4-methyl-2-phenyl-3-(trimethylsilyloxy)oxetane and 2-(2-benzyloxyphenyl)-3-tert-butyl-3-(trimethylsilyloxy)oxetane (Kotila et al., 1996), bis-lactim ethers of cyclic dipeptides: Compounds derived from cyclo(Gly-L-Val) (Bolte et al., 1999) and 5-benzyloxy-1-phenyltetrazole: catalytic transfer hydrogenolysis of benzyl ethers (Brigas et al., 1999) are already reported. In view of the importance of ethers, the synthesis and crystal structure of the title compound, (I), is reported.

In the title compound, C15H12Cl4O, (I), the dihedral angle between the least squares planes of the two benzene rings is 82.6 (9)° (Fig.1). The angle between the mean planes of the oxy group and the two benzene rings is 84.3 (5)° and 10.8 (5)°, respectively. Each of the two dichloro benzene rings are stacked diagonally along the (011) plane (Fig. 2). While no classic hydrogen bonds are found, weak ππ [Cg1···Cg1 = 3.9989 (8) Å; 1 - x, 2 - y, 1 - z and Cg2···Cg2 = 3.7912 (8) Å; 2 - x, 1 - y, 2 - z] and C–H···π [C12–H12A···Cg1; Table 1] intermolecular interactions are observed. Bond length and bond angles are within normal ranges (Allen, 2002).

Following geometry optimization using AM1 with MOPAC (Schmidt & Polik, 2007) and density functional theory (DFT) theoretical calculations (Schmidt & Polik, 2007) at the B3LYP/6–31G(d) level (Becke, 1988, 1993; Lee et al., 1988; Hehre et al., 1986) with the Gaussian03 program package (Frisch at al., 2004), the dihedral angle between the least squares planes of the two benzene rings becomes 83.6 (3)° (AM1) or 85.9 (6)° (DFT). The angles between the mean planes of the oxy group and the two benzene rings become 86.4 (2) and 3.5 (6)° (AM1) or 88.6 (5) and 5.5 (3)° (DFT), respectively. It is clear that the weak ππ and C—H···π intermolecular interactions do influence crystal packing stability.

Related literature top

For related structures, see: Yan et al. (2007); Cui et al. (2005); Moratti et al. (2007); Kotila et al. (1996). For compounds related to bis-lactim ethers of cyclic dipeptides, see: Bolte et al. (1999). For catalytic transfer hydrogenolysis of benzyl ethers, see: Brigas et al. (1999). For details of theoretical calculations, see: Becke (1988, 1993); Frisch et al. (2004); Hehre et al. (1986); Lee et al. (1988); Schmidt & Polik (2007). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture of 1-(2,4-dichlorophenyl)ethanol (0.01 mol, 1.91 g) and 2,4-dichloro-1-(chloromethyl)benzene (0.01 mol, 1.95 g) in 30 ml dry acetone was refluxed over water bath for 6 h (Fig. 3). The crude compound was filtered and recrystallized from ethyl acetate (m.p. 449–451 K). Composition for C15H12Cl4O: C 51.39 (51.46), H 3.42 (3.46).

Refinement top

All of the C-bonded H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95 to 1.00 Å, and with Uiso(H) = 1.18–1.49 Ueq(C). The methyl group was allowed to rotate about the C—C bond.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and 50% probability displacement ellipsoids. H atoms are presented as small circles of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the title compound, (I), viewed down the a axis.
[Figure 3] Fig. 3. Scheme for the synthesis of 2,4-dichloro-1-{1-[(2,4-dichlorobenzyl) oxy]ethyl}benzene.
2,4-Dichloro-1-[1-(2,4-dichlorobenzyloxy)ethyl]benzene top
Crystal data top
C15H12Cl4OZ = 2
Mr = 350.05F(000) = 356
Triclinic, P1Dx = 1.533 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3755 (4) ÅCell parameters from 5527 reflections
b = 9.9229 (4) Åθ = 4.7–32.4°
c = 9.9667 (4) ŵ = 0.77 mm1
α = 62.313 (3)°T = 200 K
β = 70.246 (4)°Chunk, colorless
γ = 71.467 (4)°0.47 × 0.42 × 0.27 mm
V = 758.22 (5) Å3
Data collection top
Oxford Diffraction Gemini
diffractometer
4961 independent reflections
Radiation source: fine-focus sealed tube3334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.7°
ϕ and ω scansh = 1314
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1414
Tmin = 0.638, Tmax = 0.812l = 1414
10547 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
4961 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H12Cl4Oγ = 71.467 (4)°
Mr = 350.05V = 758.22 (5) Å3
Triclinic, P1Z = 2
a = 9.3755 (4) ÅMo Kα radiation
b = 9.9229 (4) ŵ = 0.77 mm1
c = 9.9667 (4) ÅT = 200 K
α = 62.313 (3)°0.47 × 0.42 × 0.27 mm
β = 70.246 (4)°
Data collection top
Oxford Diffraction Gemini
diffractometer
4961 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3334 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.812Rint = 0.015
10547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
4961 reflectionsΔρmin = 0.25 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36865 (4)1.29719 (4)0.57705 (4)0.03911 (9)
Cl20.69931 (4)1.09520 (4)0.12662 (4)0.03879 (10)
Cl30.62657 (4)0.54530 (4)1.05029 (5)0.04802 (11)
Cl41.07650 (5)0.37832 (4)1.34956 (4)0.05247 (12)
O10.75079 (10)1.00830 (9)0.81884 (9)0.0308 (2)
C10.65742 (14)1.12007 (12)0.58044 (13)0.0267 (2)
C20.53833 (14)1.19326 (12)0.50167 (14)0.0267 (2)
C30.54921 (14)1.18650 (12)0.36200 (13)0.0281 (3)
H3A0.46661.23700.31000.034*
C40.68305 (15)1.10458 (13)0.30135 (13)0.0286 (3)
C50.80410 (15)1.02893 (14)0.37548 (14)0.0323 (3)
H5A0.89510.97200.33240.039*
C60.78960 (14)1.03809 (14)0.51481 (14)0.0308 (3)
H6A0.87240.98690.56650.037*
C70.64875 (15)1.13389 (13)0.72917 (13)0.0298 (3)
H7A0.54041.13440.79320.036*
C80.6967 (2)1.28197 (15)0.69213 (17)0.0428 (3)
H8A0.68571.29080.78920.064*
H8B0.63071.37140.62910.064*
H8C0.80461.27940.63420.064*
C90.69843 (15)0.86580 (13)0.89183 (14)0.0301 (3)
H9A0.70240.83130.81180.036*
H9B0.58990.88040.95040.036*
C100.79787 (14)0.74457 (13)1.00075 (13)0.0259 (2)
C110.77114 (14)0.59377 (14)1.08286 (14)0.0298 (3)
C120.85496 (15)0.47887 (14)1.19003 (14)0.0330 (3)
H12A0.83390.37691.24470.040*
C130.97003 (15)0.51798 (14)1.21437 (14)0.0343 (3)
C141.00324 (16)0.66490 (15)1.13334 (15)0.0354 (3)
H14A1.08450.68891.15000.042*
C150.91710 (15)0.77740 (14)1.02725 (14)0.0298 (3)
H15A0.93990.87870.97170.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03580 (17)0.03395 (17)0.03615 (18)0.00737 (13)0.01065 (14)0.01213 (14)
Cl20.0446 (2)0.04732 (19)0.02785 (16)0.01169 (15)0.00955 (14)0.01509 (14)
Cl30.0493 (2)0.03993 (19)0.0552 (2)0.02003 (16)0.02309 (18)0.00438 (16)
Cl40.0482 (2)0.0489 (2)0.0426 (2)0.00674 (17)0.02492 (18)0.00436 (16)
O10.0381 (5)0.0265 (4)0.0249 (4)0.0084 (4)0.0141 (4)0.0018 (3)
C10.0305 (6)0.0236 (5)0.0224 (5)0.0070 (5)0.0087 (5)0.0033 (5)
C20.0273 (6)0.0194 (5)0.0264 (6)0.0027 (4)0.0068 (5)0.0042 (4)
C30.0283 (6)0.0260 (6)0.0254 (6)0.0056 (5)0.0113 (5)0.0028 (5)
C40.0360 (7)0.0277 (6)0.0201 (5)0.0107 (5)0.0074 (5)0.0042 (5)
C50.0292 (6)0.0326 (6)0.0281 (6)0.0019 (5)0.0057 (5)0.0097 (5)
C60.0259 (6)0.0350 (6)0.0258 (6)0.0021 (5)0.0099 (5)0.0072 (5)
C70.0351 (7)0.0269 (6)0.0232 (6)0.0033 (5)0.0111 (5)0.0054 (5)
C80.0641 (10)0.0304 (6)0.0389 (7)0.0115 (7)0.0219 (7)0.0092 (6)
C90.0342 (6)0.0281 (6)0.0258 (6)0.0091 (5)0.0107 (5)0.0044 (5)
C100.0271 (6)0.0265 (5)0.0206 (5)0.0030 (5)0.0053 (5)0.0080 (5)
C110.0296 (6)0.0302 (6)0.0287 (6)0.0075 (5)0.0070 (5)0.0097 (5)
C120.0342 (7)0.0268 (6)0.0297 (6)0.0028 (5)0.0064 (5)0.0073 (5)
C130.0338 (7)0.0342 (6)0.0262 (6)0.0051 (5)0.0112 (5)0.0094 (5)
C140.0330 (7)0.0396 (7)0.0360 (7)0.0053 (6)0.0140 (6)0.0140 (6)
C150.0311 (6)0.0296 (6)0.0272 (6)0.0052 (5)0.0089 (5)0.0090 (5)
Geometric parameters (Å, º) top
Cl1—C21.7401 (13)C7—H7A1.0000
Cl2—C41.7398 (12)C8—H8A0.9800
Cl3—C111.7409 (12)C8—H8B0.9800
Cl4—C131.7398 (12)C8—H8C0.9800
O1—C91.4189 (14)C9—C101.5008 (16)
O1—C71.4325 (13)C9—H9A0.9900
C1—C61.3896 (17)C9—H9B0.9900
C1—C21.3920 (16)C10—C111.3905 (16)
C1—C71.5242 (16)C10—C151.3915 (17)
C2—C31.3926 (16)C11—C121.3873 (16)
C3—C41.3770 (18)C12—C131.3799 (18)
C3—H3A0.9500C12—H12A0.9500
C4—C51.3811 (17)C13—C141.3780 (18)
C5—C61.3917 (17)C14—C151.3869 (17)
C5—H5A0.9500C14—H14A0.9500
C6—H6A0.9500C15—H15A0.9500
C7—C81.5170 (16)
C9—O1—C7112.73 (9)C7—C8—H8C109.5
C6—C1—C2117.47 (11)H8A—C8—H8C109.5
C6—C1—C7120.34 (10)H8B—C8—H8C109.5
C2—C1—C7122.13 (11)O1—C9—C10110.07 (9)
C1—C2—C3122.11 (11)O1—C9—H9A109.6
C1—C2—Cl1120.19 (9)C10—C9—H9A109.6
C3—C2—Cl1117.69 (9)O1—C9—H9B109.6
C4—C3—C2118.14 (11)C10—C9—H9B109.6
C4—C3—H3A120.9H9A—C9—H9B108.2
C2—C3—H3A120.9C11—C10—C15117.12 (11)
C3—C4—C5122.02 (11)C11—C10—C9120.55 (10)
C3—C4—Cl2118.89 (9)C15—C10—C9122.31 (10)
C5—C4—Cl2119.09 (10)C12—C11—C10123.01 (11)
C4—C5—C6118.40 (12)C12—C11—Cl3118.03 (9)
C4—C5—H5A120.8C10—C11—Cl3118.96 (9)
C6—C5—H5A120.8C13—C12—C11117.65 (11)
C1—C6—C5121.85 (11)C13—C12—H12A121.2
C1—C6—H6A119.1C11—C12—H12A121.2
C5—C6—H6A119.1C14—C13—C12121.51 (11)
O1—C7—C8106.63 (10)C14—C13—Cl4119.22 (10)
O1—C7—C1111.59 (10)C12—C13—Cl4119.27 (10)
C8—C7—C1110.86 (10)C13—C14—C15119.47 (12)
O1—C7—H7A109.2C13—C14—H14A120.3
C8—C7—H7A109.2C15—C14—H14A120.3
C1—C7—H7A109.2C14—C15—C10121.21 (11)
C7—C8—H8A109.5C14—C15—H15A119.4
C7—C8—H8B109.5C10—C15—H15A119.4
H8A—C8—H8B109.5
C6—C1—C2—C30.25 (17)C2—C1—C7—C883.23 (14)
C7—C1—C2—C3176.98 (10)C7—O1—C9—C10172.27 (9)
C6—C1—C2—Cl1179.61 (9)O1—C9—C10—C11178.34 (11)
C7—C1—C2—Cl13.16 (15)O1—C9—C10—C153.20 (17)
C1—C2—C3—C40.16 (17)C15—C10—C11—C121.43 (19)
Cl1—C2—C3—C4179.98 (8)C9—C10—C11—C12177.11 (12)
C2—C3—C4—C50.65 (17)C15—C10—C11—Cl3178.37 (10)
C2—C3—C4—Cl2179.79 (8)C9—C10—C11—Cl33.10 (16)
C3—C4—C5—C60.72 (18)C10—C11—C12—C130.2 (2)
Cl2—C4—C5—C6179.73 (9)Cl3—C11—C12—C13179.57 (10)
C2—C1—C6—C50.18 (18)C11—C12—C13—C141.24 (19)
C7—C1—C6—C5177.10 (11)C11—C12—C13—Cl4179.17 (10)
C4—C5—C6—C10.28 (19)C12—C13—C14—C151.4 (2)
C9—O1—C7—C8166.43 (10)Cl4—C13—C14—C15178.97 (10)
C9—O1—C7—C172.37 (12)C13—C14—C15—C100.2 (2)
C6—C1—C7—O124.78 (15)C11—C10—C15—C141.21 (18)
C2—C1—C7—O1158.07 (10)C9—C10—C15—C14177.29 (12)
C6—C1—C7—C893.92 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg1i0.952.973.8888 (15)162
Symmetry code: (i) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC15H12Cl4O
Mr350.05
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.3755 (4), 9.9229 (4), 9.9667 (4)
α, β, γ (°)62.313 (3), 70.246 (4), 71.467 (4)
V3)758.22 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.47 × 0.42 × 0.27
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.638, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
10547, 4961, 3334
Rint0.015
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.02
No. of reflections4961
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg1i0.952.973.8888 (15)162
Symmetry code: (i) x, y1, z+1.
 

Acknowledgements

CSC thanks the University of Mysore for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBecke, A. D. (1988). Phys. Rev. A38, 3098–100.  CrossRef Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBolte, M., Benecke, B. & Egert, E. (1999). Acta Cryst. C55, 964–968.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrigas, A. F., Clegg, W., Johnstone, R. A. W. & Mendonca, R. F. (1999). Acta Cryst. C55, 778–781.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCui, Y., Liu, H.-M. & Zhang, W.-Q. (2005). Acta Cryst. E61, o685–o686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J. et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationHehre, W. J., Random, L., Schleyer, P. R. & Pople, J. A. (1986). In Ab Initio Molecular Orbital Theory. New York: Wiley.  Google Scholar
First citationKotila, S., Jäntti, A., Penttinen, S. & Bach, T. (1996). Acta Cryst. C52, 1722–1725.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationMoratti, S. C., Simpson, J. & Tierney, S. M. (2007). Acta Cryst. E63, o3954.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, L.-Z., Bi, S. & Ren, R. (2007). Acta Cryst. E63, o775–o776.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o165-o166
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds