organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{4-[4-(4-Fluoro­phen­yl)-1-methyl-2-[(R)-methyl­sulfin­yl]-1H-imidazol-5-yl]-2-pyridyl}acetamide dihydrate

aEberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, bUniversity Mainz, Institut of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany, and cc-a-i-r biosciences GmbH, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 26 November 2009; accepted 2 December 2009; online 12 December 2009)

In the crystal structure of the title compound, C18H17FN4O2S·2H2O, the organic mol­ecules are linked by inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds with the water mol­ecules, generating a three-dimensional network. The imidazole ring system forms a dihedral angle of 24.9 (2)° with the 4-fluoro­phenyl ring. The pyridine ring is oriented approximately perpendicular [72.24 (8)°] to the imidazole ring system.

Related literature

For general background and the biological activity of chiral sulfoxides and their potential use as therapeutic agents, see: Jia et al., (2004[Jia, X., Li, X., Xu, L., Li, Y., Shi, Q., Au-Yeung, T. T.-L., Yip, C. W., Yao, X. & Chan, A. S. C. (2004). Adv. Synth. Catal. 346, 723-726.]). Sulfoxide enanti­omers can differ in their pharmacodynamic and/or pharmacokinetic properties, see: Lu (2007[Lu, H. (2007). Exp. Opin. Drug Metab. Toxicol. 3, 149-158.]). For the preparation of tri- and tetra­substituted 2-thio­imidazoles, see: Wagner et al. (2003[ Wagner, G. K., Kotschenreuther, D., Zimmermann, W. & Laufer, S. A. (2003). J. Org. Chem. 68, 4527-4530.]); Laufer, Hauser, Domeyer et al. (2008[Laufer, S. A., Hauser, D. R. J., Domeyer, D. M., Kinkel, K. & Liedtke, A. J. (2008). J. Med. Chem. 51, 4122-4149.]); Laufer, Hauser & Liedtke (2008[Laufer, S. A., Hauser, D. R. J. & Liedtke, A. J. (2008). Synthesis, 2, 253-266.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17FN4O2S·2H2O

  • Mr = 408.45

  • Orthorhombic, P 21 21 21

  • a = 5.8178 (2) Å

  • b = 14.3233 (5) Å

  • c = 23.3694 (9) Å

  • V = 1947.37 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 193 K

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • 10703 measured reflections

  • 4628 independent reflections

  • 2634 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.099

  • S = 0.84

  • 4628 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1949 Friedel pairs

  • Flack parameter: −0.08 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N24—H24⋯O15i 0.91 2.08 2.983 (3) 177
O1L—H1L⋯O26ii 0.94 1.90 2.825 (3) 169
O1L—H2L⋯O15 0.85 2.00 2.775 (3) 151
O2L—H3L⋯O1L 0.84 1.90 2.743 (4) 177
O2L—H4L⋯N2 0.84 2.51 3.193 (3) 138
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Many chiral sulfoxides exhibit interesting biological activities and show promise as therapeutic agents (Jia et al., 2004). The title compound, N-(4-(4-(4-fluorophenyl)-1-methyl-2-((R)-methylsulfinyl)-1H-imidazol-5-yl) pyridin-2-yl)acetamide, was prepared in the course of our studies on tri- and tetrasubstituted 2-thioimidazoles as p38 mitogen-activated protein (MAP) kinase inhibitors (Wagner et al., 2003, Laufer, Hauser, Domeyer et al.,2008); Laufer, Hauser & Liedtke, 2008). The oxidation of the sulfide N-(4-(4-(4-fluorophenyl)-1-methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-2- yl)acetamide with sodium periodate as oxidant yields the corresponding sulfoxide N-(4-(4-(4-fluorophenyl)-1-methyl-2-(methylsulfinyl)-1H-imidazol-5-yl) pyridin-2-yl)acetamide. This compound has a centre of asymmetry in the sulfur atom meaning that two sulfoxide enantiomers exist, which can differ in pharmacodynamic and/or pharmacokinetic properties (Lu, 2007). The both enantiomers were separated by enantioselective preparative HPLC. To identify the absolute configurations of the enantiomers according to the Cahn-Ingold-Prelog-nomenclature X-ray analysis was used. In this article we present the X-ray data of the first eluted enantiomer I. The analysis of the crystal structure shows that the N24 amino- group of the acetamide moiety of the one imidazole-molecule interact with another imidazole ring system by the building of one intermolecular hydrogen bond N—H···O to the sulfoxide oxygen-atom O15, whereas the O15···H24 distance is 2.08 Å. Furthermore, the carbonyl-oxygen atom O26 of the acetamide-moiety of a third imidazole molecule is linked over two water molecules to the sulfoxide oxygen-atom O15 and to the nitrogen atom N2 of the imidazole core by the building of intermolecular O1L—H1L···O26 (1.90 Å), O1L—H2L···O15 (2.00 Å) and O2L—H4L···N2 (2.51 Å) hydrogen bonds. The imidazole ring system forms a dihedral angle of 24.9 (1)° to the 4-fluorophenyl ring. The pyridine ring is oriented approximately perpendicular (72.24 (8)°) to the imidazole ring system. According to the Cahn-Ingold-Prelog-nomenclature the first eluted enantiomer I is (R)-configurated.

Related literature top

For general background the biological activity of chiral sulfoxides and their potential use as therapeutic agents, see: Jia et al., (2004). Sulfoxide enantiomers can differ in their pharmacodynamic and/or pharmacokinetic properties, see: Lu (2007). For the preparation of tri- and tetrasubstituted 2-thioimidazoles, see: Wagner et al. (2003); Laufer, Hauser, Domeyer et al. (2008); Laufer, Hauser & Liedtke (2008).

Experimental top

N-(4-(4-(4-fluorophenyl)-1-methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-2- yl)acetamide (3.56 g, 10 mmol) was dissolved in a mixture of THF (30 ml) and acetone (58 ml), and water (45 ml) was added. The mixture was stirred at T = 313 K, and an aqueous solution of sodium periodate (4.01 g, 18.4 mmol in 65 ml water) was added dropwise. The reaction mixture was heated at T = 338 K. The progress was again monitored until HPLC analysis (C8 Betasil, MeOH/ 0.01 M KH2PO4, pH = 2,3) indicated complete conversion. After cooling to rt, the organic solvents were removed under reduced pressure and a precipitate dropped down, which was filtered off and washed with water and isopropylether. The crude product was purified by recrystallization from ethylacetate to yield 3.02 g (81.2%) of the colorless racemic product N-(4-(4-(4-fluorophenyl)-1-methyl-2-(methylsulfinyl)-1H-imidazol-5-yl)pyridin-2-yl)acetamide. The both enantiomers were isolated by enantioselective preparative HPLC (Daicel CHIRALPAK AD, CH2Cl2 / MeOH/ TEA 98: 2: 0.1). Suitable crystals of the first eluted enantiomer I for X-ray were obtained by slow evaporation at T = 298 K of a solution of ethanol.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). Hydrogen atoms attached to nitrogen and oxygen were located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). The absolute structure was determined on the basis of 1949 Friedel pairs.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
N-{4-[4-(4-Fluorophenyl)-1-methyl-2-[(R)-methylsulfinyl]- 1H-imidazol-5-yl]-2-pyridyl}acetamide dihydrate top
Crystal data top
C18H17FN4O2S·2H2OF(000) = 856
Mr = 408.45Dx = 1.393 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 1669 reflections
a = 5.8178 (2) Åθ = 2.9–23.5°
b = 14.3233 (5) ŵ = 0.21 mm1
c = 23.3694 (9) ÅT = 193 K
V = 1947.37 (12) Å3Needle, colourless
Z = 40.50 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEXII
diffractometer
2634 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.089
Graphite monochromatorθmax = 27.9°, θmin = 1.7°
CCD scanh = 77
10703 measured reflectionsk = 1815
4628 independent reflectionsl = 2430
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0293P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max = 0.001
4628 reflectionsΔρmax = 0.27 e Å3
256 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: Flack (1983), 1949 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (11)
Crystal data top
C18H17FN4O2S·2H2OV = 1947.37 (12) Å3
Mr = 408.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8178 (2) ŵ = 0.21 mm1
b = 14.3233 (5) ÅT = 193 K
c = 23.3694 (9) Å0.50 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEXII
diffractometer
2634 reflections with I > 2σ(I)
10703 measured reflectionsRint = 0.089
4628 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.27 e Å3
S = 0.84Δρmin = 0.30 e Å3
4628 reflectionsAbsolute structure: Flack (1983), 1949 Friedel pairs
256 parametersAbsolute structure parameter: 0.08 (11)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0028 (5)0.38294 (18)0.67677 (10)0.0247 (6)
N20.0086 (5)0.38684 (16)0.73573 (9)0.0301 (6)
C30.1670 (5)0.44957 (18)0.74681 (10)0.0299 (7)
N40.2625 (4)0.48701 (15)0.69850 (7)0.0276 (5)
C50.1496 (5)0.44518 (18)0.65318 (10)0.0244 (6)
C60.1622 (5)0.31718 (18)0.64897 (11)0.0265 (7)
C70.1212 (6)0.2827 (2)0.59361 (11)0.0334 (7)
H70.01390.30080.57360.040*
C80.2761 (6)0.2227 (2)0.56802 (13)0.0406 (8)
H80.25040.20030.53030.049*
C90.4667 (6)0.1961 (2)0.59797 (14)0.0428 (9)
C100.5117 (6)0.2250 (2)0.65250 (13)0.0391 (8)
H100.64380.20360.67250.047*
C110.3591 (5)0.2864 (2)0.67776 (12)0.0326 (7)
H110.38850.30820.71540.039*
F130.6195 (4)0.13680 (13)0.57211 (9)0.0687 (6)
S140.25518 (17)0.48524 (5)0.81652 (3)0.0404 (2)
O150.3625 (4)0.40219 (16)0.84497 (7)0.0490 (6)
C160.0249 (7)0.4982 (3)0.84489 (11)0.0636 (12)
H16C0.01510.51040.88610.095*
H16B0.11270.44080.83830.095*
H16A0.10200.55060.82600.095*
C170.4374 (6)0.5604 (2)0.69480 (12)0.0439 (9)
H17A0.41800.60410.72670.066*
H17B0.42050.59400.65850.066*
H17C0.59060.53210.69670.066*
C180.2057 (5)0.47072 (17)0.59317 (9)0.0244 (6)
C190.4114 (5)0.44302 (19)0.56902 (11)0.0285 (7)
H190.52090.40920.59090.034*
C200.4555 (6)0.4653 (2)0.51252 (11)0.0331 (7)
H200.59620.44480.49610.040*
N210.3106 (4)0.51404 (17)0.47977 (8)0.0294 (6)
C220.1152 (5)0.54307 (19)0.50371 (11)0.0262 (7)
C230.0530 (5)0.52212 (19)0.56027 (10)0.0264 (6)
H230.08960.54260.57560.032*
N240.0213 (4)0.59582 (16)0.46634 (9)0.0314 (6)
H240.02210.59700.42910.047*
C250.1937 (6)0.65639 (19)0.47982 (12)0.0327 (7)
O260.2713 (4)0.66543 (13)0.52821 (8)0.0405 (5)
C270.2867 (7)0.7123 (2)0.43046 (12)0.0530 (10)
H27A0.25010.77840.43610.080*
H27C0.45380.70440.42840.080*
H27B0.21660.69040.39480.080*
O1L0.2647 (6)0.21319 (16)0.85452 (9)0.0726 (8)
H1L0.27170.20570.89450.109*
H2L0.24480.27230.85570.109*
O2L0.0400 (5)0.16661 (18)0.75536 (11)0.0795 (9)
H3L0.10510.18060.78630.119*
H4L0.03570.21270.74350.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (16)0.0238 (15)0.0207 (13)0.0027 (13)0.0021 (14)0.0000 (11)
N20.0400 (16)0.0291 (14)0.0211 (11)0.0024 (12)0.0021 (12)0.0038 (10)
C30.0408 (19)0.0302 (15)0.0186 (13)0.0020 (14)0.0058 (14)0.0009 (11)
N40.0324 (13)0.0299 (12)0.0206 (10)0.0038 (13)0.0037 (12)0.0004 (9)
C50.0266 (17)0.0261 (14)0.0206 (13)0.0042 (13)0.0028 (13)0.0002 (11)
C60.0312 (19)0.0238 (14)0.0245 (13)0.0029 (13)0.0061 (14)0.0038 (11)
C70.0332 (18)0.0328 (17)0.0341 (16)0.0031 (16)0.0017 (15)0.0034 (13)
C80.044 (2)0.0349 (17)0.0434 (16)0.0021 (19)0.0093 (19)0.0141 (14)
C90.036 (2)0.0325 (19)0.060 (2)0.0051 (17)0.0175 (19)0.0050 (16)
C100.0320 (19)0.0342 (18)0.0512 (19)0.0045 (16)0.0054 (17)0.0131 (15)
C110.0333 (18)0.0325 (17)0.0318 (15)0.0013 (15)0.0020 (15)0.0071 (13)
F130.0562 (14)0.0548 (13)0.0950 (15)0.0195 (12)0.0165 (14)0.0227 (12)
S140.0586 (5)0.0411 (4)0.0215 (3)0.0017 (5)0.0099 (4)0.0032 (3)
O150.0636 (17)0.0592 (15)0.0243 (10)0.0236 (14)0.0124 (11)0.0030 (10)
C160.072 (3)0.091 (3)0.0272 (15)0.030 (3)0.0050 (18)0.0117 (18)
C170.048 (2)0.046 (2)0.0385 (17)0.0163 (17)0.0022 (17)0.0006 (14)
C180.0316 (18)0.0237 (14)0.0180 (12)0.0032 (14)0.0011 (12)0.0002 (10)
C190.0288 (17)0.0322 (17)0.0243 (14)0.0034 (14)0.0031 (14)0.0050 (12)
C200.0310 (18)0.040 (2)0.0288 (15)0.0034 (15)0.0038 (14)0.0011 (13)
N210.0311 (15)0.0318 (13)0.0254 (11)0.0066 (12)0.0012 (11)0.0013 (10)
C220.0313 (18)0.0258 (16)0.0214 (13)0.0029 (14)0.0005 (13)0.0007 (11)
C230.0289 (17)0.0288 (16)0.0214 (13)0.0013 (14)0.0018 (12)0.0020 (12)
N240.0385 (16)0.0373 (15)0.0185 (11)0.0101 (14)0.0004 (12)0.0032 (10)
C250.037 (2)0.0295 (16)0.0318 (15)0.0049 (15)0.0035 (15)0.0010 (12)
O260.0463 (14)0.0462 (12)0.0289 (10)0.0108 (13)0.0015 (12)0.0037 (9)
C270.065 (3)0.052 (2)0.0415 (17)0.026 (2)0.006 (2)0.0082 (15)
O1L0.105 (2)0.0615 (16)0.0516 (13)0.0245 (19)0.0045 (17)0.0070 (12)
O2L0.086 (2)0.0676 (18)0.0850 (18)0.0002 (17)0.0200 (19)0.0271 (15)
Geometric parameters (Å, º) top
C1—C51.373 (4)C17—H17A0.9800
C1—N21.380 (3)C17—H17B0.9800
C1—C61.473 (4)C17—H17C0.9800
N2—C31.313 (4)C18—C191.381 (4)
C3—N41.368 (3)C18—C231.386 (4)
C3—S141.783 (3)C19—C201.382 (3)
N4—C51.383 (3)C19—H190.9500
N4—C171.465 (4)C20—N211.336 (3)
C5—C181.485 (3)C20—H200.9500
C6—C111.400 (4)N21—C221.333 (3)
C6—C71.405 (4)C22—N241.402 (3)
C7—C81.382 (4)C22—C231.403 (3)
C7—H70.9500C23—H230.9500
C8—C91.365 (5)N24—C251.363 (4)
C8—H80.9500N24—H240.9072
C9—C101.365 (4)C25—O261.224 (3)
C9—F131.370 (4)C25—C271.505 (4)
C10—C111.382 (4)C27—H27A0.9800
C10—H100.9500C27—H27C0.9800
C11—H110.9500C27—H27B0.9800
S14—O151.499 (2)O1L—H1L0.9410
S14—C161.769 (4)O1L—H2L0.8545
C16—H16C0.9800O2L—H3L0.8400
C16—H16B0.9800O2L—H4L0.8400
C16—H16A0.9800
C5—C1—N2110.1 (2)H16C—C16—H16A109.5
C5—C1—C6130.1 (2)H16B—C16—H16A109.5
N2—C1—C6119.8 (2)N4—C17—H17A109.5
C3—N2—C1105.0 (2)N4—C17—H17B109.5
N2—C3—N4113.0 (2)H17A—C17—H17B109.5
N2—C3—S14125.3 (2)N4—C17—H17C109.5
N4—C3—S14121.7 (2)H17A—C17—H17C109.5
C3—N4—C5105.6 (2)H17B—C17—H17C109.5
C3—N4—C17127.7 (2)C19—C18—C23118.7 (2)
C5—N4—C17126.5 (2)C19—C18—C5120.3 (2)
C1—C5—N4106.3 (2)C23—C18—C5120.9 (2)
C1—C5—C18132.9 (2)C18—C19—C20119.0 (3)
N4—C5—C18120.8 (2)C18—C19—H19120.5
C11—C6—C7118.1 (3)C20—C19—H19120.5
C11—C6—C1120.3 (2)N21—C20—C19123.4 (3)
C7—C6—C1121.6 (3)N21—C20—H20118.3
C8—C7—C6120.4 (3)C19—C20—H20118.3
C8—C7—H7119.8C22—N21—C20117.4 (2)
C6—C7—H7119.8N21—C22—N24112.9 (2)
C9—C8—C7118.8 (3)N21—C22—C23123.3 (3)
C9—C8—H8120.6N24—C22—C23123.8 (3)
C7—C8—H8120.6C18—C23—C22118.1 (3)
C10—C9—C8123.4 (3)C18—C23—H23121.0
C10—C9—F13118.4 (3)C22—C23—H23121.0
C8—C9—F13118.3 (3)C25—N24—C22128.0 (2)
C9—C10—C11117.9 (3)C25—N24—H24114.5
C9—C10—H10121.0C22—N24—H24116.8
C11—C10—H10121.0O26—C25—N24123.5 (2)
C10—C11—C6121.4 (3)O26—C25—C27121.3 (3)
C10—C11—H11119.3N24—C25—C27115.2 (3)
C6—C11—H11119.3C25—C27—H27A109.5
O15—S14—C16107.50 (16)C25—C27—H27C109.5
O15—S14—C3107.32 (12)H27A—C27—H27C109.5
C16—S14—C396.18 (15)C25—C27—H27B109.5
S14—C16—H16C109.5H27A—C27—H27B109.5
S14—C16—H16B109.5H27C—C27—H27B109.5
H16C—C16—H16B109.5H1L—O1L—H2L94.9
S14—C16—H16A109.5H3L—O2L—H4L109.5
C5—C1—N2—C30.7 (3)F13—C9—C10—C11178.6 (3)
C6—C1—N2—C3178.7 (3)C9—C10—C11—C61.1 (4)
C1—N2—C3—N40.4 (3)C7—C6—C11—C100.9 (4)
C1—N2—C3—S14179.4 (2)C1—C6—C11—C10179.8 (3)
N2—C3—N4—C51.4 (3)N2—C3—S14—O1564.5 (3)
S14—C3—N4—C5178.5 (2)N4—C3—S14—O15115.7 (2)
N2—C3—N4—C17177.9 (3)N2—C3—S14—C1646.0 (3)
S14—C3—N4—C172.0 (4)N4—C3—S14—C16133.8 (3)
N2—C1—C5—N41.5 (3)C1—C5—C18—C19107.8 (4)
C6—C1—C5—N4177.8 (3)N4—C5—C18—C1971.7 (3)
N2—C1—C5—C18178.9 (3)C1—C5—C18—C2371.8 (4)
C6—C1—C5—C181.8 (5)N4—C5—C18—C23108.7 (3)
C3—N4—C5—C11.7 (3)C23—C18—C19—C201.7 (4)
C17—N4—C5—C1178.2 (3)C5—C18—C19—C20177.9 (3)
C3—N4—C5—C18178.7 (2)C18—C19—C20—N211.2 (4)
C17—N4—C5—C182.1 (4)C19—C20—N21—C220.8 (4)
C5—C1—C6—C11155.5 (3)C20—N21—C22—N24178.2 (2)
N2—C1—C6—C1125.2 (4)C20—N21—C22—C232.3 (4)
C5—C1—C6—C725.2 (5)C19—C18—C23—C220.3 (4)
N2—C1—C6—C7154.0 (3)C5—C18—C23—C22179.3 (2)
C11—C6—C7—C82.1 (4)N21—C22—C23—C181.8 (4)
C1—C6—C7—C8178.6 (3)N24—C22—C23—C18178.8 (3)
C6—C7—C8—C91.3 (4)N21—C22—N24—C25160.2 (3)
C7—C8—C9—C100.8 (5)C23—C22—N24—C2520.3 (4)
C7—C8—C9—F13179.8 (3)C22—N24—C25—O268.5 (5)
C8—C9—C10—C112.0 (5)C22—N24—C25—C27172.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N24—H24···O15i0.912.082.983 (3)177
O1L—H2L···O150.852.002.775 (3)151
O1L—H1L···O26ii0.941.902.825 (3)169
O2L—H3L···O1L0.841.902.743 (4)177
O2L—H4L···N20.842.513.193 (3)138
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H17FN4O2S·2H2O
Mr408.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)193
a, b, c (Å)5.8178 (2), 14.3233 (5), 23.3694 (9)
V3)1947.37 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10703, 4628, 2634
Rint0.089
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.099, 0.84
No. of reflections4628
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.30
Absolute structureFlack (1983), 1949 Friedel pairs
Absolute structure parameter0.08 (11)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N24—H24···O15i0.912.082.983 (3)177
O1L—H2L···O150.852.002.775 (3)151
O1L—H1L···O26ii0.941.902.825 (3)169
O2L—H3L···O1L0.841.902.743 (4)177
O2L—H4L···N20.842.513.193 (3)138
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Federal Ministry of Education and Research, Germany, Merckle GmbH, Ulm, Germany, and the Fonds der Chemischen Industrie, Germany, for their generous support of this work.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJia, X., Li, X., Xu, L., Li, Y., Shi, Q., Au-Yeung, T. T.-L., Yip, C. W., Yao, X. & Chan, A. S. C. (2004). Adv. Synth. Catal. 346, 723–726.  Web of Science CrossRef CAS Google Scholar
First citationLaufer, S. A., Hauser, D. R. J., Domeyer, D. M., Kinkel, K. & Liedtke, A. J. (2008). J. Med. Chem. 51, 4122–4149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaufer, S. A., Hauser, D. R. J. & Liedtke, A. J. (2008). Synthesis, 2, 253–266.  Web of Science CrossRef Google Scholar
First citationLu, H. (2007). Exp. Opin. Drug Metab. Toxicol. 3, 149–158.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citation Wagner, G. K., Kotschenreuther, D., Zimmermann, W. & Laufer, S. A. (2003). J. Org. Chem. 68, 4527–4530.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds