metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­aquadi-μ3-oxalato-μ2-oxalato-diprasedymium(III)] dihydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: ypcai8@yahoo.com

(Received 9 November 2009; accepted 12 December 2009; online 19 December 2009)

In the title compound, {[Pr2(C2O4)3(H2O)4]·2H2O}n, the three-dimensional network structure has the PrIII ion coordinated by nine O atoms in a distorted tricapped trigonal-prismatic geometry. The coordinated and uncoordinated water mol­ecules inter­act with the carboxyl­ate O atoms to consolidate the network via O—H⋯O hydrogen bonds.

Related literature

For general background, see: Benson et al. (2000[Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A. & Wheeler, D. L. (2000). Genbank. Nucl. Acids Res. 28, 15-18.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr2(C2O4)3(H2O)4]·2H2O

  • Mr = 653.98

  • Monoclinic, P 21 /c

  • a = 9.8834 (5) Å

  • b = 8.2811 (4) Å

  • c = 10.1818 (5) Å

  • β = 99.053 (1)°

  • V = 822.95 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.95 mm−1

  • T = 298 K

  • 0.26 × 0.22 × 0.16 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.307, Tmax = 0.450

  • 4111 measured reflections

  • 1487 independent reflections

  • 1397 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.035

  • S = 1.07

  • 1487 reflections

  • 139 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O9i 0.85 (1) 1.89 (1) 2.732 (3) 171 (3)
O7—H7B⋯O1ii 0.85 (1) 1.94 (2) 2.732 (3) 155 (4)
O8—H8A⋯O2iii 0.84 (1) 2.06 (1) 2.900 (3) 175 (4)
O8—H8A⋯O3iv 0.84 (1) 2.59 (4) 3.026 (3) 114 (3)
O8—H8B⋯O9v 0.84 (1) 2.12 (2) 2.949 (4) 167 (6)
O9—H9B⋯O6vi 0.83 (1) 1.99 (1) 2.820 (3) 178 (4)
O9—H9A⋯O8 0.84 (1) 2.05 (1) 2.881 (4) 173 (4)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Though complexes including oxalato and praseodymium(III) have been extensively investigated, the crystal structure of praseodymium oxalate with one-dimensional, two-dimensional and three-dimensional topologies and different solvent molecules have constantly being reported recently. In this paper, we would like to report the synthesis and crystal structure of a three-dimensional network complex including oxalato and praseodymium(III) with one lattice water molecule per unsymmetrical unit. The hydrothermal reaction of Pr6O11 and oxalic acid in H2O afforded the PrIII title polymeric complex, [(Pr(C2O4)1.5(H2O)2).H2O]n. The PrIII ion is coordinated by nine O atoms from two water molecules and four carboxylate groups of oxalate ligands in an irregular coordination geometry (Figure 1). Two oxalate groups of the oxalate anions bridge two symmetry-related PrIII atoms, giving rise to a layer-like structure extending along [100] (Figure 2). These parallel layers are further connected via chelating coordination of oxalate anions into a three-dimensional network (Figure 3) along [010] plane. Moreover, the coordinated/non-coordinated water molecules interact with the carboxylate oxygen atoms from the layers via O—H···O hydrogen bonds (Table 1), which contributes to the additional stability of the structure.

Related literature top

For general background, see Benson et al. (2000).

Experimental top

A suspension of praseodymium oxide (205 mg, 0.20 mmol) in in water (20 ml) was slowly added to a solution of oxalic acid (0.10 mmol) in water (10 ml). The resultant mixture was sealed in a 50 cm3 stainless steel reactor with Teflon liner and kept under autogenous pressure at 100 ° for 78 h, and then cooled to room temperature at a rate of 0.5 °. min-1. Colorless block crystals of the compound suited for single-crystal X-ray diffraction analyses formed with a yield of approximate 65%. The assigned structure was substantiated by elemental analysis; calculated for C3H6O9Pr: C 11.01, H 1.83%; found: C 10.96, H 1.95%.

Refinement top

The structure was solved using direct methods followed by Fourier synthesis. Non-H atoms were refined anisotropically. The water H atoms were located in a difference Fourier map, and were refined with distance restraints of O—H = 0.84(0.01) and H···H 1.428 (0.002) |%A, but their Uiso values were set equal to 1.5 Ueq(parent atom O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) with 30% probability ellipsoids. Symmetry code a: 1 - x,-y,1 - z; b: -x,-1/2 + y,0.5 - z; c: -x,-y,1 - z; d: x,0.5 - y,1/2 + z.
[Figure 2] Fig. 2. A view of one-dimensional chain constructed by hydrogen bonding interactions. Symmetry code a: x - 1,y,z.
Poly[[tetraaquadi-µ3-oxalato-µ2-oxalato-diprasedymium(III)] dihydrate] top
Crystal data top
[Pr2(C2O4)3(H2O)4]·2H2OF(000) = 620
Mr = 653.98Dx = 2.639 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8834 (5) ÅCell parameters from 3328 reflections
b = 8.2811 (4) Åθ = 3.2–28.6°
c = 10.1818 (5) ŵ = 5.95 mm1
β = 99.053 (1)°T = 298 K
V = 822.95 (7) Å3Block, yellow
Z = 20.26 × 0.22 × 0.16 mm
Data collection top
Bruker SMART
diffractometer
1487 independent reflections
Radiation source: fine-focus sealed tube1397 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.307, Tmax = 0.450k = 99
4111 measured reflectionsl = 127
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.0087P)2 + 0.7364P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.007
1487 reflectionsΔρmax = 0.44 e Å3
139 parametersΔρmin = 0.54 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0127 (4)
Crystal data top
[Pr2(C2O4)3(H2O)4]·2H2OV = 822.95 (7) Å3
Mr = 653.98Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.8834 (5) ŵ = 5.95 mm1
b = 8.2811 (4) ÅT = 298 K
c = 10.1818 (5) Å0.26 × 0.22 × 0.16 mm
β = 99.053 (1)°
Data collection top
Bruker SMART
diffractometer
1487 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1397 reflections with I > 2σ(I)
Tmin = 0.307, Tmax = 0.450Rint = 0.023
4111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0169 restraints
wR(F2) = 0.035H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.44 e Å3
1487 reflectionsΔρmin = 0.54 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.185002 (15)0.098389 (18)0.437068 (15)0.01483 (9)
O10.0042 (2)0.3167 (2)0.4302 (2)0.0210 (5)
O20.1229 (2)0.4945 (3)0.2991 (2)0.0249 (5)
O30.1838 (2)0.3092 (3)0.2610 (2)0.0229 (5)
O40.0564 (2)0.4802 (3)0.12614 (19)0.0196 (5)
O50.4011 (2)0.0665 (3)0.3529 (2)0.0275 (5)
O60.6199 (2)0.0090 (3)0.3924 (2)0.0287 (5)
O70.1928 (2)0.2047 (3)0.4324 (3)0.0357 (6)
H7A0.255 (3)0.260 (3)0.406 (4)0.054*
H7B0.153 (3)0.250 (4)0.490 (3)0.054*
O80.3072 (3)0.3550 (3)0.5421 (2)0.0296 (5)
H8A0.252 (3)0.393 (4)0.589 (3)0.044*
O90.3963 (3)0.5983 (3)0.3724 (3)0.0353 (6)
H9B0.393 (4)0.566 (5)0.2945 (16)0.053*
C10.0222 (3)0.4050 (3)0.3291 (3)0.0172 (6)
C20.0829 (3)0.3968 (3)0.2319 (3)0.0162 (6)
C30.5054 (3)0.0165 (4)0.4261 (3)0.0200 (7)
H8B0.3907 (13)0.358 (8)0.576 (4)0.13 (3)*
H9A0.370 (7)0.534 (5)0.427 (3)0.13 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.01116 (11)0.01772 (12)0.01591 (11)0.00145 (6)0.00305 (7)0.00222 (6)
O10.0236 (11)0.0229 (11)0.0185 (11)0.0044 (9)0.0094 (9)0.0063 (9)
O20.0248 (12)0.0312 (12)0.0191 (11)0.0126 (10)0.0051 (10)0.0018 (9)
O30.0186 (11)0.0244 (11)0.0274 (12)0.0049 (9)0.0090 (10)0.0067 (10)
O40.0179 (11)0.0261 (11)0.0149 (11)0.0013 (9)0.0033 (9)0.0049 (9)
O50.0183 (12)0.0451 (14)0.0198 (12)0.0077 (10)0.0052 (10)0.0090 (10)
O60.0195 (12)0.0478 (14)0.0204 (12)0.0121 (10)0.0078 (10)0.0095 (11)
O70.0351 (14)0.0252 (13)0.0533 (17)0.0080 (11)0.0273 (13)0.0110 (11)
O80.0303 (14)0.0317 (13)0.0272 (13)0.0058 (11)0.0057 (11)0.0034 (10)
O90.0397 (15)0.0410 (15)0.0274 (14)0.0031 (12)0.0118 (13)0.0034 (12)
C10.0182 (16)0.0162 (14)0.0170 (15)0.0001 (12)0.0023 (13)0.0043 (12)
C20.0188 (16)0.0156 (14)0.0141 (15)0.0066 (12)0.0022 (12)0.0034 (12)
C30.0170 (16)0.0257 (16)0.0183 (16)0.0030 (13)0.0064 (13)0.0042 (13)
Geometric parameters (Å, º) top
Pr1—O52.438 (2)O4—Pr1v2.552 (2)
Pr1—O6i2.495 (2)O4—Pr1iv2.566 (2)
Pr1—O32.501 (2)O5—C31.244 (4)
Pr1—O72.512 (2)O6—C31.251 (4)
Pr1—O12.535 (2)O6—Pr1i2.495 (2)
Pr1—O2ii2.537 (2)O7—H7A0.847 (10)
Pr1—O4iii2.552 (2)O7—H7B0.845 (10)
Pr1—O4ii2.566 (2)O8—H8A0.842 (10)
Pr1—O82.590 (2)O8—H8B0.844 (10)
O1—C11.257 (4)O9—H9B0.832 (10)
O2—C11.240 (4)O9—H9A0.839 (10)
O2—Pr1iv2.537 (2)C1—C21.545 (4)
O3—C21.231 (4)C3—C3i1.549 (6)
O4—C21.271 (4)
O5—Pr1—O6i65.72 (7)O3—Pr1—O870.89 (8)
O5—Pr1—O374.28 (7)O7—Pr1—O8144.46 (8)
O6i—Pr1—O3128.45 (7)O1—Pr1—O872.97 (8)
O5—Pr1—O781.61 (7)O2ii—Pr1—O8134.18 (7)
O6i—Pr1—O772.19 (8)O4iii—Pr1—O898.79 (7)
O3—Pr1—O7132.90 (8)O4ii—Pr1—O8140.47 (7)
O5—Pr1—O1136.09 (7)C1—O1—Pr1119.53 (18)
O6i—Pr1—O1134.01 (7)C1—O2—Pr1iv120.07 (19)
O3—Pr1—O163.82 (6)C2—O3—Pr1119.75 (18)
O7—Pr1—O1137.35 (7)C2—O4—Pr1v116.09 (18)
O5—Pr1—O2ii74.00 (7)C2—O4—Pr1iv118.63 (18)
O6i—Pr1—O2ii127.17 (7)Pr1v—O4—Pr1iv117.51 (8)
O3—Pr1—O2ii65.42 (7)C3—O5—Pr1120.94 (18)
O7—Pr1—O2ii69.33 (8)C3—O6—Pr1i119.5 (2)
O1—Pr1—O2ii98.71 (7)Pr1—O7—H7A125 (2)
O5—Pr1—O4iii143.64 (7)Pr1—O7—H7B114 (2)
O6i—Pr1—O4iii79.71 (7)H7A—O7—H7B115.0 (15)
O3—Pr1—O4iii140.53 (7)Pr1—O8—H8A104 (2)
O7—Pr1—O4iii77.27 (7)Pr1—O8—H8B124 (4)
O1—Pr1—O4iii76.71 (6)H8A—O8—H8B115.7 (15)
O2ii—Pr1—O4iii123.63 (6)H9B—O9—H9A117.4 (16)
O5—Pr1—O4ii134.60 (7)O2—C1—O1127.3 (3)
O6i—Pr1—O4ii130.37 (7)O2—C1—C2117.6 (3)
O3—Pr1—O4ii100.79 (7)O1—C1—C2115.1 (3)
O7—Pr1—O4ii69.15 (7)O3—C2—O4125.1 (3)
O1—Pr1—O4ii68.99 (7)O3—C2—C1118.2 (3)
O2ii—Pr1—O4ii63.66 (6)O4—C2—C1116.7 (3)
O4iii—Pr1—O4ii62.49 (8)O5—C3—O6126.3 (3)
O5—Pr1—O881.77 (8)O5—C3—C3i117.6 (3)
O6i—Pr1—O872.37 (8)O6—C3—C3i116.1 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O9vi0.85 (1)1.89 (1)2.732 (3)171 (3)
O7—H7B···O1vii0.85 (1)1.94 (2)2.732 (3)155 (4)
O8—H8A···O2viii0.84 (1)2.06 (1)2.900 (3)175 (4)
O8—H8A···O3iii0.84 (1)2.59 (4)3.026 (3)114 (3)
O8—H8B···O9ix0.84 (1)2.12 (2)2.949 (4)167 (6)
O9—H9B···O6x0.83 (1)1.99 (1)2.820 (3)178 (4)
O9—H9A···O80.84 (1)2.05 (1)2.881 (4)173 (4)
Symmetry codes: (iii) x, y+1/2, z+1/2; (vi) x, y1, z; (vii) x, y, z+1; (viii) x, y+1, z+1; (ix) x+1, y+1, z+1; (x) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pr2(C2O4)3(H2O)4]·2H2O
Mr653.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.8834 (5), 8.2811 (4), 10.1818 (5)
β (°) 99.053 (1)
V3)822.95 (7)
Z2
Radiation typeMo Kα
µ (mm1)5.95
Crystal size (mm)0.26 × 0.22 × 0.16
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.307, 0.450
No. of measured, independent and
observed [I > 2σ(I)] reflections
4111, 1487, 1397
Rint0.023
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.035, 1.07
No. of reflections1487
No. of parameters139
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.54

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008, SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O9i0.847 (10)1.892 (13)2.732 (3)171 (3)
O7—H7B···O1ii0.845 (10)1.942 (17)2.732 (3)155 (4)
O8—H8A···O2iii0.842 (10)2.060 (11)2.900 (3)175 (4)
O8—H8A···O3iv0.842 (10)2.59 (4)3.026 (3)114 (3)
O8—H8B···O9v0.844 (10)2.120 (17)2.949 (4)167 (6)
O9—H9B···O6vi0.832 (10)1.988 (11)2.820 (3)178 (4)
O9—H9A···O80.839 (10)2.047 (14)2.881 (4)173 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 20772037) and the NSF of Guangdong Province, China (grant Nos. 9251063101000006 and 06025033).

References

First citationBenson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A. & Wheeler, D. L. (2000). Genbank. Nucl. Acids Res. 28, 15–18.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds